
pharmaceutics

Review

Nanoconjugation and Encapsulation Strategies for
Improving Drug Delivery and Therapeutic Efficacy of
Poorly Water-Soluble Drugs

Thao T. D. Tran 1,2 and Phuong H. L. Tran 3,*
1 Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi

Minh City, Vietnam; trantruongdinhthao@tdt.edu.vn
2 Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3 School of Medicine, Deakin University, Geelong 3216, Australia
* Correspondence: phuong.tran1@deakin.edu.au; Tel.: +61352273255

Received: 7 March 2019; Accepted: 10 May 2019; Published: 10 July 2019
����������
�������

Abstract: Nanoconjugations have been demonstrated to be a dominant strategy for drug delivery and
biomedical applications. In this review, we intend to describe several strategies for drug formulation,
especially to improve the bioavailability of poorly water-soluble molecules for future application in
the therapy of numerous diseases. The context of current studies will give readers an overview of the
conjugation strategies for fabricating nanoparticles, which have expanded from conjugated materials
to the surface conjugation of nanovehicles. Moreover, nanoconjugates for theranostics are also
discussed and highlighted. Overall, these state-of-the-art conjugation methods and these techniques
and applications for nanoparticulate systems of poorly water-soluble drugs will inspire scientists to
explore and discover more productive techniques and methodologies for drug development.

Keywords: nanoconjugate; nanotechnology; poorly water-soluble drugs; theranostic; drug delivery;
biomedical applications

1. Introduction

New drugs have been studied and developed rapidly worldwide. Unfortunately, these drugs
may be limited in their clinical applications due to their poor solubility, adverse effects, or even
toxicity. Over 70% of drugs on the current market, as well as recently discovered drugs, have been
reported to be poorly water soluble [1–5]. These drugs require extensive research to improve their
bioavailability due to low absorption or non-targeted delivery. Therefore, a number of strategies, such
as solid dispersions, emulsions, prodrugs, and nanoparticles, have been investigated to improve the
therapeutic index of poorly water-soluble drugs [6–11]. Nanotechnology applications in medicine have
grown enormously, attracting researchers worldwide. Because of their small size and high surface area,
nanosized drug particles have achieved encouraging outcomes in terms of improved drug solubility
and bioavailability [12]. In addition, available surface modifications using nanotechnology can be
applied in nano drug delivery systems for targeting drugs to specific sites, such as cancer tumours, for
the development of targeted therapeutics and diagnostics [13].

Although the use of hydrophilic polymers in solid dispersion, that is, the dispersion of a drug
molecule in a carrier, has been established for improving drug dissolution and solubility since
1960 [14–20], hydrophilic–hydrophobic polymer nanoconjugates and hydrophobic drug-hydrophilic
polymer nanoconjugates have been studied for loading drugs into nanoparticles for the same purposes
in the past few decades of nanotechnological development [21–23]. The conjugation can commonly
induce the formation of self-assembled polymeric amphiphiles, i.e., the exposure of this structure to
aqueous environments results in self-assembled nanoparticles with hydrophobic segments in the inner
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core and hydrophilic segments towards the aqueous environment [9,24,25]. Consequently, the size of
poorly water-soluble drugs is reduced to nanosize, leading to enhanced dissolution. Crystalline drug
structure and drug-polymer interactions will be noted in addition to certain recent studies, as these
factors may facilitate drug dissolution to improve bioavailability. With regard to theranostics systems
for poorly water-soluble drugs, numerous nanoconjugate studies have been performed in cancer
research [26,27]. In addition to the preferential accumulation of drug nanosized particles in tumours
due to the leaky and porous structure of the tumoural blood vessels, nanoparticles may prolong the
half-life of the drug in the blood circulation and specifically target a tumour by their surface decorations.
However, conventional conjugations between hydrophilic molecules and hydrophobic molecules often
encounter limitations such as low drug solubility, low drug loading, single drug delivery, large particle
size, and short half-life, which may lead to unpredictable treatment efficacy. This review summarizes
the current conjugation strategies for nanoparticulate formulations, suggesting efficient solutions
to overcome these limitations and introducing specific applications of poorly water-soluble drugs
(Figure 1).
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2. General Hydrophobic-Hydrophilic Nanoconjugates for Poorly Water-Soluble Drug Delivery

Since the first reported study in 1984 introducing the formation of nanosized polymeric
self-assemblies with potential as hydrophobic drug solubilizers [28], amphiphilic polymers have
attracted the attention of researchers, especially for studies of nanomedicine in anticancer therapy [29,30].
Typically, conjugation strategies based on multiple interactions such as hydrogen bonding, host–guest
interaction, hydrophobic interaction, and electrostatic interaction [31] have been proposed for the
attachment of hydrophilic and hydrophobic segments to create an amphiphilic polymer, which
is then commonly self-assembled into nanoparticles in an aqueous environment by molecular
associations between hydrophobic segments (Figure 2) [32–34]. In other words, a hydrophobic
segment can significantly affect the formation, drug encapsulation, drug interactions, and stability
of nanoconjugates [35]. A poorly water-soluble drug can be loaded into hydrophobic moieties to
improve its solubility, increase circulation time, target the tumour environment, and/or prevent
drug degradation. In this review, we do not include the general information previously reported
in recent prominent review articles on self-assembled nanoparticles such as polymer types, spacers,
concentrations, and self-assembly mechanisms [36–45]. Instead, we focus only on the latest strategies,
particularly on how the sophisticated conjugate is modified to improve the capacity of conventional
hydrophilic–hydrophobic nanoconjugates to deliver poorly water-soluble drugs.
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3. Modified Hydrophobic-Hydrophilic Nanoconjugates for the Delivery of Poorly
Water-Soluble Drugs

The extensive biomedical applications of nanoparticles arise from their small particle size. Their
size enables nanoparticles to accumulate preferentially in tumour sites since tumour blood vessels are
generally more heterogeneous in distribution, larger, and more permeable than normal blood vessels.
The increased vascular permeability coupled with the impaired lymphatic drainage in rapidly growing
tumours allows an enhanced permeability and retention (EPR) effect of the nanoparticles in the tumour.
Thus, nanoparticles have been designed and engineered to have sizes and structures that are pertinent
to biomedical applications such as targeted drug delivery, biomedical imaging, hyperthermia, and
biosensing. However, the small size of nanoparticles might have incidental disadvantages in the
context of unexpected drug solubility, particularly drug loading. Therefore, a failure of high drug
loading or the achievement of enhanced drug solubility may significantly affect the therapeutic index
or toxicity. A summary of works performed to improve those problems using nanoconjuagtes of poorly
water-soluble drugs is presented in Table 1.
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Table 1. Examples of studies on nanoconjuagtes of poorly water-soluble drugs for therapeutics.

Poorly Water-Soluble
Drugs Approaches Key Results References

SN38 (the active
metabolite of

camptothecin) Multi-arm

Enhanced drug solubility.
Significant preclinical

therapeutic improvement
and a longer half-life of the

drug.

[46,47]

Ursolic acid and
10-hydroxycamptothecin

Effective cellular uptake.
Higher survival rate of
tumour-bearing mice.

[48]

Docetaxel Redox/enzyme responsive

Triggering dual-responsive
drug release.

Facilitating drug release by
an on/off switch in the
desired environment.

[49,50]

Doxorubicin Multiple targeting Synergistic targeting effect. [51]

Paclitaxel
Doxorubicin
Cytarabine

Poorly water-soluble drugs
as hydrophobic segments in

the core-shell structure
High drug loading. [52–54]

Fucoidan
Paclitaxel
Curcumin

The combination use of a
hydrophilic therapeutic

agent
Dual functions. [55,56]

Docetaxel
Hydrophobic

drug-spacer-hydrophilic
drug conjugates

Co-delivery of anticancer
drugs. [57]

Chlorambucil
Hydrophobic

drug-hydrophilic drug
conjugates

Excellent anticancer activity. [58]

Isradipine
Prednisolone Solid dispersion Improve drug

bioavailability. [59,60]

3.1. Multi-Arm Nanoconjugates for Poorly Water-Soluble Drug Delivery

Multi-arm nanoconjugates have recently been investigated to overcome these limitations [61–64].
For example, in a study of Sapra’s group on developing SN38 (the active metabolite of camptothecin),
multi-arm polyethylene glycol was designed to conjugate to the model drug to enhance solubility [46,47].
This proposed delivery system has been demonstrated to confer significant preclinical therapeutic
improvement and a longer half-life. More recently, natural pectin was decorated on polyethylene glycol
with eight arms, which self-assembled into nanoparticles that were capable of improving drug solubility
and controlling drug release [48]. This study showed that the optimal particle size (approximately
90 nm) could deliver two insoluble anticancer drugs, ursolic acid and hydrooxycampothecin, with
efficient cellular uptake and cell cytotoxicity [48]. The in vivo test also indicated a higher survival
rate in tumour-bearing mice administered the nanoparticles than in those administered the free
drugs [48]. The presence of multiple arms on the conjugate structure was hence proposed as a strategy
to achieve improved drug encapsulation efficiency, increased drug solubility, and suitable particle
size for enhancing drug bioavailability. However, large numbers of conjugate arms may result in
large aggregates due to the increased size and complexity of the structure. Therefore, the formulation
approach of these multi-arm nanoconjugates should be designed appropriately.

3.2. Redox/Enzyme Responsive Nanoconjugates

To modulate drug release in the tumour microenvironment, redox/enzyme responsive linkage can
be inserted into the hydrophobic–hydrophilic conjugate structure. An example of this type of conjugate
is the disulfide linkage for redox-responsive drug delivery, which is cleaved by a high intracellular
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glutathione concentration [65–67]. Specifically, in the work of Liu et al. [49], cystamine was conjugated
between deoxycholic acid (the hydrophobic segment) and chondroitin sulfate (the hydrophilic portion)
for the delivery of docetaxel to treat melanoma. This system was designed as a dual-responsive
drug release trigger because chondroitin sulfate was degraded by hyaluronidase-1 in addition to
the redox-sensitive cystamine (with disulfide linkage) [49]. Generally, the use of responsive parts in
nanoconjugates represents a promising drug delivery strategy with the advantage of facilitating drug
release by an on/off switch in the desired environment [49,50]. Nevertheless, a surplus of the responsive
part may affect the hydrophobic–hydrophilic balance, which must be optimized for nanoparticle
self-assembly and maximum stability [68].

3.3. Protonation for Hydrophobic-Hydrophilic Balance

In addition to hydrophobic–hydrophilic parity, other factors, such as electrostatic and van der
Waals interactions, play crucial roles in promoting the formation of self-assembled nanoparticles.
For instance, excessive protonation or deprotonation within individual nanoconjugates results in
electrostatic repulsion and weakened attractive forces. Dey et al. demonstrated the role of proton
balance in the structure of chitosan for self-assembled nanoparticles [69]. Their study indicated that the
partial protonation and partial deprotonation of chitosan could aid the self-assembly of nanoparticles
for various applications ranging from wound-healing to gene delivery [69].

3.4. Hydrophobic or Hydrophilic Segments as Multiple Targeting and Delivery Functions

Simple hydrophobic–hydrophilic nanoconjugates commonly have limited ability to target tumour
sites. Moreover, successful cancer treatment is determined by the ability of the therapeutic to eradicate
the tumour while affecting as few healthy cells as possible. Therefore, the nanoconjugates can be
actively targeted to tumours for receptor-mediated uptake by specifically recognizing and binding
target tissues or cells via a surface-attached specific ligand, such as a “vector” molecule [70–73].
Interestingly, the hydrophobic core of conjugate-forming nanoparticles can also be used for synergistic
targeting effects (in addition to the common functions of hydrophobic segments in self-assembly and
the loading of poorly water-soluble drugs) to simplify the multi-step fabrication of the self-assembled
nanoparticles [51]. For example, glycyrrhetinic acid, which is a hydrophobic targeting ligand for
hepatocytes, was successfully conjugated with hyaluronic acid (as a targeting ligand on the surface
of the nanoparticles) to deliver doxorubicin [51,74–76]. This study also noted that a conjugate’s
biological function may be affected by the binding site and should be considered in polymer conjugate
designs [51].

In addition to the conjugation between hydrophobic and hydrophilic segments, self-assembled
nanoparticle preparation strategies may use poorly water-soluble drugs as hydrophobic segments
in the core-shell structure. This approach can lead to highly stable nanoparticles and high drug
loading. For example, Taxol has been proposed to conjugate to a cell-penetrating peptide to yield a
high drug loading of 26.4% [52]. This supramolecular nanosphere formation (~130 nm) could also
be used as a carrier to deliver doxorubicin. Liu et al. [53] found that cytarabine could be loaded up
to 63% into stable self-assembled spherical nanoparticles using this strategy. Currently, the highest
loading efficiency is 89.5%, found in a study of a paclitaxel and succinic acid conjugate forming
self-assembled nanofibres [54]. In another study, in addition to enhancing oral bioavailability, capsaicin
was successfully synthesized and formed self-assembled nanoparticles to reduce mucosa irritation [77].

A hydrophilic therapeutic agent was also used as a carrier, leading to the discovery of its dual
functions in nanoconjugates. An example of such a dual-function material is fucoidan, which possesses
the properties of a hydrophilic carrier and has also been demonstrated to be a potential anticancer
agent [78–83]. Fucoidan was conjugated to oleic acid for the loading of paclitaxel and curcumin to
maximize efficacy [55]. While the fucoidan and paclitaxel conjugate showed a preference for being
released in a physiological environment, the fucoidan and curcumin conjugate showed improved drug
release in a tumour environment [55]. For further theranostic development, fucoidan and oleic acid
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were functionalized on iron oxide nanoparticles [56]. This research showed that fucoidan may stabilize
iron oxide nanoparticles as well as deliver poorly water-soluble drugs [56].

3.5. Co-Delivery of Anticancer Drugs using Nanoconjugates

Combination therapy of anticancer drugs has shown potential in therapy due to
multiple-mechanism actions, especially for resistant tumours, enabling the reduction of individual
dosages and resulting in a synergistic effect and reduced toxicity [57,84,85]. Typically, one hydrophobic
drug and one hydrophilic drug are combined and formulated with a hydrophilic carrier (also known as
a spacer) for hydrophilic–hydrophobic balance in the structure (Figure 3). For example, docetaxel and
gemcitabine were conjugated to polyethylene glycol, demonstrating that their therapeutic efficacy was
significantly higher than that of individual drugs [57]. Similarly, Jain et al. bioconjugated gemcitabine
and curcumin, likewise demonstrating that the conjugate is more effective than physically combined
two drugs or a single drug [84]. Furthermore, Nam et al. [86] developed and compared fucoidan
conjugated to curcumin and paclitaxel via an ester linkage. This system showed the dual delivery
of two anticancer drugs, hydrophilic (fucoidan) and hydrophobic (curcumin, or paclitaxel) [86]. The
curcumin–fucoidan conjugate released more drug in the acidic environment than the conjugate of
paclitaxel and fucoidan [86].Pharmaceutics 2019, 11, x FOR PEER REVIEW 6 of 14 
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Although the strategy of using a spacer to link hydrophobic drugs and hydrophilic drugs
yielded impressive therapeutic outcomes, spacer properties such as length, type, and linkage site
greatly influence in vitro and in vivo efficacy, which must be taken into account during synthesis [87].
Therefore, direct drug–drug conjugation via a biodegradable bond has been discussed, and researchers
have developed self-assembled nanoparticles without using carriers. In such a case, one hydrophobic
drug and one hydrophilic drug could self-assemble, combining their own hydrophilic and hydrophobic
segments, and form nanostructures with high drug loading, high reproducibility and the potential to
improve poor drug solubility [88]. This strategy was used by Huang et al., who conjugated irinotecan
(hydrophilic) to chlorambucil (hydrophobic) to achieve excellent anticancer activity [58]. A floxuridine
and bendamustine conjugate was also found to overcome multidrug resistance using this strategy [89].

3.6. Core Crosslinked Self-Assembled Nanoparticles

In an effort to control drug release, a core modification in self-assembled nanoparticles could
be considered in addition to stimuli-responsive surface modifications, which have been widely
reported [90,91]. The crosslinking degree was reported to have a strong effect on drug release in acidic
environments [92]. Specifically, the core was crosslinked between furan rings and a crosslinker,
resulting in a 10% or 20% degree of crosslinking to remain stable at high pH [92] (Figure 4).
The core-crosslinked hyaluronic acid micelle demonstrated a high loading efficiency of a poorly
water-soluble drug (>80%) [93]. The combination of lutetium-177-labelled core-crosslinked polymeric
micelles and nanoparticles of cyclopamine synergistically delayed tumour growth in chemoradiation
therapy [94]. In another recent study, docetaxel-loaded reduction-responsive core-crosslinked
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hyaluronic acid-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate) micelles showed
four-fold stronger tumour accumulation compared to free docetaxel [95].
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3.7. Nanoconjugate-Based Solid Dispersion

Solid dispersion is a technique in which poorly water-soluble drugs are dispersed in hydrophilic
carriers [20,96,97]. Although hydrophilic carriers can prevent drug recrystallization, drug crystals
cannot always be transformed into amorphous forms due to the drug’s structure or polymer type. Ngo
et al. suggested using hydrophilic–hydrophobic blends to overcome this limitation [98]. Furthermore,
Dinh et al. developed a hydrophilic–hydrophobic conjugate using a carrier in solid dispersion to
improve drug bioavailability [59] (Figure 5). This conjugate was demonstrated to be a potential carrier
because it can induce a molecular interaction, reducing drug particles and changing drug crystals in
solid dispersion [59,60].
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Figure 5. Illustration of the use of a hydrophilic–hydrophobic conjugate as a carrier in solid
dispersion [59]. The drug molecules (orange dots) are dispersed between hydrophilic parts (blue
strings) and hydrophobic parts (green dots).

4. Nanotheranostic Conjugates

Amphiphilic nanoconjugates have been investigated for concomitant therapy and diagnostics to
take full advantages of nanoconjugates as single nanomaterials [99,100]. Generally, the imaging agent
is incorporated into the hydrophobic core or on the hydrophobic segment for image monitoring. This
incorporation would be a simple encapsulation in a conjugate or in complex chemical reactions with a
conjugate. Some examples of recent strategies using amphiphilic nanoconjugates as multifunctional
nanoparticles are as follows (Table 2):

Gadolinium is known for its efficient loading in amphiphiles to combine drug release with
enhanced magnetic resonance signals [101]. In a study on an enzyme-sensitive biodegradable conjugate
for treating breast cancer with paclitaxel, gadolinium was chelated to the conjugate by reacting it
with GdCl3·6H2O in the dark for 24 h [102]. The in vivo magnetic resonance imaging in this study
showed significant contrast enhancement and prolonged accumulation in a tumour [102]. In addition,
a fluorescence study demonstrated the efficient accumulation of a cyanine 5.5-labelled nanoconjugate
in a tumour [102].

In another study, the fluorochrome Rhodamine 6G was bonded to an amphiphile via reversible
addition-fragmentation chain transfer (RAFT) polymerization for tumour fluorescence imaging
detection [103,104]. Interestingly, the fluorescence intensity of Rhodamine 6G is pH dependent. As the
nanoconjugates accumulated in the tumour’s acidic environment, the fluorescence intensity increased
to enable cancer cell detection [103,104].
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Chlorin e6 has been reported as an NIR fluorescence imaging dye and can be used in photodynamic
therapy in biomedical applications [105–108]. Recently, the coupling of chlorin e6 was to hyaluronic
acid via adipic dihydrazide was proposed for dual-modal imaging and phototherapy [109]. This study
indicated that a chlorin e6-labelled nanoconjugate enhanced fluorescence and photoacoustic imaging
by releasing chlorin e6 in a tumour [109]. Moreover, the accumulation of the nanoconjugate containing
chlorin e6 demonstrated effective photodynamic therapy [91,109].

Table 2. Example of studies on nanotheranostic conjugates of poorly water-soluble drugs.

Poorly Water-Soluble Drugs Imaging Agent Key Results References

Paclitaxel Gadolinium
Significant contrast enhancement.

Prolonged accumulation in a
tumour.

[102]

Doxorubicin Rhodamine 6G Increased fluorescence intensity
for cancer cell detection. [103,104]

Doxorubicin Chlorin e6
Enhanced fluorescence and

photoacoustic imaging.
Effective photodynamic therapy.

[91,109]

5. Future Prospects of Nanoconjugation for Poorly Water-Soluble Drugs

Harnessing the potential of nanoconjugation for poorly water-soluble drugs would be an effective
approach to overcome barriers to the clinical translation of these drugs. However, despite extensive
studies on the development of novel nanoconjugate systems with determined structures, the challenges
of how to maximize targeting activity and therapeutic efficacy and minimize unwanted side effects
remain. Burst drug release, incomplete drug dissolution, drug loading efficiency, and drug resistance all
present difficult tasks that must be addressed and solved during the manufacture of these synthesized
materials. Additional ongoing challenges include obtaining homogenous structures, achieving
reproducible batch-to-batch synthesis, particularly of complex nanoconjugates, decreasing the time
consumption of the synthesis, and scaling up product quality control. Nevertheless, a smart design
of nanoconjugates in the first stage of a study, including the selection of materials, a rational design
approach, formulations, a synthesis approach and efficient characterization techniques, would drive
experimental studies to successful outcomes for translational applications.

6. Conclusions

A wide range of nanoconjugates has been developed to improve the bioavailability of poorly
water-soluble drugs. Significant efforts in recent studies have demonstrated improved effects of
nanoconjugates on drug solubility, particle size, and drug co-delivery, and delivery. Specifically,
the strategy of direct conjugation between hydrophilic and hydrophobic drugs could facilitate the
generation of nanoconjugates without the use of carriers, resulting in the advantages of high drug
loading and limited batch variation. Further investigations of these efficient drug delivery systems
should focus on clinical translations. Furthermore, optimization and scale-up procedures should also
be attempted and addressed.
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