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Lack of insight into the mechanisms underlying hepatocellular carcinoma

(HCC) metastasis has hindered the development of curative treatments.

Overexpression of interleukin-13 receptor alpha 2 (IL13RA2) has been

reported to contribute to invasion and metastasis in several tumors. How-

ever, the role of IL13RA2 in HCC remains to be characterized. In this

study, we identified that low expression of IL13RA2 is associated with

poor survival of patients with HCC, and demonstrated that IL13RA2

knockdown endows HCC cells with invasive potential. Mechanistically,

silencing of IL13RA2 promotes partial epithelial-mesenchymal transition

via increasing extracellular signal-regulated kinase phosphorylation in

HCC. Collectively, our results suggest that IL13RA2 may have potential as

a prognostic biomarker for HCC.

Up to 2018, hepatocellular carcinoma (HCC) was

evaluated as the sixth most common cancer in the

world and the fourth leading cause of cancer death [1].

With the advancement of diagnostics and the popular-

ity of surveillance programs, the proportion of early-

stage HCC in the diagnosis of HCC has increased sig-

nificantly. In developed countries, 40% of patients

with HCC could be diagnosed as early stage, for which

curative treatment is available [2–4]. Nonetheless, the

metastasis and recurrence of HCC are a major obsta-

cle to improving overall survival (OS) and quality of

life of patients. However, the mechanisms underlying

the metastasis of HCC remain obscure, leading to

limited metastasis-targeted therapeutics.

Metastasis is a dynamic procedure that includes

invasion to surrounding matrix, intravasation, survival

and transit in the circulating system, extravasation,

seeding in distant organs and clonal proliferation to

form a metastasis niche. Genetic and epigenetic

changes that form networks or pathways are involved

in the whole metastatic process. Therefore, under-

standing deregulated gene expression that drives

metastasis initiation is of great importance, both for

prognosis and for therapeutic targets.

Interleukin-13 receptor alpha 2 (IL13RA2), 43 kDa, is

one of the receptors for IL-13 [5]. IL-13 is a T helper 2

(Th2) molecule involved in inflammation, wound healing,

allergy and immune regulation. Moreover, IL-13 plays a

key role in many pathological processes, such as asthma,

pulmonary fibrosis and ulcerative colitis [6–8]. The classic

pathway for IL-13 activation is JAK/STAT6 via binding

to receptor interleukin-13 receptor alpha 1, not IL13RA2.

IL13RA2 had once been deemed as a decoy receptor [9–

11], but recent studies have demonstrated that IL-13
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could act on IL13RA2 to activate extracellular signal-

regulated kinase (ERK)/activator protein 1 [12,13] and

Scr/phosphoinositide 3-kinase/Akt/mammalian target of

rapamycin [14] downstream pathways. Up to now, we

concluded that IL13RA2 has two forms: transmembrane

form and extracellular soluble form [15–17]. The former

is involved in signaling of ligands such as IL-13, as well as

binding to other membrane receptors, such as epidermal

growth factor receptor variant III (EGFRvIII) [18], to

form different functional subunits. As a decoy receptor,

soluble IL13RA2 appears to inhibit the effects of IL13

[7,15]. Taken together, the functions of these two isoforms

could be antagonistic.

In several solid tumors, studies reported that

IL13RA2 could predict poorer survival, such as

glioblastoma [18], breast cancer [19], colorectal cancer

[20] and pancreatic cancer [21]. In addition, these stud-

ies revealed that overexpression of IL13RA2 could

confer invasive and metastatic ability on tumor cells.

However, the roles of IL13RA2 on HCC are poorly

understood. In this study, we aimed to detect the

expression level of IL13RA2 on HCC and to evaluate

its contribution to metastasis.

Materials and methods

Cell culture

The human HCC cell lines—Hep G2, PLC/PRF/5,

SMMC7721, Huh7, MHCC97L, MHCC97H, HCCLM3

cell line and the hepatocyte cell line L02—were all obtained

from the Liver Cancer Institute at Fudan University in

Shanghai, China. Among them, MHCC97L, MHCC97H

and HCCLM3 are all of high metastatic potential, deriving

from patent MHCC97 cells; MHCC97L has a relatively

low metastatic potential, whereas MHCC97H and

HCCLM3 have relatively high metastatic potential. All

cells were cultured in Dulbecco’s modified Eagle’s medium

(DMEM) containing 10% FBS (CellSera, Rutherford,

NSW, Australia) in an atmosphere of 5% CO2 at 37 °C.

Lentivirus short hairpin RNA transfection

Short hairpin RNA was used to construct recombinant len-

tivirus. The sequence to target human IL13RA2 was as fol-

lows: 50-UCAGGAUAUGGAUUGCGUA-30; and the vector

was PGMLV-hU6-MCS-CMV-ZsGreen1-PGK-Puro-WPRE.

The whole products were designed by Genomeditech Com-

pany (Shanghai, China), and HCC cell lines were transfected

with lentivirus following the manufacturer’s protocol.

Real-time quantitative PCR analysis

Total RNA was extracted from cells using TRIzol Reagent

(Sigma, Saint Louis, MO, USA), and the cDNA was

synthesized with PrimeScript RT reagent kit with gDNA

eraser (Takara, Kusatsu, Japan). Quantitative real-time PCR

was performed on CFX96 Touch (Bio-Rad Laboratories,

Hercules, CA, USA) using SYBR premix ex Taq (TliRNa-

seH Plus) (Takara). The specific primer pairs used for

human IL13RA2 are as follows: forward 50‑ACCTGGCATA

GGTGTACTTCT‑30 and reverse 50‑CCAAATAGGGAAAT

CTGCATCCT‑30. Glyceraldehyde-3 phosphate dehydroge-

nase (GAPDH) was used as endogenous control.

Western blot analysis

Cells were lysed in radioimmunoprecipitation assay buffer

with 1% PMSF and 10% phosphatase inhibitor (Beyotime

Biotechnology, Shanghai, China), the protein concentra-

tions were measured using the bicinchoninic acid method

(Beyotime Biotechnology), and 20 µg protein per sample

was separated in 10% SDS/PAGE using electrophoresis

and transferred to polyvinylidene fluoride membranes (Mil-

lipore, Billerica, MA, USA). After 2 h of blocking with a

TBST buffer (Sangon Biotech, Shanghai, China), contain-

ing 5% fat-free milk at room temperature, the membranes

were incubated with primary antibodies at 4° C overnight.

The next day, the membranes were washed three times with

19 TBST and then incubated with corresponding sec-

ondary antibodies for 1 h at room temperature. Finally,

the blots were detected by ImmobilonTM Western Chemilu-

minescent HRP Substrate (ECL; Millipore). The primary

antibodies we used in the research are listed as follows: IL-

13 Ra2 (#AF146; R&D Systems, Minneapolis, MN, USA),

E-cadherin (#ab40772; Abcam, Cambridge, MA, USA), N-

cadherin (#ab76011; Abcam), Vimentin (#ab92547;

Abcam), Erk 1/2 (#9102; Cell Signaling Technology (CST),

Danvers, MA, USA), phospho (p)-Erk 1/2 (#4370; CST)

and GAPDH (#AF0006; Beyotime Biotechnology).

Flow cytometry analysis of apoptosis

Cells were collected, resuspended into 1 9 106/mL in 200 µL
19 binding buffer and added to 5 µL Annexin V Recom

APC and 5 µL 7-aminoactinomycin D (BD Pharmingen, San

Diego, CA, USA). After incubation at room temperature for

15 min away from light, cells were added to 300 µL 19 bind-

ing buffer to be analyzed in a flow cytometer (FACSCalibur;

BD Biosciences, San Jose, CA, USA).

Cell proliferation assay

Four thousand cells per well were seeded into a 96-well

plate. Cell proliferation assay was performed using Cell

Counting Kit-8 (CCK-8; Beyotime Biotechnology) 24, 48,

72 and 96 h after cell seeding. The absorbance was detected

at a wavelength of 450 nm (A450 nm) after 110 µL mixture

reagent (10 µL CCK-8 and 100 µL DMEM) was added

into each well and incubated at 37° C for 1 h.
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Wound-healing assay

We used a 200-µL plastic pipette tip to make a wound in a

six-well plate with a cell density of 90% confluence. Subse-

quently, the cell was washed gently twice with PBS and cul-

tured with DMEM containing 5% FBS. Scratches were

photographed at 0, 24, 48 and 72 h after wounding. We

used IMAGEJ (National Institutes of Health, Bethesda, MD,

USA) to analyze the area of wound healing in different

time points: Wound-healing percentage = (scratch area in

0 h � scratch area in 48 or 72 h)/scratch area in 0 h.

Cell migration assays

A total of 1 9 105 cells with 100 µL FBS-free DMEM

were plated in the upper chamber (8.0-lm pore size; Corn-

ing Incorporated, Corning, NY, USA), and 600 µL 10%

FBS DMEM was added into the lower chamber. After

72 h, migrating cells were fixed by 4% paraformaldehyde

(Beyotime Biotechnology), stained with crystal violet (Bey-

otime Biotechnology) for 20 min and photographed in a

high-magnification field of vision.

Statistical analysis

Kaplan–Meier survival analysis in Kaplan–Meier Plotter used

the log rank test. Gene Expression Profiling Interactive Anal-

ysis (http://gepia.cancer-pku.cn/) [22] was used to determine

whether one gene is expressed differently between HCC and

normal hepatic tissue in The Cancer Genome Atlas (TCGA)

database, where the P value was calculated using one-way

ANOVA; the cutoff of |log2FC| (where FC represents fold

change) and P value were 1 and 0.05, respectively. Continu-

ous variables were expressed as the mean � standard devia-

tion (SD) and analyzed using two-tailed Student’s t-test;

P < 0.05 was considered significantly different.

Results

Overexpression of IL13RA2 in HCC predicts good

long-term survival

To identify the clinical significance of IL13RA2 in

HCC, we performed a Kaplan–Meier survival analysis

in Kaplan–Meier Plotter (http://kmplot.com/analysis/

index.php?p=service&cancer=liver_rnaseq), which

integrated three independent transcriptomic datasets:

TCGA, Gene Expression Omnibus (GEO): GSE20017

and GEO: GSE9843 [23]. OS available data included

364 patients. OS for patients with low IL13RA2

expression (115 patients) was significantly poorer than

that for patients with high IL13RA2 expression (249

patients) (Fig. 1). Intriguingly, the clinical impact of

IL13RA2 in HCC is opposite to other solid tumors.

The expression of IL13RA2 in HCC

To determine IL13RA2 expression in human HCC

and cell lines, we performed TCGA database analysis,

which included 50 normal hepatic tissue samples and

369 tumor samples. TCGA database analysis revealed

that the expression of IL13RA2 was higher in normal

hepatic tissue compared with its expression in tumor

(Fig. 2A). Then we validated IL13RA2 expression in

different human HCC cell lines and normal hepatocyte

(L02) via quantitative RT-PCR and western blot.

Compared with most HCC cell lines (Hep G2, PLC/

PRF/5, SMMC7721, Huh7), the mRNA expression of

IL13RA2 was slightly higher in hepatocyte L02

(Fig. 2B,C), which was analogous to TCGA analysis

result. Intriguingly, IL13RA2 was overexpressed signif-

icantly in MHCC97 cell lines by mRNA level and

highly expressed in MHCC97H and HCCLM3 cells,

but not MHCC97L, by protein level (Fig. 2B,C).

IL13RA2 silencing promotes cell proliferation and

migration, but inhibits cell apoptosis

To characterize the role of IL13RA2 in MHCC97H

and HCCLM3 cells, we knocked down IL13RA2 with

stable lentivirus transfection of short hairpin RNA. As
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Fig. 1. Low expression of IL13RA2 correlates with poor prognosis

in patients with HCC. Kaplan–Meier plot of the correlation between

IL13RA2 expression and OS, using TCGA, GEO: GSE20017 and

GEO: GSE9843 integrated databases. The OS of the IL13RA2 high-

expression group was better than that of the IL13RA2 low-

expression group (P = 0.0051).
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shown in Fig. 3A, IL13RA2 knockdown conferred

enhanced cell proliferation in HCCLM3, whereas the

change was not evident in MHCC97H cells. In addi-

tion, IL13RA2 silencing in both MHCC97H and

HCCLM3 caused lower cell apoptosis rate (Fig. 3B).

To determine the effect of IL13RA2 on cell migration,

we used wound-healing assays and Transwell cell

migration assays. The results confirmed that IL13RA2

knockdown increased cell migration ability in HCC

cells (Fig. 3C,D).

IL13RA2 silencing enhances epithelial-

mesenchymal transition through the ERK

pathway

To explore the potential mechanism of IL13RA2 func-

tion in HCC, we detected the level of E-cadherin, N-

cadherin and Vimentin in IL13RA2 knockdown HCC

cells comparable with the control group. As displayed in

Fig. 4A, in IL13RA2 knockdown MHCC97H cells, E-

cadherin was down-regulated, whereas N-cadherin and

Vimentin were up-regulated significantly. In HCCLM3

cells, IL13RA2 silencing up-regulated the expression of

N-cadherin and Vimentin, with no obvious change in E-

cadherin. These results demonstrated that IL13RA2

knockdown HCC cells underwent different types of

epithelial-mesenchymal transition (EMT) program.

Next, we studied the downstream pathway involved in

EMT via western blot and found that the increase in

p-Erk expression was significant for both MHCC97H

and HCCLM3 cells (Fig. 4B). Collectively, IL13RA2

silencing could induce intermediate hybrid EMT states

through ERK activation in different HCC cells.

Discussion

It is well documented that IL13RA2-targeted therapies

have gained considerable effect in tumor treatment,

such as IL13RA2 monoclonal antibody [24] and

IL13R-specific chimeric antigen receptor-modified T

cells [25,26] for glioblastoma multiforme. Hence, at the

very start, we intended to evaluate the role of

IL13RA2 in HCC and whether these IL13RA2-tar-

geted interventions are applicable to HCC.

In contrast with existing research results in other

tumors, our study found that low expression level of

IL13RA2 in HCC predicted a shorter survival and iden-

tified IL13RA2 as being low expressed in patients with

HCC through TCGA database analysis. However,

human HCC cell lines MHCC97H and HCCLM3

expressed high levels of IL13RA2 specifically, character-

izing the heterogeneity in the expression of IL13RA2

on HCC. Intriguingly, the MHCC97L cell line also con-

tained a higher level IL13RA2 mRNA, but the amount

of protein expression was relatively low. As we know,

the mRNA abundance of a particular gene does not

Fig. 2. The expression of IL13RA2 in HCC.

(A) TCGA analysis of IL13RA2 expression

in human HCC and normal hepatic tissue.

IL13RA2 expressed higher in normal

hepatic tissue. (B) Quantitative RT-PCR

analysis of IL13RA2 mRNA expression in

HCC cell lines and normal hepatocyte cell

line (L02). The IL13RA2 mRNA expressed

higher in MHCC97L cells, MHCC97H cells

and HCCLM3 cells. (C) Western blot

analysis of IL13RA2 protein expression in

HCC cell lines and normal hepatocyte cell

line (L02). The IL13RA2 expressed higher

in MHCC97H cells and HCCLM3 cells.

*P < 0.05; ***P < 0.001 by Student’s t-

test. Error bars represent SD. n ≥ 3

independent experiments per condition.
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necessarily have a linear relationship with its translation

product protein expression, mainly because there are

many levels of regulation of gene expression, such as

the regulation of transcriptional level, as well as post-

transcriptional regulation and translation and post-

translational regulation. Therefore, we speculated that

in MHCC97L, IL13RA2 mRNA might experience

degradation or interference, which could be a novel tar-

get to elevate IL13RA2 protein expression level to sup-

press HCC metastasis.

Our results showed that IL13RA2 could contribute

to cell apoptosis and inhibiting cell proliferation and

migration without addition of IL-13. This phe-

nomenon has also appeared in other reports [18,20].

One illustration is that serum may contain sufficient

IL-13 or other ligands. Moreover, we found that

IL13RA2 silencing could promote cell proliferation of

HCCLM3, but not MHCC97H. As we mentioned ear-

lier, not only can IL13RA2 respond to IL-13 alone,

but it can also bind with other membrane proteins to

play unique functions. For example, in glioblastoma

multiforme [18], no significant change was observed in

cell proliferation in IL13RA2 loss tumor cells with the

absence of mutant EGFR (EGFRvIII). In contrast, in

Fig. 3. IL13RA2 silencing enhances cell proliferation and migration, but inhibits cell apoptosis. (A) CCK-8 assay for cell proliferation of

MHCC97H-shIL13RA2 cells and HCCLM3-shIL13RA2 cells compared with their vector control. IL13RA2 knockdown increased cell

proliferation of HCCLM3, but not of MHCC97H. (B) Flow cytometry analysis of apoptosis of MHCC97H-shIL13RA2 cells and HCCLM3-

shIL13RA2 cells compared with their vector control. IL13RA2 knockdown decreased the total and early apoptosis rates of MHCC97H and

HCCLM3 cells. (C, D) Wound-healing assays (original magnification 940; scale bars represent 200 µm) (C) and Transwell migration assays

(original magnification 9100; scale bars represent 100 µm) (D) for cell migration in the indicated group. IL13RA2 knockdown showed

obvious promotion of migration abilities in MHCC97H and HCCLM3 cells. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, by

Student’s t-test. Error bars represent SD. n ≥ 3 independent experiments per condition. 7-AAD, 7-aminoactinomycin D.
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the presence of the EGFRvIII, IL13RA2 interacts with

EGFRvIII to exert significant influence on cell prolif-

eration. Thus, we presume that different HCC cell

lines may mean distinct receptors in the cell mem-

brane, which could bind with IL13RA2 to exhibit dif-

ferent biological functions. Besides, our study

neglected the soluble form of IL13RA2, like most of

the studies on IL13RA2 in tumors, which may play

the opposite role to membrane form. Thus, the exact

form of IL13RA2 protein in MHCC97H also could be

the reason for the earlier result. Therefore, more about

the form and synergistic membrane protein for

IL13RA2 in HCC needs to be explored, which may

open new viewpoints and provide novel targets for

HCC therapeutics.

The latest research showed that EMT is not a bin-

ary process but a continuous process [27]; that is,

tumor cells will pass through complete epithelial state,

transitional hybrid state and complete mesenchymal

state. In other words, there are diverse EMT stages in

tumor. These subpopulations have different cell plas-

ticity, invasion and metastasis ability. Importantly,

hybrid EMT has proved to indicate a higher invasion

and metastasis ability [27], and E-cadherin is required

for collective cell migration and metastatic coloniza-

tion [28]. Hence mechanisms of partial EMT urgently

need to be explored. Full EMT is regulated by clusters

of transcription factors and signaling receptors. McFa-

line-Figueroa et al.[29] found that distinct transcription

factor and receptor gene knockouts could enrich a par-

ticular EMT gene profile, such as E-cadherin, leading

to a stable intermediate EMT phenotype. In our study,

when IL13RA2 was silenced in MHCC97H cells, the

epithelial cell marker E-cadherin was down-regulated

dramatically, with mesenchymal cell markers N-cad-

herin and Vimentin up-regulated; whereas in

HCCLM3 cells, the mesenchymal cell markers N-cad-

herin and Vimentin were up-regulated, with retained

expression of epithelial cell marker E-cadherin, which

is classically characterized as partial or intermediate

EMT. As we know, different HCC cell lines in vitro

also present genetic heterogeneity, which could enable

diverse partial EMT states [30]. In agreement with our

study, several related studies have confirmed that over-

expression of Slug induces complete EMT in HepG2

cells, with partial EMT in Huh7 cells [31]. In addition,

transforming growth factor-b can induce a partial

EMT state in PLC/PRF/5 cells, increasing the expres-

sion of CD44, without losing epithelial cell adhesion

molecule and CD133 expression, whereas in Hep3B

cells, transforming growth factor-b treatment provokes

a complete EMT [32]. However, the difference in tran-

script factors and receptors or signaling pathways

between HCC cell lines leading to distinct EMT stages

is yet to be understood.

ERK signaling pathway is one of the canonical

pathways in tumors, playing a pivotal role in EMT

[33]. Our study found that HCC cells with IL13RA2

knockdown showed a high level of ERK phosphoryla-

tion, indicating that IL13RA2 may suppress EMT in

HCC via inhibiting ERK activation. Thus, further

investigations are required to reveal the detailed con-

nections between IL13RA2 and the ERK signaling

pathway.

Fig. 4. IL13RA2 knockdown induces EMT via ERK phosphorylation. (A) E-cadherin, N-cadherin and Vimentin were detected by western blot

in MHCC97H-shIL13RA2 cells and HCCLM3-shIL13RA2 cells compared with their vector control. E-cadherin was significantly decreased in

the IL13RA2 knockdown group of MHCC97H cells, with N-cadherin and Vimentin increased, whereas in the IL13RA2 knockdown group of

HCCLM3 cells, N-cadherin and Vimentin were significantly up-regulated, with no loss of E-cadherin. (B) Western blot detection of Erk 1/2

and p-Erk 1/2 protein level. IL13RA2 silencing increased the expression of p-Erk 1/2 obviously in MHCC97H and HCCLM3 cells.
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