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Abstract
Deleterious effects of climate change and human activities, as well as diverse environ-
mental stresses, present critical challenges to food production and the maintenance of 
natural diversity. These challenges may be met by the development of novel crop va-
rieties with increased biotic or abiotic resistance that enables them to thrive in mar-
ginal lands. However, considering the diverse interactions between crops and 
environmental factors, it is surprising that evolutionary principles have been underex-
ploited in addressing these food and environmental challenges. Compared with do-
mesticated cultivars, crop wild relatives (CWRs) have been challenged in natural 
environments for thousands of years and maintain a much higher level of genetic di-
versity. In this review, we highlight the significance of CWRs for crop improvement by 
providing examples of CWRs that have been used to increase biotic and abiotic stress 
resistance/tolerance and overall yield in various crop species. We also discuss the 
surge of advanced biotechnologies, such as next- generation sequencing technologies 
and omics, with particular emphasis on how they have facilitated gene discovery in 
CWRs. We end the review by discussing the available resources and conservation of 
CWRs, including the urgent need for CWR prioritization and collection to ensure con-
tinuous crop improvement for food sustainability.
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1  | INTRODUCTION

Global climate change, human activities, population expansion, plant 
colonization, and increasing competition for land, water, and energy 
are the key challenges confronting food production in the 21st cen-
tury (Godfray et al., 2010). Rising global temperatures are expected to 
have broad environmental effects such as altered patterns of drought 
and salinity and the emergence of new pests and diseases that will 
adversely impact plant growth and yield (Tester & Langridge, 2010). It 
also has been suggested that changes in atmospheric CO2 may neg-
atively affect biodiversity and endanger crop productivity by stimu-
lating the growth of invasive weeds (Raizada, Singh, & Raghubanshi, 

2009). Moreover, the world population is predicted to reach over 
9 billion by the year 2050 (U.S. Bureau of the Census 2016), and feed-
ing this fast- growing population is generating increased pressure on 
agricultural crop production (Dempewolf et al., 2014; Kastner, Rivas, 
Koch, & Nonhebel, 2012; Khoury et al., 2014). To maintain or increase 
food supply to meet present and future challenges, it is essential that 
we develop new crop varieties with increased tolerance/resistance to 
environmental stresses.

Plant domestication is an evolutionary process in which humans 
have used wild species to develop new and altered forms of plants 
with morphological or physiological traits that meet human needs. 
Typically, limited numbers of individuals of progenitor species were 
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used by early farmers and the traits selected usually were related to 
overall yield, harvesting, and edibility (Hua et al., 2015; Konishi et al., 
2006). As a consequence, this strong selection process produced ge-
netic bottlenecks of varying degrees that have resulted in a hetero-
geneous reduction in the level of genetic variation among annual 
herbaceous crops (Figure 1) (Buckler, Thornsberry, & Kresovich, 2001; 
Meyer, DuVal, & Jensen, 2012; Miller & Gross, 2011).

The domestication process has resulted in reduced diversity at 
both the genome and local levels. For example, more than half of the 
genetic variation has been lost in cultivated soybean (Hyten et al., 
2006; Zhou et al., 2015), 2–4% of maize genes experienced artificial 
selection (Wright et al., 2005), and genetic diversity has been signifi-
cantly reduced in cultivated rice (Xu et al., 2012), as compared with 
its wild counterpart (Figure S1). In addition, positive selection on 
a target locus controlling a domestication trait of interest can also 
result in a reduction in the diversity of closely linked loci (selective 
sweep). In fact, many of these selective sweeps have been found at 
previously reported quantitative trait loci (QTL) associated with do-
mesticated traits. Examples include a approximately 90- kb selective 
sweep at the promoter region of axillary- branch formation- related 
gene tb1 in maize (Clark, Linton, Messing, & Doebley, 2004), a 600- kb 
sweep at kernel- related gene Y1 in maize (Palaisa, Morgante, Tingey, 
& Rafalski, 2004), and a 260- kb sweep at amylose- related gene waxy 
in rice (Sweeney & Mccouch, 2007). These results suggest that do-
mestication has reduced or eliminated genetic diversity at certain 
loci in modern crops, thus limiting to some extent their potential for 

developing novel varieties with improved traits. In contrast, crop wild 
relatives (CWRs) retain high levels of genetic diversity compared to 
their domesticated descendants (Figure 1). In most cases, CWRs are 
more diverse at both the population level and the individual level (e.g. 
heterozygosity) except for clonally propagated perennial crops that 
retain high levels of heterozygosity in domesticated lineages (McKey, 
Elias, Pujol, & Duputie, 2010; Zohary & Spiegelroy, 1975). Here, we 
focus on population- level diversity.

There are two ways in which CWRs have been defined. One is 
the gene pool (GP) concept proposed by Harlan and de Wet (1971), 
where CWRs were classified into groups (GP- 1–GP- 3) based on the 
relative ease of gene exchange with cultivated crops. Gene exchange 
occurs relatively easily between primary (GP- 1) and secondary GPs 
(GP- 2) by crossing (and fertile hybrids can be produced), whereas gene 
transfer between primary and tertiary (GP- 3) groups is usually diffi-
cult. Even though the CWRs that have been used in crop improve-
ment mostly belong to GP- 1 (Munns et al., 2012) or GP- 2 categories 
(Fetch, Johnston, & Pickering, 2009; Saintenac et al., 2013), there are 
some examples where useful alleles from distant wild relatives, such as 
GP- 3 plants, have been successfully transferred for crop improvement 
(Abedinia, Henry, Blakeney, & Lewin, 2000; Marais, Pretorius, Marais, 
& Wellings, 2003). The second concept for CWRs is that of the taxon 
group (TG), a system that is based on the ranking of the taxonomic 
hierarchy to crops (Maxted, Ford- Lloyd, Jury, Kell, & Scholten, 2006). 
A TG may include a wide range of wild species that may be evolution-
arily closely or distantly related to crop species within the same genus. 
With this concept, CWRs were defined in a range from TG1 (same 
species as the crop) to TG4 (different species within the same genus 
as the crop).

Crop wild relatives are widely distributed on all continents except 
for Antarctica, and many are located in Vavilov centers of diversity and 
adjacent regions (Castaneda- Alvarez et al., 2016; Larson et al., 2014; 
Maxted & Kell, 2009). The global distribution of CWRs suggests that 
there are ample resources to be explored for use in plant breeding. In 
fact, among the approximately 50,000–60,000 total crop and CWR 
species, it has been estimated that 10,739 species (or even more) have 
a direct value for food security (Maxted & Kell, 2009). Although the 
number of publications discussing the use of CWRs in breeding has 
increased over the years and the use of CWR for crop improvement 
has been gradually recognized (Maxted & Kell, 2009), the exploration 
and utilization of the genetic diversity contained in wild relatives has 
lagged considerably. Over 70% of the total CWR species are in urgent 
need of collection and conservation in gene banks, and over 95% are 
insufficiently represented with respect to the full range of geographic 
and ecological variation in their native distributions (Castaneda- 
Alvarez et al., 2016).

Most CWRs are currently threatened and/or are near extinction 
because of a variety of adverse effects caused by human population 
expansion and climate change (Ford- Lloyd et al., 2011; Maxted et al., 
2010). A recent study (Castaneda- Alvarez et al., 2016) suggested that 
intensive and prioritized conservation actions should be undertaken in 
many geographic regions where the most critical collecting gaps occur. 
These areas include the Mediterranean and the Near East, western 

F IGURE  1 The decrease in genetic diversity in modern crops 
during domestication due to bottleneck events

Domestication

Crop wild relatives

Early domestication

Landraces and 
Modern varieties

Domestication



     |  7ZHANG et Al.

and southern Europe, South- East and East Asia, and South America. 
Thus far, the Global Crop Diversity Trust (Crop Trust), the International 
Center for Tropical Agriculture (CIAT), and the Royal Botanic Gardens 
(Kew), in close collaboration with national and international agricul-
tural research institutes, have initiated conservation efforts designed 
to fill these gaps. The storage of information for specific CWR taxa 
deposited in these databases, such as the taxon name, GP category, 
geographic distribution, breeding uses, prebreeding test results, and 
taxa holders, should be especially useful for breeders.

Various efforts have been made to collect a large number of 
wild species for plant breeding as the importance of CWRs was 
recognized by the Russian botanist Nikolai Vavilov in the early 20th 
century. Several review papers have been written from different per-
spectives to emphasize the importance of CWRs for crop improve-
ment (Brozynska, Furtado, & Henry, 2015; Colmer, Flowers, & Munns, 
2006; Ford- Lloyd et al., 2011; Hajjar & Hodgkin, 2007; Maxted & Kell, 
2009; Nevo & Chen, 2010; Porth et al., 2013; Redden et al., 2015; 
Warschefsky, Penmetsa, Cook, & von Wettberg, 2014; Zamir, 2001). 
Particularly because of the threats of climate change, the potential 
for drought and salt tolerance, increased disease and pest resistance, 
and enhanced yield in CWR species has been intensively explored and 
tested in breeding programs (Olsen & Wendel, 2013a,b). In addition, 
wild plant species that have never been domesticated have been used 
in the prebreeding and domestication process of crops such as blue-
berries and strawberries (Diamond, 2002). This suggests that besides 
CWRs, other wild plant species may become increasingly important for 
crop improvement.

Here, we highlight some successful examples of the use of CWRs 
in crop improvement, especially those from studies published after 
2006. We also illustrate the usefulness of emerging advanced biotech-
nologies for gene discovery in wild relatives. The examples we provide 
are for annual, herbaceous crops only, and it should be noted that the 
strategies discussed might not be relevant for all crop types. Finally, 
we discuss the urgency and significance of CWR conservation. Our 
primary intent is to illustrate the potential of CWRs for crop improve-
ment and to urge that more steps are needed for CWR conservation.

2  | CWRS IN CROP IMPROVEMENT

Numerous efforts have been made to utilize the genetic diversity 
in CWRs to improve various crop species (Hajjar & Hodgkin, 2007; 
Maxted, Magos, & Kell, 2013; Nevo & Chen, 2010; Tanksley et al., 
1996). These efforts have been concentrated primarily on certain 
crop species, including wheat, barley, rice, and tomatoes (Foolad & 
Panthee, 2012; Nevo & Chen, 2010; Xiao et al., 1996). Possible rea-
sons for the greater use of CWRs in only certain crops include (i) cross- 
compatibilities, (ii) the taxonomic relationship between crops and their 
close wild species, (iii) fertility in the F1 and subsequent progeny, (iv) 
availability or conservation of CWRs, (v) exploration and utilization 
of wild germplasms, and (vi) regional financial support based on local 
need and geographic distribution of CWRs (Zamir, 2001). Because of 
these and other reasons, the use of CWRs lags far behind its potential.

Despite a variety of difficulties in using CWRs that can occur es-
pecially with certain species, there are a number of examples of suc-
cessful gene discovery and transfer of superior alleles from CWRs to 
domesticated crops. In these examples, classic genetic approaches 
such as map- based cloning and backcrossing for gene introduction still 
play important roles in breeding regimes. Introgression lines also are 
increasingly used for genetic dissection of complex traits. Currently, 
advanced biotechnologies, such as next- generation sequencing and 
high- throughput phenotyping, are proving beneficial in accelerating 
gene discovery (Honsdorf, March, Berger, Tester, & Pillen, 2014; Qi 
et al., 2014). As a result, many promising genes or QTL associated 
with agriculturally important and stress- related traits in CWRs have 
been identified and are being tested in breeding programs. A sum-
mary of these genes identified in CWRs of seven important crop 
species is given in Table 1. In the following paragraphs, we highlight 
some representative examples in which CWRs were used for abiotic 
and biotic stress resistance and yield improvement in their cultivated 
descendants.

2.1 | Abiotic stress tolerance

Salinity and drought are two of the most important environmental 
factors limiting worldwide crop yields. The effects of both stressors 
have been intensely studied in primary crop species such as soybeans, 
tomatoes, and cereals as well as in their wild relatives (Munns et al., 
2012; Placido et al., 2013; Qi et al., 2014) (Table 1). Here, we dis-
cuss several examples of the use of wild relatives for salt tolerance in 
wheat and soybeans, and for drought tolerance in barley.

In 2013, wheat was the third - most-  produced cereal after maize 
and rice (“FAOStat,” retrieved January 27, 2015), and it is significantly 
affected by salinity (Mujeeb- Kazi & De Leon, 2002). Intensive efforts 
have been made to search for salt- tolerant genes/alleles in wheat 
wild relatives (Colmer et al., 2006; Nevo & Chen, 2010). Recently, 
Australian scientists have produced a salt- tolerant commercial durum 
wheat variety by introducing an allele from its wild relative, Triticum 
monococcum, via crossbreeding. This cultivar showed 25% greater 
yield in high- saline fields compared to its Tamaroi parent (Munns et al., 
2012). The gene transferred was TmHKT1;5-A, and has been found 
in a wild wheat ancestor, Triticum monococcum (James, Davenport, & 
Munns, 2006). TmHKT1;5-A reduces the Na+ level in plant leaves that 
prevents yield losses under salinity stress. This gene transfer has pro-
vided a successful example of the use of a CWR to improve crop salt 
tolerance. This gene could also be transferred to other wheat culti-
vars, such as bread wheat, to develop salt- tolerant commercial lines. 
Soybean is moderately salt- sensitive, and all developmental stages can 
be affected by salinity stress (Munns & Tester, 2008) that can result in 
a decrease in yield as high as 40% (Chang, Chen, Shao, & Wan, 1994). 
A salt- tolerant gene, GmCHX1, was recently identified in Glycine soja 
(Sieb. & Zucc), the wild progenitor of cultivated soybean (Glycine max 
(L.) Merr.) (Qi et al., 2014). The discovery of GmCHX1 and another salt- 
tolerant gene, GmSALT3 (Guan et al., 2014), suggests that salt- tolerant 
alleles might have been lost in soybean during domestication. Both of 
these salt- tolerant genes are involved in regulating ion homeostasis 
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and offer great potential for the development of commercial soybean 
varieties with improved salt tolerance.

Drought is another important factor limiting crop production, 
especially in the context of global climate change. Although several 
drought- tolerant QTL or genes have been identified in wild relatives 
of crops such as barley (Diab et al., 2004; Suprunova et al., 2004, 
2007), wheat (Placido et al., 2013), and tomatoes (Fischer, Steige, 
Stephan, & Mboup, 2013), applications of these exotic genetic re-
sources for improved drought tolerance in crops have not proven as 
successful as expected. This may largely be because drought toler-
ance is a polygenic quantitative trait presumably controlled by many 
QTL, each with small effects. On the other hand, the development 
of advanced backcross introgression libraries (ILs) provides a use-
ful alternative method for the transfer of drought- tolerant genes. 
Recently, significant progress was made on barley drought tolerance 
using wild barley (Hordeum spontaneum)- introgressed ILs (Honsdorf 
et al., 2014; Naz, Arifuzzaman, Muzammil, Pillen, & Leon, 2014; 
Schmalenbach, Korber, & Pillen, 2008; von Korff, Wang, Leon, & 
Pillen, 2004). Follow- up studies demonstrated that the ILs contain-
ing certain drought- tolerant QTL exhibited drought tolerance in field 
trials (Arbelaez et al., 2015; Honsdorf et al., 2014). However, con-
struction of ILs and exclusion of “linkage drag” genes require years of 
backcrossing and selection. Despite these difficulties, this approach 
may be our best strategy if no other effective breeding alternatives 
are available.

2.2 | Biotic stress tolerance

Beyond abiotic stresses, plant yields are also reduced by attacks from 
various biotic stressors such as pathogens (fungi, viruses, and bac-
teria), nematodes, and insect pests. Even though resistant varieties 
have been developed, continuous use of limited numbers of resistant 
resources is not a long- term strategy because pathogens and insects 
evolve very rapidly. To mitigate this evolutionary arms race, plant re-
searchers and breeders have been exploiting exotic genetic resources, 
such as CWRs, to develop biotic stress- resistant varieties (Hajjar & 
Hodgkin, 2007). These efforts include attempts to identify resistant 
genes in CWRs using various strategies such as metabolomics (see 
Metabolomics section) and transcriptomics. Once identified, the intent 
then would be to pyramid multiple exotic resistant genes into crop 
varieties to achieve a durable or broad- spectrum resistance.

In maize, the corn blight of 1978 reduced the yield of corn by as 
much as 50% in the United States (Food and Agriculture Organization 
of the United Nations 2005). This was resolved by transferring blight- 
resistant alleles from a wild relative of Mexican maize (Tripsacum dac-
tyloides L.) into commercial corn lines (Maxted & Kell, 2009). Another 
devastating pest of corn in the United States is rootworm. Prischmann, 
Dashiell, Schneider, and Eubanks (2009) introduced genes from gama 
grass (Tripsacum dactyloides L.), a wild relative of maize that exhib-
its rootworm resistance, into cultivated corn. Repeated field trials 
showed that the descendants from this transfer appeared tolerant 
to rootworm damage, showing that this exotic allele was effective in 
combating rootworm problems.

Using wild relatives to improve biotic stress tolerance in cultivated 
rice has been very successful. A majority of the 22 wild rice species are 
being explored as alternate sources for resistance to bacterial blight, 
blast, brown planthopper attacks, and sheath blight (Table 1) (Jena, 
2010). For example, bacterial leaf blight, caused by Xanthomonas ory-
zae pv. oryzae (Xoo), has been one of the most widely distributed and 
devastating rice diseases worldwide. The introduction of two resistant 
Xa genes (Xa3 and Xa4) into rice cultivars has increased bacterial leaf 
blight resistance. However, the level of resistance in these cultivars has 
been decreasing as expected due to evolutionary changes in bacterial 
leaf blight. To address this, researchers have identified new bacterial 
blight- resistant genes (Xa21 and Xa23) in wild rice (Song et al., 1995; 
Zhou et al., 2011). These Xa genes have been used individually or in 
combination in bacterial leaf blight- resistant rice breeding programs 
(Zhou et al., 2009), and this has led to significant successes in bacte-
rial leaf blight management. Progress in combating bacterial leaf blight 
also has been achieved from introgression of a rice blast- resistant 
gene, Pi33, from wild rice, Oryza rufipogon (Ballini et al., 2007), into the 
most used rice blast resistance variety (IR64).

The improvement of biotic resistant cultivated tomatoes (Solanum 
lycopersicum) also has benefitted significantly from the transfer of 
various traits from tomato wild relatives. These traits include resis-
tance to bacteria, viruses, fungi, nematodes, and insect pests. The 
tomato wild relatives that have been used include Solanum chilense 
(Zamir et al., 1994), Solanum habrochaites (Prasanna, Kashyap, et al. 
2015; Prasanna, Sinha, et al. 2015), Solanum peruvianum (Lanfermeijer, 
Warmink, & Hille, 2005; Seah, Yaghoobi, Rossi, Gleason, & Williamson, 
2004), Solanum pennellii (Parniske et al., 1999), and Solanum pimpi-
nellifolium (Chunwongse, Chunwongse, Black, & Hanson, 2002). As 
one example, five Ty genes exhibiting varying degrees of resistance 
to tomato yellow leaf curl virus (TYLCY) were successfully introgressed 
into cultivated varieties (Ji, Scott, Hanson, Graham, & Maxwell, 2007; 
Menda et al., 2014). Pyramiding of these Ty genes from different wild 
tomatoes has contributed to durable and broad resistance to TYLCY 
(Kumar, Tiwari, Datta, & Singh, 2014; Vidavski, Czosnek, Gazit, Levy, 
& Lapidot, 2008).

In natural as well as in agricultural ecosystems, plants are usu-
ally simultaneously exposed to a combination of abiotic and biotic 
stressors. Because plant defense responses are controlled by differ-
ent signaling pathways that act in an antagonistic or synergistic man-
ner, exposure to multiple stressors may result in either a negative or 
a positive impact on plant performance (Atkinson & Urwin, 2012; 
Suzuki, Rivero, Shulaev, Blumwald, & Mittler, 2014). A comparative 
transcriptome analysis in Arabidopsis revealed gene expression re-
sponses to viral stimuli that were nullified when the plants were ex-
posed to the viral stimulus plus any of several abiotic stresses such 
as drought or heat (Prasch & Sonnewald, 2013). Developing abiotic 
tolerant crops, either by classical breeding or by transgenic strategies, 
therefore may also produce plants that are immune to pathogens. On 
the other hand, it was recently shown that constitutive expression of 
the maize ZmGF14-6 gene in rice increased tolerance to drought but 
also increased susceptibility to pathogens (Fusarium verticillioides and 
Magnaporthe oryzae) (Campo et al., 2012). Therefore, considering that 
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responses to single or combined abiotic stressors do not always foster 
enhanced biotic tolerance as well (Atkinson & Urwin, 2012; Mittler & 
Blumwald, 2010), integrated approaches most likely will be needed to 
improve plant tolerance to multiple stresses.

2.3 | Improvement in yield and quality- related traits

Compared with the great success of introducing biotic and abiotic 
stress resistance genes from CWRs for crop improvement (Colmer 
et al., 2006; Du et al., 2009; Munns et al., 2012), applications of CWRs 
for crop yield traits have been relatively less successful. There are ex-
ceptions, however, in which the magnitude of CWR contributions to 
yield improvement may be even greater than expected. For example, 
the use of a small- fruited tomato ancestor (S. pimpinellifolium) (Eshed 
& Zamir, 1994) and a wild tomato species (Solanum hirsutum) led to a 
20% increase in yield and soluble solids content, and an improvement 
in fruit color, in cultivated tomatoes (Tanksley et al., 1996). Similarly 
in rice, backcrossing a low- yielding wild ancestor (O. rufipogon) into 
a Chinese hybrid strain increased its yield up to 17% (Tanksley & 
McCouch, 1997; Xie et al., 2008). Yield- enhancing QTL have also been 
identified in wild relatives of diverse crops such as wheat, barley, soy-
beans, beans, and Capsicum (Swamy & Sarla, 2008), and it will be inter-
esting to see how effective they might be when transferred into crops 
by traditional breeding or advanced biotechnological approaches.

It has been reported that the transfer of a QTL from G. soja into 
domesticated soybeans significantly increased the yield by about 
190–235 kg/ha (Li, Pfeiffer, & Cornelius, 2007). Although introducing 
G. soja QTL into cultivated soybean lines of diverse parentages has 
often resulted in some unfavorable characteristics such as lodging 
susceptibility (Li et al., 2007), the improvement in yield and/or other 
important traits generally has made these efforts worthwhile.

The role of CWRs in the development of new varieties with im-
proved fruit and grain quality has become increasingly important in 
recent years. The introduction of newly developed nutrition- rich vari-
eties is expected to play a role in the improvement of human health. 
For example, glucosinolates, a class of metabolites prevalent in cruci-
fer species, are known to reduce the risk of various cancers (Dinkova- 
Kostova & Kostov, 2012). These metabolites can easily be increased 
in some food plants such as broccoli where crosses between wild and 
cultivated broccoli produce a hybrid that contains three times more 
glucosinolates than conventional varieties (Sarikamis et al., 2006).

As an alternative to targeting only yield traits, researchers have 
incorporated abiotic and biotic stress- tolerant traits from CWRs to 
achieve crop yield enhancement. Typically, crop varieties introduced 
with wild resistant/tolerant alleles behave similarly compared to their 
cultivated counterparts, but benefit when exposed to environmental 
stresses. For example, field trials of the wheat cultivar Tamaroi car-
rying the wild salt- tolerant gene TmHKT1;5-A produced yields simi-
lar to the Tamaroi parent lacking this gene when grown in fields with 
less saline, but produced superior yields in high- saline fields (Munns 
et al., 2012). In a recent study, tomato cultivars carrying a single 
wild- derived TYLCY- resistant gene, Ty-2 or Ty-3, or their pyramided 
lines, had greater yields in the presence of the pathogen TYLCY than 

cultivars lacking these genes (Prasanna, Kashyap, et al. 2015). The 
yield increases in these cases mostly are attributable to the enhanced 
resistance/tolerance to biotic or abiotic stresses generated by intro-
ducing the resistant/tolerant alleles from their wild relatives. Thus, the 
recruitment of stress resistance traits from wild relatives into modern 
varieties is a practical alternative for the improvement of crop yields.

3  | ADVANCED BIOTECHNOLOGIES 
ACCELERATE THE USE OF WILD RELATIVES 
FOR CROP IMPROVEMENT

The surge of diverse biotechnologies has significantly facilitated mod-
ern breeding over the past two decades (Varshney, Graner, & Sorrells, 
2005). These technologies include the application of omics- scale 
technologies for gene discovery, and advanced techniques to transfer 
genes of interest from wild plant species to cultivated crops (Table 2).

Genomic approaches have been widely used to identify genes or 
genomic regions controlling complex traits. High- throughput next- 
generation sequencing technologies offer opportunities to efficiently 
discover SNPs associated with important traits in both diploid (Hyten 
et al., 2010) and polyploid plant species (Akhunov, Nicolet, & Dvorak, 
2009). With recent significant cost reductions, scientists are now able 
to genotype thousands of individuals by genotyping- by- sequencing or 
resequencing. With the availability of increasing numbers of SNPs and 
phenotypic data, researchers have been able to validate and fine- map 
previously identified genes and to discover novel genomic regions un-
derlying valuable agronomic traits in CWRs by association mapping 
(Li et al., 2014; Qi et al., 2014; Xu et al., 2012; Zhou et al., 2015). 
However, the development of a high- throughput phenotyping pipeline 
remains challenging, especially in the field (Kelly et al., 2016). Some 
of the genomic regions associated with domestication traits have en-
hanced our understanding of their genetic basis, and will encourage 
further investigation to see whether allelic variation in those regions 
in CWRs can additionally benefit crop improvement. Genotyping- by- 
sequencing of segregating populations (F2, BC2, near- isogenic lines, 
and recombinant inbred lines [RILs]) allows the construction of high- 
resolution linkage maps that can be used to narrow QTL regions. 
This strategy holds the promise of mapping QTL using fewer RILs 
than would be necessary with DNA markers at relatively low densi-
ties. This approach also should facilitate map- based cloning of target 
genes, such as the salt- tolerant gene GmCHX1 unique to G. soja (Qi 
et al., 2014). It also is feasible to apply genotyping- by- sequencing for 
heterozygous plant species using case- specific strategies (Hyma et al., 
2015; Uitdewilligen et al., 2013). Thus, it is clear that the availability 
of this sort of genomewide data and efficient phenotyping approaches 
will continue to accelerate the discovery of genes controlling superior 
traits in CWRs.

Other functional omics approaches, including transcriptomics, pro-
teomics, and metabolomics, have provided alternative opportunities 
for global analysis of regulatory genes, expressed proteins, or metab-
olite candidates underlying important traits in CWRs. These omics ap-
proaches also are particularly suitable for dissection of the variation 
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in complex traits such as drought tolerance and pest resistance. By 
characterizing CWRs under diverse treatments using omics strategies, 
a number of stress- resistant genes have been identified in various wild 
relatives of crops. For example, the dehydrin genes in both wild barley 
(H. spontaneum) and wild tomato species (S. chilense and S. peruvia-
num), as well as ABA/water stress/ripening- induced (Asr) gene family 
members (Asr2 and Asr4) from wild Solanum species, are known to be 
involved in drought tolerance (Fischer et al., 2013; Suprunova et al., 
2004). From these and other studies with large “omics” datasets, it 
generally has proven difficult to pinpoint the causal genes, proteins, or 
metabolites underlying the traits of interest. However, this is possible 
when “omics” approaches are combined with other strategies such as 
linkage mapping (Table 1). For example, by quantifying gene expres-
sion levels within target QTL, Suprunova et al. (2007) were able to 
identify a novel gene (Hsdr4) involved in water- stress tolerance in wild 
barley (H. spontaneum). With a similar strategy, two candidate genes 
(KNAT3 and SERK1) conferring drought tolerance in wild wheat have 
also been identified (Placido et al., 2013). Further, as knowledge of 
transcriptome profiles under various stress conditions increases, the 
combination of transcriptomics, proteomics, and metabolomics with 
QTL analyses should prove to be a powerful tool for large- scale study 

of gene function at different levels. With such an approach, however, 
the difference in temporal transcription and translation of genes and 
metabolic processes involved should be taken into account in the data 
interpretation (Schmollinger et al. 2014). Although the use of proteins 
and metabolites provides us with a deeper understanding of the mech-
anisms of gene function than transcriptomics alone, the high cost of 
metabolomics and proteomics (e.g. iTRAQ) represents a major con-
straint for their extensive use in plant breeding.

Metabolomics- assisted breeding has been considered as a viable 
strategy for crop improvement (Fernie & Schauer, 2009). Although 
the high quantification cost and the relatively low levels of heritability 
of metabolites limit the direct application of this approach to breed-
ing programs, several studies have revealed its potential by quanti-
fying the variation of certain metabolites and/or metabolomics and 
uncovering their genetic basis with genomic approaches (Bleeker 
et al., 2011, 2012). Bleeker et al. (2011) showed that the application 
of 7- epizingiberene, extracted from wild tomato (S. habrochaites) and 
applied on susceptible cultivated tomatoes, was effective in repelling 
whiteflies (Frelichowski & Juvik, 2001). The cultivated tomatoes with 
7- epizingiberene acquired from its wild relatives also showed resis-
tance to spider mites (Bleeker et al., 2012).

TABLE  2 Representative advanced technologies that have been used in plant breeding

Approaches Usages Advantages Shortcomings References

Genomics Germplasm resource 
evaluation and identification; 
heterosis prediction; linkage 
and association mapping; 
marker- assisted breeding

High- throughput; 
time- saving

Costly; bioinformatics skills 
required; difficulties in 
assembly of polyploid 
genomes

Brozynska et al. (2015); 
Langridge and Fleury 
(2011)

Transcriptomics 
and proteomics

Quantification of expression 
variants response to 
environment stress; updating 
genome annotation

Generating numerous 
candidate genes; 
regulatory network 
identification; more 
useful when combined 
with linkage analysis

Difficult to pinpoint causal 
genes or proteins; high cost 
for proteomics

Langridge and Fleury 
(2011); Brozynska et al. 
(2015)

Metabolomics Metabolic profiling Quantification of target or 
global metabolites

Costly; limited annotation data; 
low heritability; requiring 
chemical and statistical skills

Fernie and Schauer (2009)

Advanced 
introgression 
lines

Genetic mapping; introgres-
sion breeding

Traditional breeding; 
introducing multigenic 
traits

Need supports by molecular 
DNA markers; cross- 
compatible; laborious and 
tedious backcrossing

Placido et al. (2013); 
Honsdorf et al. (2014)

Transgenesis GM Transfer between 
noncrossable species

Subject to GMO regulations; 
foreign genes

Schaart, van de Wiel, Lotz, 
and Smulders (2016)

Genome editing GM Precise and predefined 
modification

Might subject to GM regulatory 
regime; public acceptance

Bortesi and Fischer (2015); 
Schaart et al. (2016)

Cisgenesis/
Intragenesis

GM Genes from species itself 
or crossable species; 
stacking multiple genes; 
public acceptable; avoid 
linkage drag

Might require traditional 
breeding step

Haverkort et al. (2009); 
Vanblaere et al. (2011)

High- throughput 
phenotyping

Phenotyping High- throughput; 
real- time; 
multidimensional

High cost; mathematical and 
statistical skill required

Honsdorf et al. (2014); 
Rahaman, Chen, Gillani, 
Klukas, and Chen (2015)

GM, genetic modification.



     |  13ZHANG et Al.

Genome-wide association studies (GWAS) of metabolomics have 
also become an effective way to investigate global profiles of the thou-
sands of metabolites typically produced in plants (Luo, 2015). This ap-
proach is thought to be suitable for the exploitation of CWRs because 
these wild species have been subjected to long- term evolution in their 
diverse natural habitats and therefore are expected to have a greater 
level of variation in their metabolic profiles than their cultivated de-
scendants. CWRs do require a higher density of genomic markers for 
metabolomics association studies because they typically have much 
lower levels of linkage disequilibrium than are found in domesticated 
crops. Fortunately, many markers now are publically available or can be 
genotyped at a reduced cost. Several laboratories recently have suc-
cessfully developed high- density SNP markers for wild soybean (Song 
et al., 2015; Zhou et al., 2015), wild tomatoes (Aflitos et al., 2014), 
and wild rice (Xu et al., 2012), all of which can be or have been used 
in metabolomics mapping in CWRs. These and other studies (Fernie & 
Schauer, 2009; Schauer & Fernie, 2006) suggest that useful metabolites 
in CWRs can be identified and used in plant breeding. One difficulty is 
that most of the metabolites produced from the profiling platforms are 
unannotated and thus are unknown. Once identified, however, metab-
olite pathways can be traced by searching available annotations in a 
metabolomics database. It also has proven feasible to transfer an appro-
priate metabolite or metabolic pathway (e.g. the terpenoid biosynthetic 
pathway) from CWRs to increase resistance to biotic stress in cultivated 
tomatoes and other commercial plant species (Bleeker et al., 2012).

Genetic modification (GM) technology has been considered a revo-
lutionary solution to transfer target genes to crop cultivars to obtain 
desired traits. Commercial GM crops typically produce their target 
product and yield as expected, and they have the advantage of not 
suffering from the introduction of other linked genes (linkage drag). 
Genetic engineering techniques are particularly useful when the de-
sired trait is not present in the germplasm of the crop or when the 
trait is very difficult to improve by conventional breeding methods. 
A well- known example of the use of this technology was in the pro-
duction of transgenic Bacillus thuringiensis (Bt) crops (Tabashnik, 2010). 
However, there is some evidence that the use of GM technology to 
manipulate drought tolerance might not be as effective as traditional 
breeding methods (Gilbert 2014), including introgression (Honsdorf 
et al., 2014). In addition, the safety of foods developed from trans-
genic crops continues to remain a concern to the public.

Another approach to facilitate crop production is to induce muta-
tions in existing genes rather than introduce new genes (Lusser, Parisi, 
Plan, & Rodriguez- Cerezo, 2012). This approach includes cisgenesis, 
intragenesis, genome editing, RNA- dependent DNA methylation, and 
oligo- directed mutagenesis techniques, some of which have been 
used for crop improvement using CWR species (Table 2). Cisgenesis, 
for example, refers to the GM of crop plants with genes from the 
crop plant itself or from a sexually compatible donor such as a CWR. 
This technique has been successfully used to confer resistance to late 
blight in potatoes (Haverkort, Struik, Visser, & Jacobsen, 2009) and 
scab resistance in apples (Vanblaere et al., 2011). It is important to 
note that because cisgenesis only transfers a gene from a native or 
cross- compatible species, this results in plants with a performance 

comparable to that possible from conventional breeding (Krens et al., 
2015). However, transfer of a single desired gene by cisgenesis avoids 
any linkage drag and reduces the time involved compared with tradi-
tional breeding strategies. Although these new techniques outperform 
traditional breeding in some aspects and are easily adopted by the in-
dustry, their application to the production of a wide range of commer-
cial crops depends on many factors such as the technical efficiency of 
some processes, the extent of social acceptance, and worldwide reg-
ulatory restrictions. Nevertheless, these technologies are useful in ac-
celerating gene introduction and producing plants with desired traits, 
and could be used as an alternative strategy for crop improvement in 
the absence of other efficient approaches.

High- throughput genomic approaches have become an important 
tool in efficient use of crop genetic resources, including CWRs, depos-
ited in gene banks. High- throughput genotyping of stored accessions 
allows the examination of genetic relationships, which enable breeders 
to effectively select the accessions of interest based on their genetic 
background (Kadam et al., 2016). Phylogenetic trees generated from 
these genomic data also allow the construction of core germplasm col-
lections (Brown 1989) representing the allelic richness of the gene bank. 
Although large- scale phenotyping remains time- consuming and costly, 
high- throughput phenotyping of the representative core collection for 
the traits of agronomic importance is less laborious than characterizing 
the entire collection (Honsdorf et al., 2014). Consequently, genomic- 
estimated breeding values for the core collection facilitate genomic 
selection of superior CWR accessions (Xavier, Muir, & Rainey, 2016).

On the other hand, there is an increasing need to store and inter-
pret datasets generated from the large- scale characterization of wild 
germplasm collections (Li et al., 2014; Qi et al., 2014; Xu et al., 2012; 
Zhou et al., 2015). A representative example is the comprehensive da-
tabase, SoyBase (http://soybase.org/), which is dedicated to soybean 
research especially to the breeding community. Over 40,000 genome-
wide SNPs for 19,652 G. max and G. soja accessions are accessible to 
the public (Song et al., 2015), and seeds of accessions of interest can 
be obtained, with certain restrictions, through the USDA Germplasm 
Resources Information Network (GRIN, http://www.ars-grin.gov/). The 
benefits from this database to the academic and breeding communi-
ties have been extensive (Kadam et al., 2016; Patil et al., 2016; Song 
et al., 2015; Zhang et al., 2016). Thus, integration of advanced bio-
technologies and the systemic curation of germplasm banks will play 
an important role in the increased use of crop genetic resources, par-
ticular CWRs. All of these expectations are based on the assumption 
that representative CWRs are deposited in the gene banks and acces-
sible to researchers and breeders, however, and systematic efforts are 
needed to ensure this.

4  | CONSERVATION OF CWR AND  
ACCESSIBILITY TO BREEDERS AND  
GENETICISTS

There are mounting concerns about the impact of climate change, 
including its severe threat to biodiversity and the survival of some 

http://soybase.org/
http://www.ars-grin.gov/
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species, including CWRs. Consequently, international agreements 
have been made to ensure the security of genetic resources, and con-
servation strategies have been promoted to make these resources 
more widely available (Heywood, Casas, Ford- Lloyd, Kell, & Maxted, 
2007; Khoury, Laliberte, & Guarino, 2010; Maxted, Kell, Ford- Lloyd, 
Dulloo, & Toledo, 2012; Maxted et al., 2010). In the past decade, 
there has been a noticeable increase in the number of publications 
describing the use of wild relatives for crop improvement. However, 
most of the wild plant species collected primarily have been used only 
for research rather than for long- term conservation. Thus far, ap-
proximately 2–6% of the collections in global gene banks are CWRs 
(Maxted & Kell, 2009), and approximately 1.6% of those CWR spe-
cies rank among the highest priorities for immediate conservation be-
cause of their importance in global food security (Maxted et al., 2012). 
Therefore, it is imperative that we act immediately to conserve plant 
wild relatives to ensure sustainable agricultural development to feed 
an increasing number of people.

Inventories must be made as the first step to conserve CWRs for 
candidate species. CWR inventories can be (and have been) made at 
international, national, and regional levels (Berlingeri & Crespo, 2012; 
Khoury et al., 2013; Landucci et al., 2014; Maxted & Kell, 2009) or 
can be focused on a particular crop taxon (Castaneda- Alvarez et al., 
2015; Khoury et al., 2015; Zhao et al., 2005). Currently, several of 
these inventories have deposited information such as taxonomic or-
igins, regional priority categories, and proposed conservation strat-
egies into electronic databases (Table 3). For example, South Africa, 
Europe, Mediterranean, Harlan, and de Wet CWR inventories have 
been started and are available to the public (Table 3). Many collection 
and inventory gaps remain (Halewood & Sood, 2006), however, and 
continuous efforts will be needed to fill these gaps. It is important to 
note that although the general guidelines for inventorying, prioritizing, 
and conserving CWRs have been proposed, the specific conservation 
strategies are regionally dependent. However, once an inventory is 
available, it would greatly facilitate the targeting of conservation ac-
tions. The ultimate goal should be to build a comprehensive inventory 
for CWRs aimed at integrating the information about CWRs dispersed 
among individual agencies or countries, and to make these data avail-
able globally to researchers and breeders for efficient conservation 
management and usage.

Prioritizing CWRs is important for efficient conservation efforts. 
For various reasons, some national or local inventories are focused 
only on major crops (Berlingeri & Crespo, 2012; Khoury et al., 2013; 
Landucci et al., 2014; Maxted & Kell, 2009; Vincent et al., 2013). In 
these inventories, higher priorities are given to the wild relatives fall-
ing into primary or secondary GPs over other more distant ones, as it 
is relatively easy to transfer traits between species within the primary 
GP. In a few cases, however, information on some distantly related 
wild species has been included, for example, wheat congeners that 
have been widely used in wheat improvement (Colmer et al., 2006). 
Prioritization of CWR species especially by the breeding community 
will necessarily depend on various factors such as their importance in 
the global food supply (wheat, rice, maize, sugarcane), nutrition (qui-
noa), biofuel (cassava), and their biological significance, socioeconomic 

value, or eco- geographic distribution. Some CWR species growing in 
harsher environments should be collected because they might pos-
sess useful characteristics beneficial for crop improvement. However, 
a fundamental difficulty in prioritizing CWR species is that there is no 
complete understanding of how many CWR species even exist and 
where they are located. This difficulty could be gradually overcome 
by systematic collections in the geographic areas of prioritized CWRs 
proposed by Castaneda- Alvarez et al. (2016). These authors also sug-
gest the use of a final priority score (FPS) to prioritize CWRs, where 
the FPS for each CWR is based on a comprehensive assessment of 
its overall significance (Castaneda- Alvarez et al., 2016). For long- term 
agricultural purposes, all CWR species warrant conservation, as any 
CWR or wild plant species might contain useful genetic diversity ben-
eficial for crop breeding, as previously discussed.

Crop wild relatives themselves can be conserved either in situ (in 
natural habitats managed as genetic reserves) or ex situ (seed, in vitro, 
or field gene banks) (Maxted et al., 2012). Thus far, ex situ conserva-
tion of CWRs in seed banks and gene banks has provided a convenient 
means of maintaining the viability of seeds for long periods of time 
(Barazani, Perevolotsky, & Hadas, 2008; Maxted et al., 2012; Schoen 
& Brown, 2001; van Slageren, 2003). However, maintaining seed 
samples outside their original natural habitats usually results in a de-
crease in genetic diversity and its associated consequences, including 
increased homozygosity and inbreeding depression (Schoen & Brown, 
2001). In addition, storing genetic resources in seed banks freezes 
evolutionary processes that occur in nature. To overcome these risks, 

TABLE  3 Global and regional online portals for CWR inventories

Database Portal address

Global Crop Wild Relative 
Global Portal

http://www.cropwildrelatives.org/

Crop Wild Relative & 
Climate Change

http://www.cwrdiversity.org/

Crop Genebank 
Knowledge Base

http://cropgenebank.sgrp.cgiar.
org/

Gateway to Genetic 
Resources

https://www.genesys-pgr.org/
welcome

Global Crop Diversity 
Trust

http://www.bioversityinternational. 
org/cwr/

International Center 
for Tropical 
Agriculture

http://dapa.ciat.cgiar.org/

Regional Flora of North 
America

http://floranorthamerica.org/

European Cooperative 
Programme for Plant 
Genetic Resources

http://www.ecpgr.cgiar.org/

South Africa region http://www.cropwildrelatives.org/
sadc-cwr-project/

Europe and the 
Mediterranean

http://www.pgrsecure.org/

Harlan and de Wet 
CWR inventory

http://www.cwrdiversity.org/

CWR, crop wild relative.

http://www.cropwildrelatives.org/
http://www.cwrdiversity.org/
http://cropgenebank.sgrp.cgiar.org/
http://cropgenebank.sgrp.cgiar.org/
https://www.genesys-pgr.org/welcome
https://www.genesys-pgr.org/welcome
http://www.bioversityinternational.org/cwr/
http://www.bioversityinternational.org/cwr/
http://dapa.ciat.cgiar.org/
http://floranorthamerica.org/
http://www.ecpgr.cgiar.org/
http://www.cropwildrelatives.org/sadc-cwr-project/
http://www.cropwildrelatives.org/sadc-cwr-project/
http://www.pgrsecure.org/
http://www.cwrdiversity.org/
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complementary ex situ and in situ approaches, with an emphasis on in 
situ conservation, are considered optimal to ensure the conservation 
of genetic resources (Maxted et al., 2012; Schoen & Brown, 2001). 
With integrative efforts by botanists, ecologists, and crop breeders, 
significant progress has been made for comprehensive CWR conser-
vation at different levels (Khoury et al., 2013; Maxted et al., 2011; 
Meilleur & Hodgkin, 2004; Zhao et al., 2005) (Tables 3 and 4). If this 

effort is continued and increased, it should expand our knowledge of 
CWRs and how they might best be used in future breeding regimes.

Accessibility of CWR resources to researchers and breeders is ex-
tremely important for continued utilization of CWRs for crop improve-
ment. Knowledge of the genetic diversity present in a germplasm bank 
is critical for its potential exploitation by breeders. Thus far, many 
international collections such as CIAT, Crop Trust, and Kew, as well 
as national gene banks such as the US germplasm resource (http://
www.ars-grin.gov/), have efficiently conserved a number of CWR spe-
cies and provided information such as prebreeding data, geographic 
distribution, and potentially useful traits for these CWRs (Table 3). 
However, conservation of underrepresented CWRs and insufficient 
information for stored CWR species remain the greatest obstacles for 
their use in plant breeding. A preliminary field survey might be most 
helpful in deciding whether a certain CWR species has a direct use for 
crop improvement.

Further, an information system for gene banks containing compre-
hensive and up- to- date data that are accessible to breeders is also 
critical to tracking accessions for management purposes. Thus far, a 
number of international or regional information databases exist for 
CWR species (Table 3), with some degree of accession- level data for 
breeding utilization. In addition, sharing of reports from prebreeding 
tests and field performances of CWR species conducted by breeders 
would be helpful. Regular monitoring and updating of the conserva-
tion status of CWR species would also greatly assist in closing the col-
lection–conservation gaps.

Because we know very little about the molecular genetic diver-
sity for most CWR taxa, Castaneda- Alvarez et al. (2016) have sug-
gested that we use geographic and ecological criteria to determine 
their conservation status. This strategy thus uses eco- geographic rep-
resentativeness to evaluate the true adaptive ability of CWR taxa to 
specific conditions. This approach is consistent with the use of CWRs 

TABLE  4 Core collections of crop wild relatives

Crop Wild relatives Storage locationa

Rice Oryza rufipogon, 
Oryza officinalis, 
Oryza granulata

Chinese Academy of Agriculture 
Sciences; International Rice 
Research Institute

Barley Hordeum 
spontaneum and 
other Hordeum 
wild species

International Barley Core 
Collection (~300); USDA- ARS 
National Small Grains Collection

Wheat Triticum, Aegilops, 
Dasypyrum 
villosum

The Wheat Genetics Resource 
Center (14,000)

Soybean Glycine soja USDA Soybean Germplasm 
Collection (1,100); Chinese 
National Crop Genebank (6,172)

Sorghum 23 wild Sorghum 
species

International Crops Research 
Institute for the Semi- Arid 
Tropics (449)

Tomato Wild Lycopersicon 
and Solanum 
species

Tomato Genetics Resource Center 
(1,196)

Potato 187 wild Solanum 
species

International Potato Center

aBrackets give the number of conserved wild relatives (accessions or spe-
cies) for each crop.

F IGURE  2 Flowchart showing the 
application of crop wild relatives (CWRs) 
and advanced technologies in crop 
improvement. Stage I, CWR collections. 
Stage II, gene discovery. Advanced 
biotechnologies can facilitate identification 
of desired genes or markers in CWRs 
using genome-wide association studies 
(GWAS) and quantitative trait loci (QTL) 
strategies. Stage III, gene transfer. The 
resultant markers and causal genes can 
be transferred to crops by conventional 
breeding programs and/or transgenic 
techniques
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http://www.ars-grin.gov/
http://www.ars-grin.gov/
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to develop improved crop varieties that are better adapted to various 
combinations of biotic and abiotic environmental conditions.

5  | CONCLUSIONS AND PERSPECTIVES

The potential of the genetic diversity stored in wild species banks for 
use in crop improvement appears to be much greater than we previ-
ously imagined. Recent increases in the use of wild resources have oc-
curred because of the recognition of the usefulness of CWRs for food 
security and the development of advanced biotechnologies (Honsdorf 
et al., 2014; Langridge & Fleury, 2011). The examples reviewed here 
and in other studies (Brozynska et al., 2015; Colmer et al., 2006; Ford- 
Lloyd et al., 2011; Hajjar & Hodgkin, 2007; Maxted & Kell, 2009; Nevo 
& Chen, 2010; Zamir, 2001) demonstrate that there is a wealth of 
genetic diversity retained in wild relatives of various crops, much of 
which remains to be explored.

Rapid progress of advanced biotechnologies that can bridge gen-
otype–phenotype gaps will facilitate the use of CWRs for crop im-
provement. Thus far, a number of QTL and SNPs associated with 
agronomically and ecologically important traits have been identified 
in wild species by linkage analyses, GWAS, and combined analyses 
of “omics” approaches and linkage mapping (Table 1; Figure 2). The 
rapid improvement of biotechnological tools, such as diverse omics 
approaches, has resulted in promising advances and no doubt will 
become routine in plant breeding programs. Advanced biotechnolo-
gies, such as genome editing and cisgenesis/intragenesis, are contin-
uously being developed and will accelerate the conservation and use 
of genetic diversity retained in CWRs, resulting in agriculture sustain-
ability. Collection and conservation of prioritized CWRs could be in-
tensively conducted in the geographic regions harboring the greatest 
richness of taxa (Castaneda- Alvarez et al., 2016). Instead of focusing 
on a single beneficial trait, the overall genetic provenance and adap-
tive value in each CWR species should also be taken into account to 
prioritize CWRs and guide efficient and effective CWR conservation. 
Knowledge of the conservation (in situ and ex situ) status of CWRs will 
continuously increase by conservation gap analysis using geographic 
and ecological variation metrics as a proxy, maximizing the efficiency 
of conservation actions. Global initiatives (Dempewolf et al., 2014; 
Vincent et al., 2013) have increased CWR conservation efforts and 
should be complemented by regional and national actions (Meilleur 
& Hodgkin, 2004). Collaborations between local institutions or or-
ganizations can help to build agreements about the effectiveness of 
in situ or ex situ conservation, and foster sharing of wild resources. 
International CWR exchanges and/or introductions could also greatly 
benefit the extensive conservation and utilization of CWRs.
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