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ABSTRACT Invasive alien species often have reduced genetic diversity and must
adapt to new environments. Given the success of many invasions, this is sometimes
called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to
asexual reproduction within four lineages, and presumed clonal. It is responsible for
sudden oak death in the United States, sudden larch death in Europe, and ramorum
blight in North America and Europe. We sequenced the genomes of 107 isolates to
determine how this pathogen can overcome the invasion paradox. Mitotic recombi-
nation (MR) associated with transposons and low gene density has generated runs
of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity
within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An
independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR
hot spot and a selection target. Differences in host infection between EU1 isolates
with and without the ROH suggest that they may differ in aggressiveness. Non-core
regions (not shared by all lineages) had signatures of accelerated evolution and
were enriched in putative pathogenicity genes and transposons. There was a striking
pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive
selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes com-
pared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum
lineages are diverging via a rapidly evolving non-core genome and that the invasive
asexual lineages are not clonal, but display genotypic diversity caused by MR.

IMPORTANCE Alien species are often successful invaders in new environments, de-
spite the introduction of a few isolates with a reduced genetic pool. This is called
the genetic paradox of invasion. We found two mechanisms by which the invasive
forest pathogen causing sudden oak and sudden larch death can evolve. Extensive
mitotic recombination producing runs of homozygosity generates genotypic diver-
sity even in the absence of sexual reproduction, and rapid turnover of genes in the
non-core, or nonessential portion of genome not shared by all isolates, allows
pathogenicity genes to evolve rapidly or be eliminated while retaining essential
genes. Mitotic recombination events occur in genomic hot spots, resulting in similar
ROH patterns in different isolates or groups; one ROH, independently generated in
two different groups, was enriched in pathogenicity genes and may be a target for
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selection. This provides important insights into the evolution of invasive alien patho-
gens and their potential for adaptation and future persistence.

KEYWORDS forest health, genome evolution, oomycetes, sudden larch death,
sudden oak death, tree pathogen, clonality, mitotic recombination

Invasive alien tree pathogens are increasingly responsible for devastating forest
disease epidemics. Successful pathogens can spread thousands of kilometers within

a few decades, attacking naive hosts under new environmental conditions, causing
ecosystem-wide change (1). However, there is a genetic paradox to many invasions:
pathogen populations often undergo genetic bottlenecks as a result of founder
events (2, 3), frequently accompanied by the elimination of sexual reproduction due
to the absence of one mating type, resulting in the proliferation of asexual clones
(4, 5). The ability to reproduce sexually is considered an important life trait that can
impact a pathogen’s ability to overcome host resistance (6), adapt to new environ-
ments (7), and contribute to invasiveness (8). Sexual reproduction can generate
genotypic diversity, produce novel gene combinations, rapidly disperse beneficial
mutations, and purge deleterious ones (9, 10). In diploid species, it can speed up the
rate of adaptation by generating the fittest homozygous genotypes among
heterozygous isolates (11).

Cryptic diversity, or genotypic diversity in asexual populations, can increase the
potential for adaptation. Mitotic recombination (MR) is one mechanism that can
generate genotypic diversity, uncover beneficial mutations, and increase the potential
for, and rate of, adaptation. In an asexually reproducing diploid, two rare mutational
events must occur before a beneficial mutation can become fixed: one producing a
heterozygous carrier and the second, at the same locus, converting the heterozygote to
a homozygote (12). MR can accelerate this process (12). Another mechanism that could
increase adaptive potential is a rapidly evolving non-core genome (13, 14). In some
plant pathogens, effector genes that manipulate host processes are associated with
gene-sparse regions enriched in repetitive sequences and transposable elements (TEs),
which could facilitate rapid adaptation (13, 15–17).

The oomycete genus Phytophthora comprises some of the most destructive patho-
gens affecting crops and forests. Phytophthora ramorum Werres, De Cock & Man in ’t
Veld is an invasive pathogen with a remarkably broad host range responsible for the
current sudden oak death epidemic in the western United States, the sudden larch
death epidemic in the United Kingdom, and ramorum blight of trees and ornamental
shrubs (18–20). Four divergent clonal lineages have spread in the United States, Europe,
and Canada (21–25). NA1 is responsible for sudden oak death in the United States, NA1,
NA2, and EU1 are responsible for ramorum blight in the United States and Canada, and
EU1 and EU2 are responsible for sudden larch death and blight in Europe. These
lineages appear reproductively isolated, and each comprises a single mating type;
however, there is evidence for sexual reproduction in the ancestral source population
(26–31). The lineages differ in morphology and aggressiveness and, despite their
presumed clonality, exhibit considerable intralineage phenotypic variation (27, 30),
raising questions about their adaptive potential.

To investigate genome evolution and the potential for adaptation in P. ramorum, we
sequenced the genomes of 107 P. ramorum isolates in all lineages from a broad range
of hosts and geographic origins. Although P. ramorum has only been found to repro-
duce asexually in its current known range, we uncovered a surprising level of cryptic
diversity in these populations. We found evidence for MR generating extensive geno-
typic diversity within the lineages, generating runs of homozygosity (ROH) and fixing
nonsynonymous changes in numerous genes. At the interlineage level, divergence is
driven by a rapidly evolving non-core genome enriched in transposable elements and
genes associated with host-pathogen interactions.
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RESULTS
Genome-wide diversity in P. ramorum asexual lineages. The lineages of P.

ramorum clustered into four distinct clades in a neighbor-joining (NJ) tree (Fig. 1A)
using 485,327 biallelic single nucleotide polymorphisms (SNPs). We estimate these
lineages diverged 0.75 million years ago (MYA) for the split between EU1 and NA1 and
1.3 MYA for the split between EU2 and the other lineages (Text S1, “Divergence time
between lineages”). We observed a high level of genotypic diversity within lineages,
with some isolates diverging markedly from the main groups (Fig. 1A). The observed
diversity resulted from extensive runs of homozygosity (ROH, also known as loss of
heterozygosity [LOH] or copy-neutral LOH [cnLOH]), and to a lesser extent, plasticity in
chromosome numbers (i.e., chromosomal copy number variants [CCNVs]) or aneu-
ploidy. The most divergent isolates were characterized by ROH covering large portions
of or entire scaffolds, ranging in size from 60 to 339 kb, which translated to 1 to 9% of
the genome (see Table S1 in the supplemental material). ROH was found in all lineages,
and in three lineages, ROH was shared either by the whole lineage or several clones.
Eight EU1 isolates, all from the United Kingdom, had the same ROH, suggesting the
emergence of a single genotype and subsequent spread (Text S1, “Detection of ROH
and effects on genotype”). Four isolates exhibited CCNV, one of which also had ROH
(see Fig. S1 and Text S1, “Genome-level copy number variation,” in the supplemental
material). When phylogenetic analysis was performed on scaffolds not affected by these
characteristics, only minor diversification was evident (Fig. 1B).

Mitotic recombination is responsible for ROH. The SNP patterns, including fixed
heterozygosity, the lack of polymorphic SNPs between isolates, and the negative within

FIG 1 Evolutionary relationships in Phytophthora ramorum. (A) Neighbor-joining tree constructed from Euclidean distances between isolates using 485,327
biallelic SNPs, including SNPs from run of homozygosity (ROH) regions. Isolates displaying ROH are indicated with red squares, and those having chromosomal
copy number variants (CCNV) are indicated with green squares. (B) Neighbor-joining tree constructed from Euclidean distances between isolates using 275,307
biallelic SNPs, excluding SNPs from regions with ROH.
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lineage inbreeding coefficient FIS throughout the genomes, are not consistent with
those expected from sexual recombination and provide strong evidence of asexual
reproduction within lineages (Fig. 2A, C, and D). We observed a limited number of
chromosomal breakpoints along the genomes within lineages (Fig. 2A). These were
predominantly confined to one or a few regions in a few isolates, resulting in ROH
patterns in which all sites after the breakpoint were converted to homozygosity for
either the reference or alternate allele relative to the reference genome (e.g., scaffold
4 in NA1 isolate Pram_PR_11_011 and scaffold 6 in NA1 isolate Pram_PR_420 in Fig. 2A
and EU1 isolates 03_0002, PR_99_002, and P1856 in Fig. 2C). This pattern is consistent
with MR caused by mitotic crossing over. In contrast, interlineage patterns suggest
ancient sexual recombination. Alignments of isolates from different lineages reveal a

FIG 2 Intralineage versus interlineage SNP patterns in Phytophthora ramorum. Shown is a representation of SNPs mapped on the NA1 JGI P. ramorum genome:
heterozygous (yellow) and homozygous sites correspond to the reference (red) or alternate (blue) allele. (A) Intralineage diversity in NA1 (scaffolds 1 to 10). Track
1, triangle pairs with the same color indicate blocks delimited by two chromosomal breakpoints; tracks 2 to 5, NA1 isolates Pram_PR_11_011, Pram_PR_06_016,
Pram_PR_420, and Pram_PR_09_065; track 6, subtracks show negative (red) and positive (blue) FIS. (B) Interlineage diversity (scaffolds 1 to 10). Tracks 1 and 6,
same as in panel A; tracks 2 to 5, isolates Pram_P2586 (EU2), Pram_04_38813 (NA2), Pram_P1559 (EU1), and Pram_PR_06_016 (NA1). (C) Portions of two scaffolds
with ROH. All homozygous SNPs were converted to homozygous reference for Pram_03_0002_EU1 and changed to an alternate or reference relative to
Pram_03_0002_EU1 for the other isolates. Four EU1 isolates without ROH representing all other EU1 isolates sequenced in this study are shown for comparison
as well as an isolate from each of the other lineages. In scaffold 58, the ROH was present in three isolates, two with the same haplotype (Pram_03_0002_EU1
and Pram_P1856_EU1) and the third with the opposite haplotype (Pram_PR_99_002_EU1). In scaffold 83, only one isolate (Pram_03_0002_EU1) has the ROH.
(D) Comparison of fixed and polymorphic homozygous and heterozygous SNPs in the isolates in panel C, with intralineage comparison on the left and
interlineage comparison on the right.
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high number of breakpoints, likely the result of ancient meiotic recombination, result-
ing in multiple short homozygous fragments scattered throughout the genomes
(Fig. 2B). The numbers of polymorphic homozygous and heterozygous SNPs between
isolates from the different lineages are also higher, and no large genome regions with
fixed heterozygosity among isolates were observed (Fig. 2C and D). Furthermore,
interlineage FIS was near equilibrium (Fig. 2B).

Protein-coding content differences within P. ramorum lineages. The ROHs ob-
served could result in altered protein-coding content if isolates with ROH lose one of
two alleles with amino acid differences. We observed this pattern in 52% of the 5,172
genes located within scaffolds with ROHs (Table 1 and Text S1, “Detection of ROH and
effects on genotype”). In 21% of those genes, there were five or more amino acid
differences in isolates without ROH compared to those with ROH, and in one gene, 35
changes were observed (Table 1). Such differences have the potential to generate
substantial phenotypic changes.

ROH can uncover beneficial mutations and be subject to selection. Scaffold 7
had the longest ROH, covering approximately 650 kb, which was shared by all 38 NA1
isolates (large stretch of red homozygous loci in Fig. 2A and shown in white in Fig. 3C).
Interestingly, 8 (out of 46) EU1 isolates also have an ROH on scaffold 7, but this appears
to be an independent MR event, suggesting an MR hot spot (Fig. 3). Protein-coding

TABLE 1 Number of Phytophthora ramorum proteins with amino acid differences between alleles retained and alleles lost through
conversion to homozygosity after mitotic recombination

Lineage Isolate Host, origin

No. of genes:

In
scaffolds
with ROH

With
amino acid
difference
between
alleles

With
allele loss
due to
ROH

With >5
differences
between
alleles

EU1 Pram_03_0002 Rhododendron sp., Canada 1,587 893 880 202
Pram_07_13013 Rhododendron sp., Canada 349 186 175 46
Pram_P1856 Acer platanoides, UK 879 516 507 128
Pram_PR_99_002 Viburnum bodnantense, Germany 875 514 501 127

EU2 Pram_P2586 Larix kaempferi, Scotland 905 444 387 41

NA1a Pram_PR_01_004 Lithocarpus densiflorus, USA 641 328 298 47
Pram_PR_07_191 Camellia sp., USA 204 108 55 9
Pram_PR_11_011 Lithocarpus densiflorus, USA 280 150 14 2
Pram_Pr_420 Quercus agrifolia, USA 220 147 146 36

NA2 Pram_04_20470 Rhododendron sp., Canada 650 303 195 33
Pram_10_3885 Leucothoe fontanesiana, Canada 1,202 638 615 104

NA1 scaffold_7 All NA1 isolates https://doi.org/10.5061/dryad.d81073k 175 84 73 20
NA1 scaffold_100 All NA1 isolates https://doi.org/10.5061/dryad.d81073k 53 24 24 1

EU1 scaffold_7b P1559 Rhododendron sp., UK 175 94 63 15
P1614 Nothofagus sp., UK
P2600 Larix kaempferi, UK
P1549 Fagus sylvatica, UK
P1562 Quercus cerris, UK
P1563 Castanea sativa, UK
P1959 Quercus cerris, UK
P2688 Larix kaempferi, UK

EU1 scaffold_100b Shared by 8 isolates
above

Same as for scaffold 7 above 53 25 24 2

NA2 Scaffold_5 All NA2 isolates https://doi.org/10.5061/dryad.d81073k 144 56 26 2

Allc All 5,172 2,960 2,698 555
aExcludes scaffolds 7 and 100, which were shared by all NA1 isolates.
bShared by 8 isolates in the EU1 lineage.
cTotal across all four lineages and all affected isolates, where the same gene affected in two or more isolates is only counted once.
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content differed on scaffold 7: it had the highest percentage of genes encoding
secreted proteins (24.6%) compared to the 25 largest scaffolds (�2 � 45.127; P � 0.001).
Fifteen percent of the genes encode putative effectors, 5% of which are necrosis-
inducing proteins (NPP1s). This represents the highest proportion of NPP1s on any
scaffold and is significantly higher than expected across the genome (�2 � 79.3; P �

0.001). The NPP1-encoding genes occur in a cluster within the homozygous region, as
do most of the putative effectors (Fig. 3). Scaffold 7 also comprises several genes, such
as those encoding carbohydrate-active enzymes, peptidases, and sugar transporters
that act in some plant pathogens as virulence factors (Fig. 3 and Text S1, “Detection of
ROH and effects on genotype”). An ROH affecting all NA2 isolates was also found on
scaffold five (Fig. 1A and Text S1, “Detection of ROH and effects on genotype”).

Evidence of MR hot spots was also observed in other genome regions. EU1 isolates
Pram_03_0002, Pram_PR_99_002, and Pram_P1856 share an ROH in at least nine
scaffolds (scaffolds 24, 33, 41, 53, 58, 63, 69, 90, and 101 [e.g., Fig. 2C]); however, these
genotypes appear to have been generated independently. Pram_PR_99_002 (isolated
in Germany in 1999) had the alternate haplotype to Pram_P1856 (isolated in the United
Kingdom in 2004) and Pram_03_0002 (isolated in Canada in 2003) in all scaffolds with
shared ROH, suggesting these scaffolds lie on the same chromosome. In Pram_
03_0002, a much larger portion of the genome was affected (71 scaffolds, totaling
5.9 Mb). ROHs were also observed in the same genome regions in different lineages,
providing further evidence of MR hot spots. Overlapping ROH regions were found in
Pram_04_20470_NA2 and Pram_PR_01_004_NA1; these isolates shared ROH in 20

FIG 3 Comparison of heterozygote density, gene content, and gene location in scaffold 7 of Phytophthora ramorum. (A) Pie chart showing the percentage of
each category of putative plant pathogenicity genes out of all genes on scaffold 7. (B) Gene map showing approximate location of genes on scaffold 7. Clusters
of effectors, pathogenicity-related genes, and transposons are circled in red. (C) Heterozygote density of representative isolates of each lineage. The run of
homozygosity (ROH) pattern displayed for the NA1 lineage is observed in all 38 NA1 isolates. EU1 isolates possessed two distinct patterns on scaffold 7: an ROH
pattern shared by eight isolates and a normal pattern in the remaining 38 isolates.
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scaffolds totaling approximately 3.1 Mb. Similarly, Pram_P2586_EU2 and Pram_PR_
11_011_NA1 shared ROH of approximately 39 kbp on scaffold 4 and Pram_P2586_EU2
and Pram_PR_07_191_NA1 shared an ROH covering six scaffolds totaling approxi-
mately 0.87 Mb.

Phenotypic characterization of isolates affected by ROH. EU1 isolates with ROH

on scaffold 7 caused on average significantly larger lesions on larch than isolates
without ROH (average � 57.4 mm and standard deviation [SD] � 22.2 mm versus
average � 38.0 mm and SD � 13.5 mm; Kruskal-Wallis H � 4.412; P � 0.036) (see
Fig. S2 and S3 in the supplemental material), but there was no significant difference in
lesion sizes on Douglas fir after 4 weeks (average � 56.6 mm and SD � 14.0 versus
average � 54.7 mm and SD � 14.9; P � 0.753). Eight weeks postinoculation, the trend
was reversed on larch, but the differences were not significant (Text S1, “Effects of ROH
on phenotype”). We did not observe loss of growth or infection ability in comparisons
of isolates with and without ROH grown on sapwood agar or inoculated onto rhodo-
dendron leaves (Text S1, “Effects of ROH on phenotype”).

TEs and low gene density are associated with mitotic recombination. Transpos-

able elements (TEs) were found in close proximity to chromosomal breakpoints in 10
out of 12 instances. This was considerably more frequent than in 100 randomly
generated data sets; t � �60.16; P � 0.0001) (see Fig. S4A in the supplemental
material). The chromosomal breakpoints occurred in regions with a lower gene density
than the rest of the genome: intergenic distances surrounding breakpoints were
significantly larger than the intergenic distances in random data sets (Kruskal-Wallis
H � 38.34; P � 0.0001) (Fig. S4B).

The core and non-core genomes differ among Phytophthora ramorum lineages.
The P. ramorum lineages share a core genome representing 98.3 to 99.5% of the full
content, leaving a non-core genome ranging from 0.24 Mbp (EU2) to 0.85 Mbp (NA2).
EU2 had a non-core genome that was quite different from the other lineages. Relatively
high proportions of its non-core genome (77 to 175.5 kbp, representing 0.16 to 0.37%
of the total genome) were not shared with the genomes of the other lineages; similarly,
substantial proportions of the NA1, NA2, and EU1 genomes (1.24, 1.27, and 1.68%,
respectively) were not found in EU2 (Fig. 4). A neighbor-joining tree based on lineage
similarity of non-core regions was topologically incongruent with the P. ramorum
lineage phylogeny reconstructed from the core gene set (Fig. 4; see Fig. S5 in the
supplemental material). The discordance between the two phylogenies suggests dif-
ferences in the rate and extent of polymorphism among lineages in the non-core
genome. Most of the presence/absence polymorphisms are due to losses in EU2
(68.6%), whereas they have resulted almost entirely from gains in the other three
lineages (Fig. 4).

A rapidly evolving non-core genome enriched in plant cell wall modification
enzymes. The nucleotide and gene compositions were notably distinct in the non-core

and core genomes. The non-core genomes had a significantly lower average G�C
content across the four lineages (49.4% versus 54.0%; t � 23.21, P � 0.01), a higher
repeat content (46.3% versus 15.5%), an enrichment in TE-like genes (�2 � 19.3; P �

0.001), four to seven times fewer genes per Mb, and more unannotated genes (https://
doi.org/10.5061/dryad.d81073k). Genes in the non-core genome were shorter and had
a lower G�C content than those in the core genome (average G�C content � 54.9%
versus 57.9%; t � 5.14; P � 0.01) and genes in repetitive regions (57.3%; t � 3.87, P �

0.05) (https://doi.org/10.5061/dryad.d81073k). A large number of genes showed strong
bias in codon usage (from 82% in NA2 to 100% in EU2), reflecting a preponderance of
codons ending with T or A nucleotides (see Fig. S6 in the supplemental material). In
addition, one-third to one-half of the genes found in non-core regions (35% in EU1 and
EU2, 41% in NA1, and 50% in NA2) share paralogs in the core genome and have high
mutation loads, as well as in several instances premature stop codons, suggesting they
are degenerated copies (Text S1, “Core and non-core genomes”).
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We did not observe significant enrichment in genes encoding secreted proteins
(�2 � 0.15; P � 0.98) or effectors in the non-core protein-coding genes (17 in EU2 to 44
in NA2). However, we observed presence/absence patterns for 13 effector-like proteins
that are part of the RxLR effector family (Table 2) and for genes with functions related
to degradation of the plant cell walls (Table 2); eight were degenerated copies of

FIG 4 Core and non-core genomes predicted in the four Phytophthora ramorum lineages. (A) Neighbor-joining tree based on genome similarity in terms
of non-core regions (presence/absence of 100-bp non-core regions in the four lineages). Pie charts are proportional to the number of non-core regions
that differed in each genome as predicted by CAFE, with expansions in blue and contractions in green. (B) Proportions of lineage non-core genome (rows)
that are not found in the full genome content of the other three lineages (columns). For example, the top right corner indicates that 1.68% (i.e., 0.83
Mbp) of the whole genome of NA2 was not found in EU2, and the bottom left corner shows that 0.37% (0.18 Mbp) of the whole genome of EU2 was
not found in NA2.

TABLE 2 Protein family content predicted in the non-core genome of the four
Phytophthora ramorum lineages

Protein family

No. of effectors in lineagea

EU1 EU2 NA1 NA2

Ester hydrolasesb 1 (1)
Peptidasesb 1 (1) 2 4 (1)
RxLR 2 (2) 1 2 (2)
ABC transporter 1 (1) 1 1
Kinases 1 (1)
Methyltransferases 3 (3) 1 1 (1) 2 (2)
Glycoside transferasesb 1
Helicases 2 1 (1)
Transposons 3 6 8 (1) 7 (1)
Other hypothetical proteins 10 (4) 5 (1) 17 (5) 22 (8)
Putative proteins without homologs 5 (2) 3 (3) 2 (1) 5 (1)

Total 26 17 34 44
aResults for putative effector families according to van Damme et al. (113) are in boldface, and numbers of
models in a category that were predicted as putative effectors with EffectorP (114) are shown in
parentheses.

bProtein models with homologs potentially playing direct or indirect role in degradation of plant cell wall
component.
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effectors found in the core genome. Remarkably, none of the 17 non-core protein
models predicted for EU2 encode effector-like proteins (Table 2).

A core P. ramorum proteome of 541 clusters (representing 2,197 proteins) not
shared with any other Phytophthora species has likely been conserved since the
lineages diverged (see Table S2 in the supplemental material). We identified only slight
protein family expansion within each P. ramorum lineage followed by rapid divergence,
resulting in proportions of 2.5 to 3.2% lineage-specific proteome (i.e., not shared with
any other Phytophthora species or between P. ramorum lineages) (Fig. S5). Gene
Ontology (GO) terms associated with peptidase activity and pectin and glucan modi-
fication were enriched among the unique protein models, suggesting that rapidly
diverging proteins unique to each lineage are enriched in functions related to plant cell
wall modification and/or degradation (see Table S3 in the supplemental material).

Evidence of host-driven adaptation in Phytophthora ramorum lineages. Signif-
icant positive selection (q value of �0.05) was observed in 8.0% of the RxLR genes and
18.8% of the Crinkler effector (CRN) genes compared to only 0.9% of the CEGMA (Core
Eukaryotic Genes Mapping Approach) gene set and 3.3% in a random set of genes
across the lineages (Fig. 5A). CEGMA (69.7%) and random genes (65.7%) were under
strong significant negative selection (ratio of nonsynonymous to synonymous evolu-
tionary changes [dN/dS ratio] of �0.3; q value of �0.05). The distributions of dN/dS

FIG 5 Positive selection on genes encoding effectors in Phytophthora ramorum. (A) Distribution of dN/dS values for the RxLR (255 genes), Crinkler (51 genes),
and CEGMA (315 genes) gene sets. The number of alignments (n) with � � 1.0 and significant dN � dS (FDR-adjusted q value of �0.05) are indicated for each
gene set. (B) Phylogenetic relationships and evolutionary history of the CRN subfamily expanded in the P. ramorum EU1 and NA2 lineages (The designation
after lineage names are gene names for isolates EU1 03-0002, NA1 PR_09_175 NA2 04-38813, and EU2 P2586). (C) Recombination blocks among sequences of
the CRN subfamily expanded in the EU1 and NA2 lineages.
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ratios were different in the effector and CEGMA gene sets (F value � 376.93; P � 0.001)
and in the effector and random gene sets (F value � 298.82; P � 0.001). We identified
one CRN family that likely diversified within the prior evolutionary history of the P.
ramorum lineages through duplication, recombination, and episodes of accelerated
nucleotide evolution (Fig. 5B; Text S1, “Genes encoding effectors”).

DISCUSSION

Phytophthora ramorum is an invasive pathogen that, despite being limited to
asexual reproduction and a small effective population size, is spreading extensively in
Europe and North America, causing heavy mortality on ecologically and economi-
cally valuable trees such as larch and oak species. The pathogen comprises four
lineages that started diverging 1 MYA without signs of extant meiotic recombina-
tion within or between lineages (24, 26, 31–36). We highlight two mechanisms—MR
and a rapidly evolving non-core genome—that could generate diversity and adap-
tive potential in this pathogen, allowing it to overcome the so-called “genetic
paradox of invasion” (2, 3).

We uncovered extensive variation driven by MR causing ROH and potentially
affecting hundreds of genes simultaneously. This appears to be an important mecha-
nism fueling evolution in P. ramorum, producing ROH in isolates of all lineages and
affecting 2,698 genes with nonsynonymous differences between alleles. One proposed
advantage of MR is that it facilitates rapid evolution of asexual eukaryotic microorgan-
isms facing a changing environment (37, 38). By reducing the time between the
emergence of beneficial mutations in a heterozygote and the appearance of a homozy-
gous mutant, it may increase the rate of adaptation to a level comparable to that in
sexual populations (12). Conversion of genomic regions to homozygosity may result in
the expression of new or recessive alleles and can improve the efficiency of selection
on both beneficial and deleterious alleles (12).

Several genome regions appeared to be MR hot spots. Multiple ROH were observed
in the same genome region in different lineages, in isolates from different continents,
and in the same loci but affecting opposite chromosomes. Two separate MR events in
lineages NA1 and EU1 affected a scaffold enriched in pathogenicity-related genes. This
suggests that one or more genes in this region may be under selection that is
maintaining or increasing the frequency of these genotypes. The EU1 ROH genotype
appears to be spreading as it has been found on six different hosts since 2003 at
multiple sites in the United Kingdom. This EU1 genotype may have arisen from an MR
event in a single clone in the United Kingdom or through an introduction of an isolate
(or isolates) with the ROH pattern. The NA1 genotype carrying ROH in this region also
could have been introduced or originated early in the epidemic and subsequently
spread. The likelihood of founder events in two different lineages, on different conti-
nents, having genotypes with ROH in the same genomic regions is low, unless the
region is an MR hot spot or these genotypes are in high frequency or fixed in the
founding populations.

We observed slight differences between EU1 isolates with and without ROH in
inoculation experiments, but there were no clear differences of fitness under the
conditions we tested. In its introduced state, P. ramorum is a generalist with over 100
hosts (23); therefore, we only tested fitness on a fraction of hosts. The changes induced
by the ROH could provide genetic flexibility for interactions with a wide range of hosts
and for survival in different environments. Further testing is needed to better under-
stand the potential impact of the extensive variation uncovered. MR and ROH (or LOH)
have been previously observed in P. ramorum and other Phytophthora species, but not
to the extent reported here (24, 29, 39–49). Loss of heterozygosity (LOH) and aneu-
ploidy have been found in the P. ramorum NA1 and EU1 lineages; in NA1, they have
been associated with unstable non-wild-type phenotypes in isolates from “dead-end”
hosts (31, 41, 47, 49). MR has been hypothesized to have caused rare mating-type
switches in EU1 (31, 47, 49). In Phytophthora capsici, extensive LOH was found; although
most changes occurred in noncoding regions, some isolates exhibited changes in
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virulence or mating type (48). The prevalence of MR in Phytophthora species suggests
it is a salient characteristic of the Phytophthora genetic system.

The cause and importance of MR in adaptation in P. ramorum are unclear. There is
evidence that MR can be caused by stress. Virulence differences and adaptation to
environmental changes or stress have been associated with ROH in other species (38,
50). In Candida albicans, LOH increased proportionally with exposure to oxidative or
heat stress and antifungal drugs (37). In Saccharomyces cerevesiae, a trade-off between
outcrossing and MR may play a role in shaping genome architecture in response to
nutrient stress (38). Stress induced by infection of bark in dead-end hosts has been
implicated in changes in chromosome number in P. ramorum (47). The high frequency
of MR in P. ramorum could be a response to environmental stressors such as interac-
tions with novel hosts or exposure to fungicides in nurseries. The observed genotypic
diversity could reflect phenotypes favored by selection. Alternatively, the very high
rates of asexual reproduction during the current epidemics on highly susceptible hosts
such as larch and tanoak may allow survival of novel MR genotypes that would not
necessarily survive selection under nonepidemic conditions. It is possible that in a
future postepidemic phase, when more susceptible host genotypes have been elimi-
nated and selection on fitness components is more intense, some of these novel
genotypes with lower fitness may be eliminated.

Rapid evolution in plant pathogens has been associated with high transposon
content and activity (14–17, 51–54). Recombination between near-homologous copies
of retrotransposons can create new genetic combinations (55). Stress-induced trans-
poson activity has been proposed as an adaptive mechanism enabling pathogens
facing new environmental conditions to overcome the invasion paradox (56). Previ-
ously, TEs have been associated with chromosomal breakpoints in non-wild-type P.
ramorum isolates with LOH (47). We observed a high frequency of chromosomal
breakpoints associated with transposons in regions with low gene density, suggesting
that TE activity may be triggering MR in P. ramorum, thereby generating genotypic
diversity, which is considered important in the successful establishment, persistence,
and adaptability of invading populations (2, 57–59).

Pathogenicity genes in plant pathogens are often clustered in rapidly evolving,
less-conserved, gene-poor genomic regions enriched in repeated elements or trans-
posons (15, 16, 60–62). These regions generally contain effectors involved in host or
ecological adaptation (55, 63). Rapid evolution of these regions can create lineage-
specific or divergent non-core regions that vary between populations. The non-core
genome of P. ramorum displays a distinct evolutionary trajectory compared to the core
genome. It is also enriched in genes associated with plant-pathogen interactions and
TE-like sequences, some of which are in tandem with effector genes. It is therefore likely
to play an important role in the evolution and adaptive potential of the lineages. There
was an extensive loss of effector loci in the non-core genome of the EU2 lineage likely
caused by differences in host selection pressures. Selection pressure on effectors may
be especially strong since a mismatch in effectors or host recognition is expected to
have a high fitness cost (64). The evidence for positive selection and the evolutionary
history of effector gene components provide further evidence of rapid evolution.
Gene � environment and pathogenicity tests show that the EU2 lineage is adaptively
different from EU1 and has higher pathogenicity on the bark of larch (28, 65). It is
possible that the EU2 source population coevolved with different primary hosts than
the other three lineages, making some effectors obsolete in EU2. The non-core genome
appears to play an important role in the evolution of P. ramorum and in the wider
adaptive potential of the lineages.

The non-core genome is distinct from the core genome in P. ramorum, having a
lower GC content, a strong bias to codons ending in AT, numerous degenerated
paralogs, and enrichment of transposons or transposon-like genes. Some ascomycete
fungi possess genome defense mechanisms limiting the accumulation of transposable
elements. The best-known mechanism is repeat-induced point (RIP) mutation, which
inactivates repeated sequences by introducing point mutations in CpG sites, resulting
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in mutational loads favoring GC-to-AT changes (66). In Zymoseptoria tritici, sequences
exclusive to isolates also showed a mutational load likely resulting from a genome
defense mechanism similar to RIP (54). No RIP-like mechanism has been demonstrated
in Phytophthora species or other oomycetes. We speculate, however, that Phytophthora
species may have a defense mechanism, similar to RIP mutation, that can deactivate TEs
and restrict genome reshuffling during low-stress periods or lead to a stable genome
after periods of enhanced stress or episodic change (20).

The initial invasion “success” of an introduced pathogen such as P. ramorum is often
seen in terms of ecological or economic damage that results from the availability of
highly susceptible hosts and a lack of natural enemies in new environments. However,
invasive pathogens may be limited to asexual reproduction and may face long-term
extinction if they are unable to adapt to environmental changes, such as loss of
susceptible hosts and the emergence of parasites or competitors. Hence, they may face
a genetic paradox. In introduced diploid asexually reproducing organisms, some of the
genetic diversity in the parental population is carried in the genome via heterozygosity.
Excess heterozygosity can then build up via accumulated mutations—the so-called
“Meselson effect” (67). Finally, mitotic recombination can produce different combina-
tions of homozygous alleles, including the loss of deleterious alleles, increasing the
potential for adaptation. MR may therefore be important in enhancing the adaptability
of introduced asexual Phytophthora species. It could also enhance the pathogen’s
ability to overcome more resistant host genotypes among surviving host isolates or
those generated via breeding programs. Genomic plasticity, gene loss or gain, epige-
netic variation, and effector evolution may further contribute to long-term success.

MATERIALS AND METHODS
Sample preparation and sequencing. A total of 107 isolates (https://doi.org/10.5061/dryad

.d81073k) were selected for genome resequencing. Representatives included the four lineages (38 NA1,
17 NA2, 46 EU1, and 6 EU2 isolates) and covered the chronological (1995 to 2012) and geographical
(Canada, the United States, and Europe) ranges of the epidemic. Cultures were grown on peptone-
dextrose agar (PDA) overlaid with a cellophane membrane (GE Healthcare Bio-Sciences Corp., Piscataway,
NJ) at 20°C under a 12-h photoperiod for 7 to 10 days. DNA was extracted from ground mycelium using
a chloroform method (68). DNA was quantified with a Qubit fluorometer (Life Technologies, Inc., Grand
Island, NY).

Genome sequencing was done at Canada’s Michael Smith Genome Sciences Centre (Vancouver
Canada) using one of two methods for library construction (https://doi.org/10.5061/dryad.d81073k). The
majority of libraries were constructed on an SPRI-TE robot (Beckman-Coulter, USA) according to the
manufacturer’s instructions (SPRIworks Fragment Library System I kit, A84801) following fragmentation
by Covaris E210 sonication for 30 s (duty cycle of 20%, intensity of 5) using 1 �g genomic DNA in a
96-well format. The library templates were quantified using a Qubit fluorometer. Five nanograms of
template was PCR amplified using Phusion DNA polymerase (Thermo Fisher Scientific, Inc., USA) and
Illumina’s PE indexed primer set, with cycle conditions of 98°C for 30 s, followed by 10 cycles of 98˚C for
15 s, 62˚C for 30 s, and 72˚C for 30 s and a final amplicon extension at 72°C for 5 min. For the remaining
samples, the paired-end sequencing library preparation followed the BC Cancer Agency’s Genome
Sciences Centre 96-well Genomic �350- to 450-bp insert Illumina Library Construction protocol using a
Biomek FX robot (Beckman-Coulter, USA). The resulting PCR products from both methods were purified
using Ampure XP SPRI beads and quantified with Caliper LabChip GX using the high-sensitivity assay
(PerkinElmer, Inc., USA). PCR products of desired size range were purified using gel electrophoresis (8%
PAGE or 1.5% Metaphor agarose gels in a custom-built robot). DNA quality was assessed and quantified
using an Agilent DNA 1000 series II assay and Quant-iT double-stranded DNA (dsDNA) HS assay kit using
a Qubit fluorometer (Invitrogen) and then diluted to 8 nM. The final concentration was verified by
Quant-iT dsDNA HS assay prior to Illumina Sequencing. For sequencing, 100-bp paired-end tagged (PET)
reads were prepared. The DNA of 12 isolates was pooled per lane and sequenced on the Illumina HiSeq
2000 (Illumina, Inc.). Reads were provided in BAM format.

Mapping and extracting SNPs. PRINSEQ v0.20.3 (69) was used to filter BAM files for redundant reads
and reads containing one or more N’s and to trim low-quality bases from the ends by discarding the last
10 nucleotides (for an average quality of �20 calculated on windows of 10 bp). Trimmed reads were
mapped onto the P. ramorum reference genome (Pr-102 NA1 lineage; version 1.1; DOE Joint Genome
Institute, Walnut Creek, CA) (70) with the Burrows-Wheeler Aligner (BWA) (71) using default parameters.
Mapping and quality statistics were calculated using Qualimap v.0.7.1 (72). Variant sites were obtained
in a mulitvcf format using the mpileup function of SAMtools and the Bayesian variant-calling models
implemented in BCFtools (73). Two alleles were called—a reference allele corresponding to the JGI
reference genome and an alternate allele corresponding to the most frequent non-reference allele across
the reads of all 107 genomes—resulting in a biallelic data set. Single nucleotide polymorphisms (SNPs)
were filtered using VCFtools (74) with parameters determined from testing to minimize false positives
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and maximize true positives (Text S1, “SNP extraction and filtering—testing SNP filtering parameters and
false call rates”): maximum mean depth of 90 and minimum mean depth of 10, and for each SNP, a
minimum quality of 30, a minimum depth of 10, a minimum mapping quality of 30, and a minimum
distance to a gap of 10 bp. For each genotype, a minimum depth of 4 reads, a maximum of 240, and a
minimum genotype quality of 20 were used. We then filtered for a minimum allele count of 2 (allele
present in at least two isolates) and no missing data.

We determined if each SNP was fixed in all isolates within a lineage (but different between lineages)
or if it was polymorphic in some of the isolates in a lineage. We then determined if the SNP was
homozygous or heterozygous. SNPs were classified as (i) fixed homozygous (i.e., homozygous and fixed
for one allele in one or more lineages and homozygous and fixed for another allele in another lineage
or lineages), (ii) fixed heterozygous in one or more lineages and fixed homozygous in other lineage(s),
(iii) polymorphic within lineages but homozygous for one allele in two or more isolates and homozygous
for another allele in two or more isolates, or (iv) heterozygous in two or more isolates and homozygous
in the other isolates.

De novo genome assemblies. Two representative isolates of each lineage were assembled de novo
(https://doi.org/10.5061/dryad.d81073k). PRINSEQ v0.20.3-filtered Illumina sequencing reads were as-
sembled into contigs and prescaffolded using ABySS (75), with k values ranging from 32 to 96. Final
scaffolding was completed with SSPACE v.3.0 (76), and the best assembly was selected based on genome
size (�50.0 Mb) and contiguity (best N50 and length of longest scaffold). Completeness of assemblies was
assessed using BUSCO (Benchmarking Universal Single-Copy Orthologs) (77). Assemblies were repeat
masked with RepeatMasker (A. F. A. Smit, R. Hubley, and P. Green, RepeatMasker at http://repeatmasker
.org) using 2,101 Phytophthora repeats available in Repbase (78) and annotated using AUGUSTUS version
2.7 (79) trained with models from Phytophthora sojae, Phytophthora infestans, and P. ramorum (80).
Predicted protein models were functionally annotated with Blast2GO (81) following homolog searches
using BLASTp against NR (E value cutoff of 1e�05) and a protein domain search using Interproscan (82).

Phylogenetic reconstruction. The multisample variant call format (VCF) file was converted to Plink
format using VCFtools (74) and recoded for use in Adegenet (83) using Plink v1.07 (84). Euclidean
distances were calculated in R and used to construct a neighbor-joining tree using APE (85). The analysis
was repeated using a VCF that excluded all scaffolds where ROH was detected.

Detection of ROH. The multisample VCF file was separated into independent files for each isolate,
and files were searched for stretches of homozygous sites uninterrupted by heterozygotes using a
custom Python script (Python 2.6). The length of these stretches was compared among isolates within
a lineage to identify extensive ROH relative to the population and to identify scaffolds with extensive
ROH. VCFtools (74) was used to extract the observed number of heterozygous and homozygous sites for
each locus of isolates with ROH and compared to those without ROH, and percentages of homozygous
sites for either allele and for heterozygous sites were calculated.

Effect of conversion to homozygosity on protein content. Data from isolates with ROH were used
to phase isolates without ROH using Beagle4 (86). Alternate genome sequences were generated using
FastaAlternateReferenceMaker from the GATK suite (87), using the VCF file as the source of variants. We
used BEDTools (88) to extract the genes, and two FASTA-formatted files per gene, one for each strand,
were obtained for each isolate. Using a custom Python script, genes were translated to proteins and
protein translations were compared for isolates with and without ROH to determine the number of
amino acid changes between alleles for each group. Gene Ontology (GO) analysis was done on proteins
in the ROH regions using the model-based gene set analysis (MGSA) approach in R (89, 90).

Identification of a pathogenicity gene hot spot. Proteins that occurred in the ROH region in
scaffold 7 were extracted from the reference genome (version 1.1) (70) and reannotated using Blast2GO
(81). Putative effectors and other proteins potentially involved in pathogenicity (carbohydrate-active
enzymes, some transporters, and peptidases) and transposons (or transposon-like elements) were
counted and mapped by GenoPlotR in R (91). MGSA (89) was used to identify protein sets that were
enriched in scaffold 7, and a �2 test was used to test if putative effectors were located on scaffold 7 more
often than expected.

Growth of isolates with ROH on Douglas fir and larch logs. We assessed the pathogen’s ability to
cause lesions on woody stems of two hosts: Pseudotsuga menziesii (Mirb.) Franco (Douglas fir) and Larix
kaempferi (Lamb.) Carr. (Japanese larch) using eight EU1 isolates with ROH in scaffold 7 and eight EU1
isolates without ROH (https://doi.org/10.5061/dryad.d81073k). Three trees of each host between 10 and
25 cm in diameter were freshly felled from the University of British Columbia Malcolm Knapp Research
Forest in Maple Ridge, British Columbia (49°15=48.72	N, 122°34=23.61	W). Logs were cut into bolts (0.5 to
0.7 m) and sealed with epoxy resin (Intergard 740; International Paint, Houston, TX). Four isolates were
inoculated on each bolt as described in reference 33. There were three replicates for each isolate
inoculated on a log bolt from a different tree. Logs were incubated at room temperature in a plastic bag
for 8 weeks. The length and width at the longest and widest points of each lesion were measured 4 and
8 weeks postinoculation (wpi) and compared with a Kruskal-Wallis test (significance assessed at the 0.05
level).

Mitotic recombination breakpoints. We searched for scaffolds with putative mitotic recombination
breakpoints defined as regions where a switch from heterozygosity to homozygosity occurred. The
15-kbp region around each breakpoint was scanned for gene content using Blast2GO (81) annotations.
Intergenic distances were calculated on full scaffolds containing potential breakpoints. For comparison,
100 data sets, each with 12 15-kbp genomic regions without potential breakpoints, ROH, or stretches of
ambiguous nucleotides, were randomly generated. Gene content was determined for the 15-kbp regions
in each data set, and intergenic distances were calculated on the full scaffolds for each random set. A
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nonparametric analysis of variance (Kruskal-Wallis test) was performed to compare the observed distri-
bution of intergenic distances in scaffolds containing potential breakpoints versus the distribution of the
randomized data sets.

OrthoMCL and evolution of gene family size. Protein models obtained for de novo assemblies EU1
030002 (14,095 models), EU2 P2586 (14,028 models), NA1 PR09-175 (14,213 models), NA2 0438813
(14,186 models), and P. lateralis CBS_168.42 (17,463 models) were combined with 188,602 models from
five sequenced Phytophthora genomes (15, 70, 92). A tentative clustering of one-to-one orthologs was
carried out using OrthoMCL (93) (BLASTp search with an E value cutoff of 1e�05, coverage of at least
50% of the query sequence, and identity of at least 30%, as well as an OrthoMCL inflation value of 4) and
then automatically aligned with MAFFT version 7.123b (94). The resulting 51,451 OrthoMCL clusters were
then submitted to two filters to minimize the confounding effect of truncated proteins resulting from
fragmented de novo assemblies and gene mispredictions as described in reference 95.

A neighbor-joining (NJ) tree representing genome content similarity was reconstructed by calculat-
ing a distance matrix based on the gene presence/absence matrix inferred from the OrthoMCL analysis
in which the distances measured between pairs of taxa are inversely proportional to the number of genes
they share (96). The tree was reconstructed by using the fneighbor program of the PHYLIP version 3.696
package, with 1,000 bootstrap replicate sampling columns of the presence/absence matrix. The maxi-
mum likelihood model of CAFE (Computational Analysis of gene Family Evolution) (96) was used to study
gene family expansions/contractions while taking into account the one-to-one ortholog phylogeny
reconstructed for Phytophthora spp. (Text S1, “Divergence time between lineages—phylogenetic analysis
of one-to-one orthologs”).

Core and non-core genomes. To identify core genomic regions (found in all lineages) and lineage-
specific genomic regions, we used the mpileup function of SAMtools (73). We assessed coverage depth
over 1-kb sliding windows of all 107 resequenced isolates over two de novo genome assemblies of each
of the four lineages. A window was considered as non-core when a contiguous region representing more
than 90% of the window size was missing in 50% of the isolates for the NA1, NA2, and EU1 lineages and
the six isolates of the EU2 lineage of at least one of the four P. ramorum lineages. Lineage-specific or
non-core genomic regions shared by two or three lineages were identified by reciprocal mapping to the
de novo assemblies of each lineage. Groups of homologous non-core windows were identified with
reciprocal BLASTn searches (E value of �1e�20) within and between lineages followed by graph
clustering using a TCL implementation of the Deep-First Search algorithm (identity cutoff � 40%; overlap
cutoff � 100 nucleotides [nt]) (97, 98).

A neighbor-joining tree was constructed from a distance matrix of similarity based on non-core
genome regions (as done in Text S1, “Divergence time between lineages—phylogenetic analysis of
one-to-one orthologs”). The extent of gene gain or loss was determined by attributing costs to gain and
loss events and minimizing the total cost (maximum parsimony criterion [99]).

RxLR effectors. RxLR protein annotation was performed on de novo assemblies and on the P.
ramorum reference genome (version 1.1, DOE-JGI) (70) to evaluate optimal strategies for identifying and
filtering candidate Avh (avirulence homolog) proteins. Avh effector annotation for each lineage was done
in two parts to produce the most candidates, followed by a final manual inspection. First, genomic
sequences were translated to a six-frame open reading frame using Emboss, (minimum length of 90)
(100). Protein sequences were trimmed to the m-signal peptide. A database of previously identified Avh
proteins was used to search de novo assemblies using Hmmer version 3.1b (101), which contained 9,779
proteins from 23 Phytophthora species genomes (P. cajani, P. europaea, P. foliorum, P. hibernalis, P. litchii,
P. megakarya, P. melonis, P. parvispora, P. pistaciae, P. syringae, P. uliginosa, P. vignae, P. cinnamomi var.
robiniae, Phytophthora taxon niederhauserii, P. pisi, P. cinnamomi, P. rubi, P. fragariae, P. palmivora, P.
parasitica, P. sojae, P. ramorum, and P. infestans; provided by the Phytophthora Sequencing Consortium).
Candidate proteins with an HMM score of �20, lacking both an RxLR motif and dEER motif, and
duplicates were removed. The presence/location of a signal peptide cleavage site was predicted using
Signal-P 3.0 (102), and those with a P value of �0.8 were retained.

In the second step, a multiple sequence alignment of candidates was created using MUSCLE version
3.8.31 (103) to build an HMM model in Hmmer. Candidate proteins were trimmed as described above,
and those with an HMM score of �10 or lacking both the RxLR and dEER motifs were removed.
Duplicates were removed, and only those with signal peptide scores of �0.8 were retained. This recursive
search was repeated using a HMM database of Avh proteins from the first step and 370 previously
identified in the P. ramorum genome (104). Candidates identified in both searches were combined, and
duplicates were removed. Common motifs were identified using MEME version 4.9.1 (105) (minimum
motif of 4 and maximum of 8).

Lastly, effector annotation was performed on all de novo assemblies and on the P. ramorum reference
genome. Candidate proteins with an RxLR motif were subsequently categorized according to the actual
RxLR sequence. The 370 Avh proteins previously identified from the P. ramorum genome were processed
by MEME to generate a list of 312 that had an RxLR motif, which was used as a baseline for optimizing
filtering to avoid exclusion of true positives.

CRNs. The Crinkler protein effectors (CRNs) were identified using two approaches similar to those
described by Haas et al. (15). A total of 552 previously reported CRNs from P. infestans (196 effectors), P.
ramorum (19 effectors), P. sojae (100 effectors), and P. capsici (237 effectors) (CRNdb) were aligned with
MAFFT (94). The recombination domain containing an LxKLAK motif in the first 60 amino acids (aa) of the
alignment and the HVLVVVP motif were used to set and train two HMM models with the hmmbuild and
hmmcalibrate commands of HMMER v3 (106). The whole proteomes predicted for the four P. ramorum
lineages and P. lateralis (see Text S1, “Core and non-core genomes”) were searched for these two models

Dale et al. ®

March/April 2019 Volume 10 Issue 2 e02452-18 mbio.asm.org 14

https://mbio.asm.org


with HMMER v3 (106) (cutoff E value of 1e�05). Candidate CRNs were then aligned with other CRNs of
the CRNdb, before training a new HMM model based on full-length CRN sequences.

In the second approach, sequences of the CRNdb were searched against the genomes of P. lateralis
and the four P. ramorum lineages using the TBLASTn algorithm (E value cutoff of 1e�04). The coordinates
of matches were captured, and matches overlapping genes found in the first approach were removed.
For the other matches, the corresponding DNA sequence was translated in ORFs using the EMBOSS
package getorf (minimum size cutoff of 100 nt and a maximum size cutoff of 6,000 nt) (100). Predicted
ORFs were submitted to an HMMsearch (�T 0) for the full-length CRN model developed in the previous
approach. Additional editing was carried out on the positive hits by checking the presence of both
LxKLAK and HVLVVVP domains. Both CRN sets were merged to generate a final nonoverlapping set of
CRN-like proteins.

Analysis of positive selection on P. ramorum RxLR and CRN effectors. Sequences of the RxLR and
CRN protein data sets were individually clustered with OrthoMCL (93) (BLASTp E value cutoff of 1e�05,
50% coverage, 50% identity, and OrthoMCL inflation value � 1.5). Protein clusters were filtered for
truncated proteins as described above. For each sequence cluster, tBLASTn was used to retrieve DNA
sequence homologs in the P. ramorum de novo assemblies used for the RxLR search. To generate a set
of “neutral” proteins for comparison, sequence homologs of the 458 proteins of the core eukaryotic
CEGMA data set (107) were also retrieved by using the same tBLASTn approach. In addition, a random
set of 500 proteins with sequence homologs was extracted and used for comparison. Each sequence set
was aligned with MAFFT version 7.123b (94). Only sequence alignments of high quality (�5% ambiguous
data) and at least 3 synonymous sites were retained to reduce statistical bias in the estimation of the
dN/dS value (108). This resulted in 326, 48, 343, and 306 alignments for the RxLR, CRN, CEGMA, and
random data sets, respectively. For each alignment, the average � value (dN/dS) was estimated by fitting
the sequence alignment with the basic maximum likelihood model M0 of Codeml (CodonFreq option set
to F3X4) implemented in PAMLV4.0 (109). PhyML version 3.0 (110) was used to estimate branch lengths
of the phylogenetic tree of the alignment, and used as starting values for Codeml. Values of dN and dS
obtained for each branch of the phylogeny reestimated under model M0 of Codeml were extracted using
a Python script, and the statistical significance of the difference between the average dN and dS was
determined using a paired t test with a false-discovery rate (FDR)-adjusted P value (i.e., q value) for
multiple testing (111). For statistical comparisons, RxLR and CRN data sets were grouped into effectors,
a Box-Cox transformation was done on the full data set using the MASS package (112) in R (90), and the
transformed data sets were compared by analysis of variance (ANOVA).

Data availability. Whole-genome sequencing (WGS) data for all of the isolates sequenced in this
study have been deposited in the Sequence Read Archive under SRA accession no. PRJNA427329.
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