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Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle
parameters and apoptosis is a crucial step toward better informing drug administration.
Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells
and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis.
In this paper, we developed a physiologically motivated mathematical framework for
describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in
the time individual cells spend in the cell-cycle and apoptosis process. More precisely,
our model comprises two age-structured partial differential equations for the proliferative
and apoptotic cell compartments and one ordinary differential equation for the quiescent
compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics,
proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining
to be spent in each respective compartment. In our model, we considered an antimitotic
drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the
average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger
apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest
threshold. We studied the drug’s effect on the long-term cancer cell growth dynamics
using different durations of prolonged mitotic arrest induced by the drug. Our numerical
simulations suggest that at confluence and in the absence of the drug, quiescence is
the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This
pattern is maintained in the presence of small increases in the average cell-cycle length.
However, intermediate increases in cell-cycle length markedly decrease the total number
of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/
switch-off” increase in the average cell-cycle length maintains an active cell population
in the long term, with oscillating numbers of proliferative cells and a relatively constant
quiescent cell number.
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1. INTRODUCTION

Intratumoral cancer heterogeneity represents a major obstacle to
improving the overall response and survival of cancer patients
(1–4). While most tumors initially respond well to drug therapies,
many will relapse at a certain point following treatment (5, 6).
One of the major reasons behind therapeutic failure is attributed
to cancer cell-intrinsic factors, such as variations in cell-cycle
parameters (e.g., cell-cycle duration, apoptosis length, mitotic
index, percentage of apoptotic cells) and the presence of quiescent
cancer cells, both of which decrease the efficacy of therapies that
rely on active cell cycling (7–10).

Antimitotic cancer drugs represent a highly diverse and suc-
cessful class of antimitotic agents, reported to have a broad
spectrum of potent anti-tumor activity in various hematologi-
cal and solid malignancies (7, 11–17). Examples of such drugs
includemicrotubule-targeting agents, e.g., taxanes and vinca alka-
loids, and newer agents that disrupt mitosis without affecting
microtubule dynamics, e.g., kinesin spindle protein inhibitors and
inhibitors of mitotic kinases (18–28).

While the primary drug target depends on the antimitotic agent
used, pre-clinical data from in vitro experiments showed that
prolonged mitotic arrest occurs in 100% of the cell populations
under study irrespective of the agent used (29–33). However, these
data also revealed that while all proliferating cells will undergo
mitotic arrest when exposed to high concentrations of antimi-
totic drugs, there is considerable cell-to-cell variation of apoptotic
response to antimitotic drugs in human cancer cell lines. Such
observations have been reported in multiple single-cell studies
involving individual cancer cells in culture in the presence of
various antimitotic drugs, including kinesin-5 inhibitors (30, 32)
taxol (29, 31–37), and nocodazole (32, 38–40). In the presence of
identical drug exposure times and concentrations, the extent of
heterogeneity in cellular response reported both within and across
cancer cell lines is considerable (29–33, 35–37). For example,
in Ref. (32), the authors analyzed 15 different cancer cell lines
for their long-term response to different antimitotic drugs. They
found that cellular responses to identical drugs are heterogeneous,
e.g., within each distinct cell line, cells exhibit different responses
following prolonged mitotic arrest, such as undergoing apoptosis
after exiting mitosis, dying after completing several mitoses, or
dying in interphase.

Investigating the role of intrinsic cell heterogeneity emerging
from variations in cell-cycle parameters and apoptosis in cancer
cell growth dynamics in vitro is a crucial first step toward better
informing antimitotic drug administration. Several mathematical
models have been formulated to investigate the dynamic varia-
tions among different cellular phenotypes and their role in the
emergence of adaptive evolution and chemotherapeutic resistance
(41–45) or the impact of cancer cell size, age, and cell-cycle phase
in predicting the long-term in vitro population growth dynamics
(46–55).

For example, in Ref. (46), the authors modeled the cancer cell
population dynamics using a system of four partial differential
equations (PDEs) representing the four cell-cycle phases (i.e.,
G0, G1, S, and M) with relative DNA content as the structuring

variable. The goal therein was to obtain the steady DNA distribu-
tions for each cell-cycle phase andmatch the flow cytometry DNA
profiles of the human melanoma NZM13 cell line at various time
points following the addition of paclitaxel.

In Ref. (48), the authors derived two novel mathematical mod-
els, a stochastic agent-based model and an integro-differential
equation model, in order to study the effect of cell-cycle-induced
intrinsic tumor heterogeneity on the overall growth dynamics.
Both models characterized the growth of cancer cells as dynamic
interactions between the proliferative, quiescent, and apoptotic
states. The models were designed to predict the cancer growth
as a function of the intrinsic heterogeneity in the duration of the
cell-cycle and apoptosis process and also included cellular den-
sity dependency effects. An extension of these models to spatial
models was done in Ref. (49).

In this paper, we reformulated the models of Ref. (48). Specif-
ically, we assumed that cells are structured by their age, i.e., how
long each cell will spend in the cell cycle or apoptosis. The advan-
tages of the present approach lie in the ability to access directly the
cellular age in each compartment and to study the impact of pro-
longed mitotic arrest induced by antimitotic agents on the long-
term population growth dynamics. Our model comprises of two
PDEs for the proliferative and apoptotic cell compartments struc-
tured in cellular age and one ordinary differential equation for
the quiescent compartment. We modeled the prolonged mitotic
arrest induced by the drug as an increase in the average cell-
cycle length duration, a consequence of the slowing or blocking
of mitosis at the metaphase-anaphase transition (30, 34, 38, 56).
We assumed that if the total time a cell spends in the cell cycle
is greater than the cell-cycle age threshold, apoptotic cell death is
triggered, a phenomenon observed in vitro (18, 30, 33, 34, 37, 38,
56–61). We used numerical simulations to subsequently study the
impact of increasing the cell-cycle length on the overall population
survival.

Our results suggest that at confluence and in the absence of any
drug, quiescence is the long-term asymptotic behavior emerging
from the cancer cell growth dynamics. This pattern is maintained
in the presence of a small increase in the average cell-cycle length.
However, an intermediate increase in cell-cycle length markedly
decreases the total number of cancer cells present and can drive
the cell population to extinction. A large “switch-on/switch-off ”
increase in the average cell-cycle length maintains an active cell
population in the long term, with oscillating numbers of pro-
liferative cells and a relatively constant quiescent cell number.
Intriguingly, our results suggest that a large “switch-on/switch-
off ” increase in the average cell-cycle length may maintain an
active cancer cell population in the long term.

This work is aimed at understanding cancer cell growth dynam-
ics in the context of cancer heterogeneity emerging from varia-
tions in cell-cycle and apoptosis parameters. The mathematical
modeling framework proposed hereinmerits consideration as one
of the fewmathematical models to investigate dynamic cancer cell
responses to prolonged mitotic arrest induced by antimitotic drug
exposure. Our proposed modeling framework can serve as a basis
for future studies of the heterogeneity observed in vitro of cancer
cell responses in the presence of antimitotic drugs.
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2. MATERIALS AND METHODS

2.1. Model Setup
The system (1)–(3) is a novel physiologically motivated mathe-
matical model that assumes continuous distributions on cellular
age, i.e., the times spent in the cell-cycle and apoptosis process.
The model consists of proliferative (i.e., cells actively dividing, in
either aG1,G2 orM-like state), quiescent (i.e., aG0-like state), and
apoptotic compartments, as illustrated in Figure 1.

The proliferative compartment is structured by the time
remaining to be spent by cells in the cell cycle before successfully
completing mitosis and doubling. The apoptotic compartment is
structured by the time remaining for cells to fully degrade and
complete apoptosis. Accordingly, the dynamics of the cancer cell
population is governed by the following system:

∂tP(t, a) − ∂aP(t, a) = αQP(t)Q(t)fP(a) [0,̄a] − αPA(t)P(t, a),
(1)

∂tQ(t) = 2P(t, 0) − (αQP(t) + αQA(t))Q(t), (2)

∂tA(t, a) − ∂aA(t, a) =
[
αQA(t)Q(t) + αPA(t)

∫
P(t, a) da

+αQP(t)Q(t)
∫

fP(a) (ā,∞) da
]
fA(a).

(3)
Initial conditions for this system are described in the following.

FIGURE 1 | Diagram representing the age-structured mathematical modeling
framework. Here, P denotes the proliferative compartment, with P(t, a) cells
present at time t with time a remaining to be spent in this compartment.
Proliferative cells can either transition to A or to Q at a= 0 upon completion of
the cell cycle. Q denotes the quiescent compartment, with Q(t) cells present
at time t. Quiescent cells can either transition to P with rate αQP(t) or to A with
rate αQA(t). A denotes the apoptotic compartment, with A(t, a) cells present at
time t and time a remaining to be spent in this compartment before
completing apoptosis. For illustration purposes, cells within each
compartment are grouped together. The various shades of green represent
the different times remaining to be spent by cells in the proliferative
compartment (i.e., in the cell cycle) before transitioning. Similarly, the various
shades of red represent the different times remaining to be spent by cells in
the apoptotic compartment, before completing apoptosis and being removed
from the numerical simulations. The three explicit transition rates (i.e., αQP(t),
αPA(t), and αQA(t)) are illustrated using black arrows pointing in the direction of
the respective transition. The implicit transition from P to Q representing the
successful completion of the cell cycle is denoted by a gray arrow.

2.2. Model Description
In these equations, P(t, a) represents the number of proliferative
cells at time t that still spend a in this compartment before
doubling. The rates of change of P(t, a) with respect to the exper-
imental time course t and age a are represented by ∂t and ∂a,
respectively. The term ∂aP(t, a) in equation (1) implies that the
time remaining until proliferating cells complete the cell cycle
decreases as time t advances.

When entering the cell cycle, each cell is assigned its individual
amount of time to be spent cycling, i.e., a, which is randomly
selected from the Gaussian distribution function withmeanµ and
SD σ and probability density function fP(a).When reaching a= 0,
cells in P exit the cell cycle. The maximum length of time spent
in P before exiting thus corresponds to the maximum length of
the mitotic arrest induced by an antimitotic drug. We assumed
that the transition of cells back to Q is due to a successful (i.e.,
non-aberrant) mitosis.

Cells in Q act as a reservoir for the other two compartments,
i.e., they move into either the apoptotic or proliferative com-
partment with rates αQA(t) or αQP(t), respectively. Intuitively,
quiescent cells do not actively progress through the cell cycle
nor are committed to undergo apoptosis (i.e., they remain in a
G0-like state).

Cells can undergo apoptosis immediately after exiting the cell
cycle, after completing several mitoses, or during interphase.
Once cells enter A, they are irreversibly committed to completing
apoptosis and cannot transition back to either P or Q. When
apoptosis is completed, cells are removed from the numerical
simulation. The term ∂aA(t, a) in equation (3) implies that the
time remaining until cells complete apoptosis decreases as time t
advances.

Cells undergoing apoptosis take time to fully degrade (62, 63);
until apoptosis is completed, the cells still take up space and can
inhibit the growth of neighboring cells in vitro (37, 63). Upon
entering the apoptosis compartment, the time remaining to be
spent there is randomly chosen from a probability distribution,
e.g., Gamma distribution Γ(ω, λ) with shape parameter ω, rate
parameter λ, and probability density function fA(a). The choice
for this probability distribution is explained in greater detail in
Section 2.5.

We noted that the two age-structured PDEs for the prolif-
erative and apoptotic cell compartments enable us to monitor
a cell’s progress through the cell cycle (in the case of a cell
in P) or advancement through apoptosis until complete degra-
dation (in the case of a cell in A). Additionally, we assumed
that if, upon entering P, the time a cell will spend in P, a,
is greater than the threshold ā (i.e., the cell-cycle age thresh-
old corresponding to a prolonged mitotic arrest), the cell will
undergo apoptosis and will thus immediately transition to A.
This phenomenon has been observed in vitro when the sustained
prolonged mitotic arrest caused by antimitotic drug exposure
leads to apoptotic cell death via the gradual accumulation of cell
death signals that ultimately trigger apoptosis. Examples include
the phosphorylation and subsequent inactivation of the anti-
apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL, and Mcl-1), PARP cleav-
age, and the activation of caspases 3, 7, and 9 (33, 34, 36–38, 58,
64–66).
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2.3. Initial Conditions
Initial conditions for the system (1)–(3) are as follows:

P(0, a) = 0, (4)

Q(0) = ρ(0)K, (5)

A(0, a) = 0. (6)

where ρ(0) represents the initial in vitro plating density. Here,
three different initial conditions are used, i.e., Q(0)= 0.1K,
Q(0)= 0.45K, andQ(0)= 0.8K, corresponding to 10, 45, or 80%of
the plating carrying capacity K, respectively, according to experi-
mental setup in Ref. (48). We noted that theQ(0)= 0.1K and 0.8K
cases are identical to the initial conditions reported in Ref. (48).
For comparison purposes, we considered in this work, an inter-
mediate case,Q(0)= 0.45K, which corresponds to the mean value
of the two experimental datasets reported in Ref. (48). Therein,
the growth dynamics measuring total cellular density every 24 h
for a period of 96 h in the two different seeding densities (i.e., 10
and 80%of the in vitro plating density) was subsequently recorded.
For a more detailed description of the experimental design, we
referred to Ref. (48) Appendix B.1.2.

We noted that equation (1) does not require a boundary condi-
tion at a= 0, since this is a PDE that models a transport process
with outward flux only, i.e., once proliferating cells reach a= 0,
they double, after which both daughter cells return to quiescence
before entering another cell cycle.

2.4. Inter-Compartmental Dynamics
Following (48), the transition rates that describe the processes of
mitotic exit followed by quiescence, mitotic exit, or quiescence
followed by the onset of apoptosis are, respectively:

αQP(t) = c
[β(ρ(t))Ntot(t) − P(t)]+

Q(t) , (7)

αPA(t) = cγ
[dNtot(t) − A(t)]+

P(t) , (8)

αQA(t) = c(1 − γ)
[dNtot(t) − A(t)]+

Q(t) . (9)

P(t), Q(t), and A(t) represent the total number of cells at time
t in the proliferative, quiescent, and apoptotic compartments.
Herein, the total number of proliferative and apoptotic cells are
integrated over the cellular age, i.e.,

∫
P (t, a) da and

∫
A (t, a) da,

respectively. The total number of cells that occupy the plate at time
t is described byNtot(t)= P(t)+Q(t)+A(t). The total number of
non-apoptotic cells at time t is described by N(t)= P(t)+Q(t).
Cell density is denoted by ρ(t)=Ntot(t)/K, with K representing
in vitro confluence. Here, ρ= 1 when Ntot(t)=K, which implies
that cells have reached confluence at time t. For a complete expla-
nation and derivation of the transition rates in (7)–(9), we referred
to Ref. (48).

We noted that the functional forms in equations (7)–(9) are
time and density dependent and reflect the in vitro experimental
conditions used in Ref. (48), where OVCAR-8 cells were seeded at

different cell densities and initially synchronized to be quiescent
using starvation media.

Additionally, we assumed that for a given in vitro cell density
at time t, there exists an equilibrium distribution of cells actively
in the cell cycle. This is represented in the model by the function
β(ρ(t)), i.e., the fraction of proliferating cells as a function of the
in vitro cell density ρ(t) at equilibrium. Experimentally, in order
to determine β(ρ(0)), in Ref. (48), OVCAR-8 human ovarian
carcinoma cells seeded at different cell densities were initially
synchronized as quiescent, using two distinct cell-cycle arrest
experiments performed by changing the starvation media and
duration of the experiment. For a more detailed description of the
experimental design, we referred to Ref. (48) Appendix B.1.1.

In the model, β(ρ(t)) is described by:

β(ρ(t)) = βme
−θ(ρ−ρm)2

ρ(1+ε−ρ)2
, (10)

θ :=
ε2log

(
βm
d

)
(1 − ρm)2

. (11)

A complete list of the variables and parameters used throughout
the modeling framework (1)–(11) and their interpretation can be
found in Table 1. We noted that the parameters and functional
forms described earlier are adapted from Ref. (48).

2.5. Intra-Compartmental Dynamics
The age-structuredmathematicalmodel proposed above incorpo-
rates an intrinsic form of cell heterogeneity in the in vitro cancer
cell growth dynamics, specifically in the distribution of times
individual cells spend in the cell-cycle and apoptosis process.

To the best of our knowledge, there are no in vitro studies
describing the distribution of times individual OVCAR-8 cells
spend in the cell-cycle. In Ref. (48), Greene et al. chose to model
the amount of timeOVCAR-8 cells spend in the proliferative com-
partment, P, as a normal distribution, N (µ, σ), with probability
density function fP(a). In our model, the density function is re-
normalized to integrate to 1 on the interval [0, ∞). Based on the
temporal OVCAR-8 growth dynamics reproduced in Figure 4 in
Ref. (48), the mean cell-cycle length obtained when fitting to the
experimental data is µ= 19.12 h, when the initial plating density
is set at Q(0)= 10% of the maximum plating density, K. When
the initial plating density is Q(0)= 80% of the maximum plating
density, K, the mean cell-cycle length obtained when fitting to the
experimental data is µ= 15.23 h. When fitting the system (1)–(4)
to the experimental data for both plating density conditions,
the mean cell-cycle length obtained is µ= 18.33 h. Experimen-
tally, the doubling time reported for OVCAR-8 cells decreases
with higher plating density and varies between 14.57 (67) and
26.1 h (68).

The amount of time cells spend in the apoptosis compartment,
A, is assumed to follow a Gamma distribution, Γ(ω, λ), where ω
and λ denote the shape and rate parameters, respectively, with
probability density function fA(a). These parameters are set at
ω = 4.9436 and λ= 0.19117, respectively, to match the experi-
mental results of Ref. (62) on the length of the apoptotic process.
They are identical to the ones used in Ref. (48) to characterize this
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TABLE 1 | List of variables and parameters used throughout the model.

Variable Value Definition

t [0, 200] (hours) Time
a [0, 80] (hours) Maximum time remaining to be spent in P or A
P(t, a) [0, ∞) (cells) Number of proliferative cells at time t with time

a to spend in P
Q(t) [0, ∞) (cells) Number of quiescent cells at time t
A(t, a) [0, ∞) (cells) Number of apoptotic cells at time t with time a

to spend in A
Ntot(t) [0, ∞) (cells) Total number of cells at time t
N(t) [0, ∞) (cells) Total number of non-apoptotic cells at time t
K 40,401 (cells) In vitro carrying capacity
fP(a) [0, ∞) PDF of N (µ, σ), describing the cell-cycle

length without drug
µ [15.23, 19.12] (hours) Mean cell-cycle length without drug
σ 3 (hours) SD of the cell-cycle length without drug
fP,c(a) [0, ∞) PDF of N (µ + c(t), σ), describing the

cell-cycle length with drug
c(t) [0, ∞) (hours) Drug-induced mitotic arrest extending the

average cell-cycle length
fA(a) [0, ∞) PDF of Γ(ω, λ) describing the length of

apoptosis
ω 4.9436 Shape parameter for the Gamma-distributed

length of apoptosis
λ 0.19117 Rate parameter for the Gamma-distributed

length of apoptosis
ā [24.23, 28.12] (hours) Cell-cycle age threshold corresponding to a

prolonged mitotic arrest
αQP(t) [0, ∞) Transition rate from Q to P
αPA(t) [0, ∞) Transition rate from P to A
αQA(t) [0, ∞) Transition rate from Q to A
c [0.37, 0.64] (hour−1) Cellular reaction rate
γ [0.0005, 0.9999] Transition probability to enter A
ρ(t) [0, ∞) In vitro cell density at time t
d 0.03 Fraction of total number of cells in A
β(ρ(t)) [0, 1] Fraction of total number of cells in P as a

function of ρ(t)
βm [0, 1] Maximum of β(ρ(t))
ρm [0, 1] Maximizing density of β(ρ(t))
ε [0, 1] Parameter governing the shape of β(ρ(t))

process.We noted, however, that the study of Ref. (62) investigated
the individual responses of PC12 rat adrenal gland tumor cells
to serum deprivation. Therein, the authors performed a compre-
hensive study on the fate of distinct cells undergoing apoptosis
following serum removal. To the best of our knowledge, no such
studies performed on human cancer cell lines have reported a dis-
tribution of the time individual cells spend in apoptosis at such a
fine resolution, either in the absence or the presence of antimitotic
drugs. We thus chose to model the probability density function of
the length of apoptosis process based on the experimental data in
Ref. (62). The remaining model parameters listed in Table 1 are
obtained following the parameter estimation procedure described
in Ref. (48).

2.6. Cellular Response to Antimitotic Drugs
In our model, we considered an antimitotic drug whose effect on
the cellular dynamics is to induce mitotic arrest, extending the
average cell-cycle length. We assumed the administered drug to
be homogeneously distributed, such that all cells in P are equally
susceptible to its effect. Specifically, the impact of the drug is to
increase the time cells spend in the proliferative compartment, P,

corresponding to a sustained mitotic arrest. Upon exiting qui-
escence and entering the cell cycle, a cell can undergo one of
two fates: (i) if the time chosen to be spent in P is lower than
the threshold ā, the cell enters P, progresses through the cell
cycle, and either successfully completes mitosis with rate αQP, or
undergoes apoptosis with rateαPA; (ii) otherwise, the cell commits
to undergoing apoptosis and immediately moves to the apoptotic
compartment A. The parameter ā serves as the cell-cycle age
threshold corresponding to a prolongedmitotic arrest, after which
cells exit the cell cycle and undergo apoptosis.

It is a well-known phenomenon in vitro that a sustained
mitotic arrest (i.e., slowing or blocking of mitosis at the
metaphase–anaphase transition, thus increasing cell-cycle length)
predisposes cancer cells to undergoing apoptosis followingmitotic
exit (7, 11, 18, 30, 33, 34, 36–38, 56, 66). This was revealed
using time-lapse microscopy data, where exposure of cancer cells
to saturating antimitotic drug concentrations delayed to various
extents the cells from exiting drug-induced mitotic arrest and
undergoing subsequent apoptosis.

In our model formulation, the antimitotic drug acts directly
on the cell-cycle dynamics by increasing the average cell-cycle
length, and as a consequence, causing cells to transition to the
apoptotic compartment. To include the effect of such a drug, we
shifted the expected value µ of the normal distribution by the
function c(t) corresponding to the cell-length increase induced by
the antimitotic drug, i.e., fP,c(a) is the probability density function
of the normal distribution N (µ + c (t) , σ). The system (1)–(12)
remains otherwise unchanged. Here, c(t) can, for example, be
modeled as a constant or bang–bang function throughout the
duration of the simulation time t= 200 h, corresponding to either
a sustained, constant mitotic arrest or a switch-on/switch-off
arrest.

Experimentally, the sustained, constant mitotic arrest corre-
sponds to the large cell-to-cell variations in the duration ofmitotic
arrest and the timing of drug-induced cell death via apoptosis
observed in vitro when single cells are exposed to saturating drug
concentrations using various antimitotics for prolonged periods
of time, e.g., 96 hours or more (32, 33, 37). We further inves-
tigated the impact of an in silico switch-on/switch-off mitotic
arrest on the overall cancer cell growth dynamics. This type of
“bang–bang”mitotic arrest could, for example, be induced in vitro
by the periodic addition and wash-off of the antimitotic drug
under study, along with growthmedia refreshment. In this setting,
when the drug is withdrawn, proliferating cells do not necessarily
revert to the cell-cycle length assigned to them in the absence
of the drug. Rather, these cells can still undergo a period of
mitotic arrest, in which the progression through the cell cycle can
be slowed down or blocked, leading to an increase in the cell-
cycle length, after which the cell cycle is completed and cells exit
proliferation.

We noted that our age-structured modeling framework allows
us to estimate the number of cells present in each compartment
at any given time and to temporally trace the distribution of the
times remaining to be spent in the proliferative phase during the
cell cycle or in the apoptotic phase. This framework enables us to
dynamically estimate the amount of time remaining to be spent
in each of these processes and to track cells in their progression
through each cellular phase.
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3. RESULTS

3.1. Cancer Cell Growth Dynamics in the
Absence of the Drug
We illustrate in Figure 2 the cancer cell growth dynamicsmodeled
by the system (1)–(3), with transition rates (7)–(9) and initial
conditions (4)–(6). Specifically, we consider three sets of initial
conditions, i.e., Q(0)= 0.1K in Figures 2A,D,G, Q(0)= 0.45K
in Figures 2A,D,G, and Q(0)= 0.8K in Figures 2B,E,H, corre-
sponding to 10, 45, or 80% of the plating carrying capacity, K,
respectively.

The initial plating density, with all cells being experimentally
synchronized as quiescent, as described in Section (2.3), substan-
tially alters the overall growth dynamics throughout the simu-
lation time. This can be observed in the relative and absolute
numbers of proliferating cells (solid green line) or quiescent cells
(solid blue line) and in the total number of cells, i.e., proliferat-
ing and quiescent cells (solid magenta line). In the Q(0)= 0.1K
case, the ratio Q/P = Q(t)∫

P(t,a) da (henceforth referred to as Q/P)
is greater than 1 until around t= 2 h, after which it becomes
smaller than 1 until around t= 63 h. Afterward, the ratio Q/P
increases with time. In the Q(0)= 0.45K case, the ratio Q/P
becomes less than 1 only for a brief period of time, t∈ [7, 13],
after which it continues to increase with time. In the Q(0)= 0.8K
case, the number of quiescent cells only decreases for a brief
period of time, t∈ [0, 11], after which the number of quiescent
cells continues to increase until almost reaching carrying capac-
ity. The ratio Q/P remains >1 throughout the duration of the
simulation.

For comparison purposes, we also illustrate the distribution of
the times remaining to be spent in the proliferative (P) or apop-
totic (A) compartment at the end of simulation time (t= 200 h),
for each of the initial plating densities: Q(0)= 0.1K in Figure 2G,
Q= 0.45K in Figure 2H, and Q(0)= 0.8K in Figure 2I. The solid
green lines correspond to the distribution of the time remaining
to be spent by cells in P, and the solid red lines correspond to the
times remaining to be spent by cells in A.

In each of the three scenarios, all cells are synchronized to be
quiescent at the start of the simulation time t= 0 h. The long-
term dynamics of the system (1)–(3) reveals that the majority of
cells are quiescent at the end of the simulation time t= 200 h,
withNtot(t) close to the carrying capacity. There are few remaining
proliferating cells, suggesting that once cells approach confluence,
proliferation will be inhibited. The initial plating density does not
alter the quantitative nor qualitative dynamics of the apoptotic cell
compartment throughout the simulation time (solid red lines).
We conclude that at confluence and in the absence of the drug,
quiescence is the long-term asymptotic behavior emerging from
the cancer cell growth dynamics.

3.2. Cancer Cell Growth Dynamics under
Antimitotic Drug Action
We now investigate the dynamic behavior of the system (1)–(3)
using two distinct antimitotic drug effects, i.e., a sustained, con-
stant mitotic arrest and a switch-on/switch-off arrest, with three
different levels of increase in the average cell-cycle length.

In the numerical simulations depicted later, the function c(t),
corresponding to the drug-induced mitotic arrest extending the
average cell-cycle length, can take two functional forms: it is set
to be a constant function c(t)= 2carrest set at either 2, 10, or 20 h
(solid lines) or a bang–bang function c(t)= 2carrest for 0≤ t≤ 2
and c(t)= 0 for 2≤ t≤ 4 h, repeated periodically with period 4
until t= 200 h (dashed lines).

3.2.1. Cancer Cell Growth Dynamics Given Small
Increases in Cell-Cycle Length
We studied the cancer cell growth dynamics given the action of
the drug as modeled by the system (1)–(3), with initial condi-
tions (4)–(6). To begin with, we considered small increases in the
average cell-cycle length setting carrest = 2 h.

There is a relatively small difference between the two distinct
antimitotic drug effects (see Figure 3, solid versus dashed lines
for each color representing the different cellular compartments).
Specifically, in both cases, the number of proliferative cells (solid
and dashed green lines in Figure 3A) initially increases and then
starts to decrease at around t= 73 h. The number of quiescent
cells (solid and dashed blue lines in Figure 3A) initially decreases
and continues to oscillate until around t= 40 h, when it begins to
increase with time. These oscillations are due to the transitions
from Q to P and back to Q. Initially, the ratio Q/P becomes less
than 1 (t ∈ [2, 73]), after which it steadily increases beyond 1
throughout the rest of the simulation time. The total number
of apoptotic cells integrated over the cellular age,

∫
A (t, a) da

(solid and dashed red lines in Figure 3D), steadily increases with
respect to time. In Figure 3G, we show the distribution of the
times remaining to be spent by proliferating cells (green lines) and
apoptotic cells (red lines) at the end of simulated time t= 200 h,
given small increases in average cell-cycle length, using the sus-
tained, constant mitotic arrest (solid lines) and switch-on/switch-
off arrest (dashed lines).

The two antimitotic drug effects have no noticeable difference
with regard to the cellular dynamics in either of the three com-
partments. Compared with the cancer cell growth dynamics in the
absence of the drug (see Figures 2 and 3), the ratio Q/P becomes
greater than 1 and subsequently increases at a slightly later time
point, i.e., at around t= 73 versus t= 63 h in the absence of the
drug.

Similar results are obtained when considering Q(0)= 0.45K
(see Figures 3B,E,H) and when considering Q(0)= 0.8K (see
Figures 3C,F,I). We conclude that nearing confluence and in the
presence of small increases in average cell-cycle length, quiescence
emerges as the long-term asymptotic behavior resulting from the
cancer cell growth dynamics.

3.2.2. Cancer Cell Growth Dynamics Given
Intermediate Increases in Cell-Cycle Length
We now consider intermediate increases in the average cell-cycle
length, setting carrest = 10 h. Results are shown in Figure 4.

The case Q(0)= 0.1K is illustrated in Figures 4A,D,G. Specif-
ically, the number of proliferative cells (solid and dashed green
lines) fluctuates significantly at the beginning of the numerical
simulation for both antimitotic drug effects considered. However,
at around t= 77.5 h, the number of proliferative cells exposed to
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FIGURE 2 | Numerical solutions for the system (1)–(3) in the absence of the drug with (A,D,G) Q(0)=10%, (B,E,H) Q(0)= 45%, and (C,F,I) Q(0)= 80% of the in vitro
carrying capacity, K. (A–C) show the dynamics of the proliferating (P), quiescent (Q), and total number of non-apoptotic cells (N). (D–F) show the dynamics of the
apoptotic cells (A). (G–I) illustrate the distribution of the times remaining to be spent by cells in the proliferative (P) and apoptotic (A) compartments as seen at the end
of the simulation time, t= 200 h, with (G) Q(0)= 10%, (H) Q(0)= 45%, and (I) Q(0)= 80% of plating carrying capacity, K.

the sustained, constant mitotic arrest starts to decrease with time.
The number of proliferative cells exposed to the switch-on/switch-
off arrest oscillates slightly around the number of quiescent cells.

After the initial decrease in absolute numbers at around
t= 15 h, the quiescent cells exposed to the sustained, constant
mitotic arrest exhibit a pattern of damped oscillations. They
continue to slightly decrease in numbers throughout simula-
tion time (solid blue line). The quiescent cells exposed to the
switch-on/switch-off arrest seem to have reached a steady state at
around t= 88 h. Interestingly, for the sustained, constant mitotic
arrest, the ratio Q/P becomes greater than 1 and increases slightly
with time starting at around t= 78 h. However, for the switch-
on/switch-off arrest, the same ratio remains consistently around 1
throughout simulation time, suggesting the existence of a steady-
state equilibrium between the proliferative and quiescent popu-
lations. A similar pattern can be observed in the dynamics of the

total number of proliferating and quiescent cells (solid and dashed
magenta lines).

The total number of apoptotic cells (solid and dashed red
lines in Figure 4D) oscillates with time. Figure 4G shows the
distribution of the times remaining to be spent by proliferating
cells (green lines) and by apoptotic cells (red lines) at t= 200 h.
Similar results are obtained when considering Q(0)= 0.45K (see
Figures 4B,E,H).

However, for Q(0)= 0.8K, the dynamics of the prolifera-
tive (green lines), quiescent (blue lines), and apoptotic (red
lines) cell compartments are quantitatively and qualitatively dis-
tinct between the two distinct antimitotic drug effects (see
Figures 4C,F,I).

Specifically, the number of proliferative cells (solid green line
in Figure 4C) in the sustained, constant mitotic arrest case
starts to decrease around t= 50 h. Given the switch-on/switch-off
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FIGURE 3 | Numerical solutions for the system (1)–(3) given small increases in the average cell-cycle length with (A,D,G) Q(0)=10%, (B,E,H) Q(0)= 45%, and (C,F,I)
Q(0)= 80% of the in vitro carrying capacity, K. The cellular dynamics in each compartment given a sustained, constant mitotic arrest or a switch-on/switch-off arrest
is illustrated using solid or dashed lines, respectively. (A–C) show the dynamics of the proliferating (P), quiescent (Q), and the total number of non-apoptotic cells (N).
(D–F) show the dynamics of the apoptotic cells (A). (G–I) illustrate the distribution of the times remaining to be spent by cells in the proliferative (P) and apoptotic (A)
compartments as seen at the end of the simulation time, t= 200 h, with (G) Q(0)= 10%, (H) Q(0)= 45%, and (I) Q(0)= 80% of plating carrying capacity, K.

arrest however, the number of proliferative cells oscillates slightly
(dashed green line) starting around t= 20 h and continues until
the end of the simulated time. The number of quiescent cells
(dashed green and blue lines, respectively) continues to steadily
decrease for both antimitotic drug effects, with the quiescent cells
decaying at a faster rate in the sustained arrest case than in the
switch-on/switch-off one (seeFigure 4C). A similar pattern can be
observed in the dynamics of the total number of cells (proliferating
and quiescent), as represented by the solid and dashed magenta
lines in Figure 4C. The total number of apoptotic cells (solid and
dashed red lines inFigure 4F) starts to decrease at around t= 18 h.
In Figure 4I, we show the distribution of the times remaining to
be spent by proliferating cells (green lines) and apoptotic cells (red
lines) at t= 200 h.

The two antimitotic drug effects at intermediate increases in
cell-cycle length have a marked distinct impact on the cellu-
lar dynamics in each of the three cellular compartments for
the Q(0)= 0.8K case. Specifically, the number of quiescent cells
decreases in time, and implicitly, the total number of cells
decreases at a slower (dashed magenta line) or faster rate (solid
magenta line). The dynamics of the cell population illustrated in
Figure 4C is overall substantially different from the oscillatory
dynamics observed in the Q(0)= 0.45K and Q(0)= 0.1K cases.
We conclude that in the presence of intermediate increases in the
cell-cycle length, the sustained, constant mitotic arrest markedly
decreases the total number of cancer cells present. A switch-
on/switch-off arrest maintains an active cell population in the
long-term, with proliferative cell numbers exhibiting a steady
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FIGURE 4 | Numerical solutions for the system (1)–(3) given intermediate increases in the average cell-cycle length with (A,D,G) Q(0)= 10%, (B,E,H) Q(0)= 45%,
and (C,F,I) Q(0)=80% of the in vitro carrying capacity, K. The cellular dynamics in each compartment given a sustained, constant mitotic arrest or a
switch-on/switch-off arrest is illustrated using solid or dashed lines, respectively. Panels (A–C) show the dynamics of the proliferating (P), quiescent (Q), and total
number of non-apoptotic cells (N). (D–F) show the dynamics of the apoptotic cells (A). (G–I) illustrate the distribution of the times remaining to be spent by cells in the
proliferative (P) and apoptotic (A) compartments as seen at the end of the simulation time, t= 200 h, with (G) Q(0)= 10%, (H) Q(0)= 45%, and (I) Q(0)= 80% of the
plate carrying capacity, K.

oscillatory state and quiescent cell numbers remaining relatively
constant in time.

3.2.3. Cancer Cell Growth Dynamics Given Large
Increases in Cell-Cycle Length
We now consider increases in the average cell-cycle length, setting
carrest = 20 h. Results are shown in Figure 5.

When the initial density is low (Q(0)= 0.1K), the number of
proliferative cells given the sustained, constant mitotic arrest case
(solid green line in Figure 5A) remains essentially zero for the
entire simulation. Given the large increase in the average cell-cycle
length induced by the drug, any cells that transition from Q to P
subsequently transition to A, instead of doubling successfully at
the end of the cell cycle. However, given the switch-on/switch-off
arrest (dashed green line in Figure 5A), proliferative cell numbers
exhibit a steady oscillatory state throughout the duration of the

simulated time. The ratioQ/P oscillates around 1 as time increases
for the duration of simulation. A similar pattern can be observed
in the dynamics of the total number of cells (proliferating and
quiescent), as shown by the magenta lines in Figure 5D.

The total number of apoptotic cells (solid and dashed red lines
in Figure 5G) oscillates with time. In Figure 5J, we show the
distribution of times remaining to be spent by proliferating cells
(green lines) and apoptotic cells (red lines) at t= 200 h.

Our numerical simulations suggest that in the presence of a sus-
tained, constant mitotic arrest, the cancer cell population is nearly
driven to extinction (see solid lines in Figures 5A,D). Intriguingly,
in the presence of a long-term switch-on/switch-off arrest, it is
possible to maintain an active cancer cell population even when
startingwith a small initial plating density (Q(0)= 0.1K) and large
increase in the average cell-cycle length. The balance between the
quiescent and proliferative cell-turnover is maintained over time
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FIGURE 5 | Numerical solutions for the system (1)–(3) given large increases in the average cell-cycle length with (A,D,G,J) Q(0)= 10%, (B,E,H,K) Q(0)= 45%, and
(C,F,I,L) Q(0)= 80% of the in vitro carrying capacity, K. The cellular dynamics in each compartment given a sustained, constant mitotic arrest or a switch-on/
switch-off arrest is illustrated using solid or dashed lines, respectively. (A–F) show the dynamics of the proliferating (P), quiescent (Q), and the total number of
non-apoptotic cells (N). (G–I) show the dynamics of the apoptotic cells (A). Panels (J–L) illustrate the distribution of the times remaining to be spent by cells in the
proliferative (P) and apoptotic (A) compartments as seen at the end of the simulation time, t= 200 h, with (J) Q(0)= 10%, (K) Q(0)=45%, and (L) Q(0)= 80% of the
plate carrying capacity, K.
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(see dashed lines in Figures 5A,D). Similar results are obtained
when considering Q(0)= 0.45K, shown in Figures 5B,E,H,K.

However, when Q(0)= 0.8K, the dynamics of the proliferative
(green lines), quiescent (blue lines), and apoptotic (red lines)
cell compartments are quantitatively and qualitatively distinct
between the two antimitotic drug effects, with a clear difference
between the sustained, constant, and switch-on/switch-off mitotic
arrest (see Figures 5C,F,I,L, solid versus dashed lines for each
color representing the different cellular compartments).

Specifically, the number of proliferative cells, given the sus-
tained, constant mitotic arrest (solid green line in Figure 5C),
remains essentially zero for the entire simulation, similar to the
10 and 45% initial density cases. However, given the switch-
on/switch-offmitotic arrest (dashed green line in Figure 5C), pro-
liferative cell numbers exhibit a steady oscillatory state throughout
the duration of the simulation. The number of quiescent cells
(dashed green and blue lines, respectively) continues to steadily
decrease for both drug effects, with quiescent cells decaying at
a faster rate in the sustained, constant arrest case than in the
switch-on/switch-off one (seeFigure 5C). A similar pattern can be
observed in the dynamics of the total number of cells (proliferating
and quiescent), as represented by the solid and dashed magenta
lines in Figure 5F. The total number of apoptotic cells (solid and
dashed red lines in Figure 5I) oscillates with time.

Our numerical simulations suggest that in the presence of a
large sustained increase in the average cell-cycle length induced
by the drug, the cancer cell population is nearly driven to extinc-
tion, despite the large initial starting density (see solid lines in
Figures 5C,F). Conversely, in the presence of a long-term switch-
on/switch-off arrest, it is possible to maintain an active cancer
cell population even when starting with a large initial plating
density (Q(0)= 0.8K) and a large increase in the average cell-
cycle length. The dynamic balance between the quiescent and
proliferative cell turnover is maintained over time (see dashed
lines in Figures 5C,F). We conclude that in the presence of large
increases in the average cell-cycle length induced by the drug,
a sustained, constant mitotic arrest drives both the proliferating
and quiescent cell numbers to extinction. A switch-on/switch-
off arrest maintains an active cell population in the long-term,
with proliferative and quiescent cell numbers exhibiting a steady
oscillatory state in time.

4. DISCUSSION

The dynamics of cellular response to antimitotic drug exposure
has only recently begun to be investigated in vitro using time-lapse
microscopy on single cells in culture (18, 29, 30, 32–38, 56, 58,
64, 65). Several studies have demonstrated that antimitotic drugs
characteristically induce a period of prolongedmitotic arrest (that
can last for as long as 72 hours or more) followed predominantly
by cell death via apoptosis (32). As such, mitotic arrest constitutes
the first cellular response to antimitotic drug exposure, but the
mechanisms behind the drug-induced prolonged mitotic arrest
and subsequent cancer cell death remain, however, unclear (30–
33, 35–37, 64, 65, 69).

To investigate this issue, multiple antimitotic drugs and dif-
ferent drug concentrations have been used in cancer cell studies.

Accordingly, multiple in vitro single-cell live imaging studies have
demonstrated that cancer cells display widely varying responses
to antimitotic drugs given different exposure times and drug con-
centrations (30–33, 35–37, 56, 64, 65, 69). These findings provided
strong evidence that the duration of the mitotic arrest is not iden-
tical for all cells, both across and within distinct cancer cell lines,
in the presence of various antimitotic drugs such as nocodazole,
kinesin-5 (Eg5) inhibitors, monastrol, or taxol (29–32, 35, 36).

Even within identical types of cell cultures or drugs used, cells
exhibit a considerable degree of heterogeneity in response to pro-
longed antimitotic drug exposure. For example, cells may either
exit mitosis and remain in interphase for an indefinite period of
time, undergo programmed cell death (i.e., apoptosis) after exiting
mitosis or interphase, or proceed through mitosis via multipolar
spindle formation (29, 31–33, 35–37, 69). In the case of multipolar
spindle formation, cells divide into daughter cells by segregating
their chromosomes in more than two different directions, dying
during the second mitosis, or remaining in interphase for the
duration of the experiments (33, 69, 70).

Motivated by these experimental findings, we introduce a novel
mathematical modeling framework of cancer cell dynamics given
drug exposure that incorporates an intrinsic form of heterogene-
ity in response to prolonged antimitotic drug exposure via the
duration of times cells spend in the cell cycle and apoptosis
process. The system (1)–(3) is an age-structured, physiologically
motivated modeling framework for describing in vitro cancer cell
growth dynamics given a drug that induces mitotic arrest, thus
extending the average cell-cycle length. To reflect the intrinsic cell
heterogeneity, cells in the proliferative and in the apoptotic com-
partment are structured by the amount of time they spend in each
phase. Herein, we considered a drug that extends the average cell-
cycle length and studied its impact on the long-term cancer cell
growth dynamics and response to antimitotic drug exposure using
two distinct antimitotic drug effects, i.e., a sustained, constant
mitotic arrest and a switch-on/switch-off arrest and three different
levels of increase in the average cell-cycle lengths.

Our numerical simulations suggest that at confluence and in
the absence of any drug, quiescence is the long-term asymptotic
behavior emerging from the cancer cell growth dynamics. Upon
drug addition, the cancer cell dynamics significantly changes.
Specifically, the prolonged mitotic arrest induced by the antim-
itotic drug results in a strong growth-inhibitory activity in vitro
in a time-dependent manner. In the presence of small increases
in the average cell-cycle length, quiescence emerges as the long-
term asymptotic behavior resulting from the cancer cell growth
dynamics. Our numerical simulations suggest that quiescence can
emerge relatively quickly and can thus constitute an intrinsic
resistance mechanism to antimitotic drug exposure. The small
increases in the average cell-cycle length result in a period of
slowing down of the cell cycle from which cancer cells can recover
and continue proliferating until reaching confluence. From a ther-
apeutic point of view, the presence of quiescent cancer cells has
serious implications for chemotherapy regimens, which rely on
active cell cycling to target and kill proliferating cells. The long-
term maintenance of a quiescent cancer cell population acts as a
reservoir for proliferating cells and can ultimately lead to cancer
recurrence and shorter disease-free survival periods (7–9, 71, 72).
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However, in the presence of intermediate increases in the aver-
age cell-cycle length, a sustained, constant mitotic arrest markedly
decreases the total number of cancer cells present and can drive
the cell population to extinction. A switch-on/switch-off arrest
maintains an active cell population in the long term, with pro-
liferative cell numbers exhibiting a steady oscillatory state and
quiescent cell numbers remaining relatively constant in time. The
transient behavior in the cancer cell growth dynamics signals the
emergence and maintenance of a steady quiescent cell population,
which in turn represents a form of intrinsic, non-genetic resis-
tance that results from variations in cell-cycle parameters (73, 74).
This can potentially decrease the efficacy of therapies that rely
on active cell cycling for their killing effects, such as traditional
chemotherapies (75–77). Moreover, given large increases in the
average cell-cycle length induced by antimitotics, cells do not
resume proliferation and are driven to extinction by a sustained,
constant mitotic arrest. Intriguingly, a switch-on/switch-off arrest
may maintain an active cancer cell population in the long term.
This suggests that unless exposed to saturating drug concentra-
tions for prolonged periods of time, cancer cells may not experi-
ence a mitotic arrest for long enough in order to trigger apoptosis,
which may have therapeutic implications as clinical responses
depend on apoptosis rates and not exclusively on mitotic arrest
(18, 69).

Additionally, the fate of cells following drug treatment also
depends on the cell type. For instance, cell lines sensitive tomitotic
cell death tend to reach the MOMP threshold before cyclin B1
levels reach the threshold required for cells to slip out of mitosis
(29, 32, 33, 35, 37, 69). Conversely, cell lines resistant to mitotic

cell death tend to have a faster rate of cyclin B1 degradation
and/or slow rate of intrinsic cell death activation (34, 36, 38,
58). These molecular-based variations in sensitivity to apoptosis
and mitotic arrest are likely to substantially contribute to the
observed heterogeneity in cell responses and potentially represent
the crucial factor in determining cell fate in response to antimitotic
drug exposure.
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