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Abstract
Time-to-event data are right-truncated if only individuals who have experienced the event by a certain time can be included

in the sample. For example, we may be interested in estimating the distribution of time from onset of disease symptoms to

death and only have data on individuals who have died. This may be the case, for example, at the beginning of an epidemic.

Right truncation causes the distribution of times to event in the sample to be biased towards shorter times compared to the

population distribution, and appropriate statistical methods should be used to account for this bias. This article is a review of

such methods, particularly in the context of an infectious disease epidemic, like COVID-19. We consider methods for

estimating the marginal time-to-event distribution, and compare their efficiencies. (Non-)identifiability of the distribution

is an important issue with right-truncated data, particularly at the beginning of an epidemic, and this is discussed in detail.

We also review methods for estimating the effects of covariates on the time to event. An illustration of the application

of many of these methods is provided, using data on individuals who had died with coronavirus disease by 5 April 2020.

Keywords
Coronavirus disease, Cox regression, failure time, identifiability, relative efficiency, right-truncation, survival analysis

Introduction
Data on time to an event are said to be right truncated if they come from a set of individuals who have been randomly
sampled from a population using a sampling mechanism that selects only individuals who have experienced the event
by a given time, called the truncation time. An example is data on the time from onset of coronavirus disease
(COVID-19) symptoms to death collected from a sample of individuals who all developed symptoms and died by 5
April 2020. Among individuals in the population whose symptoms began on, say, 20 March, only those whose time
from symptom onset to death was less than 16 days could be included in the sample. For these people, the truncation
time is 16 days. Likewise, among those whose onset was on 31 March, only those whose time to death was less than 5
days could be included. Their truncation time is 5 days. Among the sampled individuals, the proportion whose time
to death is less than t days (e.g. t = 14 days) will be greater than the proportion in the population of people who (even-
tually) die with COVID-19. So, a naive estimate of the distribution of time to death in this population will be biased.
Moreover, the average time to death in sampled individuals whose symptom onset was on 31 March will be shorter
than the average time in those whose onset was on 20 March, even if time to death is independent of onset time in the
population.

Ideally, we would have a random sample of individuals who experience an initial event (e.g. onset of COVID-19 symp-
toms) that places them at risk of a final event of interest (e.g. death with COVID-19) and follow them to see how many
experience the final event and the times from initial to final event. However, this is not always feasible. For example,
in the case of COVID-19 many people will have experienced symptoms but never reported them. Another example is
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HIV/AIDS, where many people will not have discovered they are infected with HIV (the initial event) until they were diag-
nosed with AIDS (the final event).

The analysis of right-truncated data requires statistical methods that account for the fact that each of the sampled indi-
viduals must have experienced the final event by their truncation time. The purpose of this article is to review such methods
in the context of an infectious disease epidemic, like COVID-19.

Much of the statistical methodology for right-truncated data was developed in the 1980s and early 1990s in the context
of the HIV/AIDS epidemic (e.g. 1,2). However, some of it predated the 1980’s. For example, some methods described in
this article involve the idea of reversing the time axis, that is, counting backwards in time from the final event to the intial
event. This reversal has the effect of making right-truncated data left-truncated. The Lynden-Bell3 estimator is the exten-
sion of the original Kaplan-Meier estimator to handle left truncation. Some of the other methods are based on Turnbull’s
general algorithm for estimating a distribution function under general patterns of censoring or truncation 4. Recently, the
emergence of COVID-19 has highlighted the need for methods that handle right truncation. Data from early in the epidemic
have been used to estimate the distributions of time from infection to symptom onset, symptom onset to hospitalisation,
symptom onset to death, and hospitalisation to death. Although many researchers have accounted for the right truncation
of the data (e.g. 5–7 some have not done so or it is unclear whether they have (e.g. 8–10).

An important issue when estimating the distribution of time to event using right-truncated data is that of identifiability.
When the maximum truncation time that can be observed in the sample is less than the maximum time to event in the popu-
lation, the time-to-event distribution can only be estimated up to a constant of proportionality. In the article, we shall pay
particular attention to this issue.

The structure of the article is as follows. In the section ‘Estimating marginal distribution of time to event’ we look at
methods that estimate the marginal distribution of time from onset to death in the population of people who (eventually) die
from the infection. Some of these methods model both time of onset, and hence truncation time, and time from onset to
death, whereas others model only the time from onset to death. Some methods are parametric; others, non-parametric.
We review these methods and investigate their asymptotic relative efficiency (ARE) for estimating the mean time from
onset to death. Section ‘Estimating and testing covariate effects’ looks at methods for estimating the effect of covariates
on the distribution of time to death, and for testing independence between covariates and time to death. These include para-
metric and semi-parametric methods. An illustration of the application of some of these methods to COVID-19 deaths is
described in the section ‘Application to COVID-19’. Section ‘Discussion’ contains some practical recommendations and a
brief discussion of more general truncation patterns and of censoring.

Estimating marginal distribution of time to event
Let X and Y denote the times of an individual’s initial and final events, respectively, with 0 ≤ X ≤ Y . These two events
could be, respectively, onset of COVID-19 symptoms and death from COVID-19. Alternatively, they could be, for
example, infection with COVID-19 and hospitalisation, or HIV seroconversion and AIDS diagnosis. Let T = Y − X
denote the individual’s time from initial to final event; we call this the ‘delay’. We assume that the support of X includes
zero and that X and T are either both continuous or both discrete variables; if they are discrete, we suppose, without loss of
generality, that they take integer values and we interpret integrals as sums. Unless stated otherwise, we shall assume T is
independent of X . Let f ∗T (t) and F∗

T (t) denote, respectively, the probability density (or mass) function of T and the distri-
bution function of T .

We obtain an i.i.d. sample, (x1, t1), . . . , (xn, tn), from the probability distribution of (X , T ) given X + T ≤ τ for some
τ > 0, that is, from

fX ,T (x, t ∣ X + T ≤ τ) = fX (x)f ∗T (t) I (x+ t ≤ τ)�τ
0fX (x

′) F∗
T (τ − x′) dx′.

, (1)

where fX (x) denotes the conditional probability density (or mass) function of X given X ≤ τ, and I (.) denotes the indicator
function. If X and T are discrete, we shall assume, again without loss of generality, that τ is an integer. We should like to
estimate F∗

T (t), but first we need to discuss whether this is possible.

Identifiability
The maximum truncation time in the sample is τ. If this is greater than the maximum delay in the population, then
F∗
T (τ) = 1 and F∗

T (t) can be estimated from the data. If, on the other hand, the maximum truncation time is less than
the maximum delay in the population, then F∗

T (τ) < 1 and F∗
T (t) is only (non-parametrically) identified up to a constant
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of proportionality. This is because the sampling mechanism does not allow us to observe values of T greater than τ, and so
the data do not tell us what proportion, 1− F∗

T (τ), of individuals in the population have T > τ. This lack of identifiability is
manifest in equation (1): if F∗

T (τ) < 1 and the probability density (or mass) function and distribution function of T are
instead fT (t) = f ∗T (t)/F

∗
T (τ) and FT (t) = F∗

T (t)/F
∗
T (τ) (0 < t ≤ τ), then the joint distribution of X and T given X + T ≤

τ is

fX (x) {f ∗T (t)/F
∗
T (τ)} I (x+ t ≤ τ)�τ

0fX (x
′) {F∗

T (τ − x′)/F∗
T (τ)} dx′

, (2)

which is still equal to the right-hand side of equation (1), because the two F∗
T (τ) terms in (2) cancel out.

Unlike f ∗T (t) and F
∗
T (t), the functions fT (t) and FT (t) are identifiable from the data (x1, t1), . . . , (xn, tn). They are, respect-

ively, the conditional probability density (or mass) function and conditional distribution function of T given T ≤ τ.
In the absence of other information or assumptions, FT (t) (or equivalently fT (t)) is all we can estimate. Obviously, if we

know from other information that F∗
T (τ) = 1, then estimating FT (t) is the same as estimating F∗

T (t). Likewise, if we know
that, for example, F∗

T (τ) = 0.8, then F∗
T (t) = FT (t) × 0.8, and so we can estimate F∗

T (t). Alternatively, if we assume a para-
metric model for F∗

T (t) and fit this model to the data, then F∗
T (τ) (and hence F

∗
T (t) for all t) will be estimated, because F∗

T (τ) is
a deterministic function of the model parameters. However, as we shall now illustrate, this estimate of F∗

T (τ) relies on
extrapolation of the parametric model beyond the range of the data.

Parametric modelling of joint distribution of X and T
A joint-conditional likelihood
We can estimate F∗

T (t) by parameterising the distributions of X and T in terms of distinct parameters λ and θ, respectively,
and maximising the likelihood function corresponding to equation (1), viz.

L1 = L1(λ, θ) =
∏n
i=1

fX (xi; λ)f ∗T (ti; θ)
∫τ
0
fX (x

′; λ)F∗
T (τ − x′; θ) dx′

/{ }
(3)

For example, if we assume fX (x; λ) ∝ exp (λx) and T ∼ Gamma(θ1, θ2), then

L1 = 1�τ
0 exp (λx

′)
�τ−x′

0 t′(θ1−1) exp (− θ2t′) dt′ dx′
( )n ∏n

i=1

exp (λxi)t
θ1−1
i exp (− θ2ti).

We might call L1 the ‘joint-conditional’ likelihood, because it is based on the joint distribution of X and T and is condi-
tional on the final event occurring by time τ.

Notice that equation (3) can be equivalently written as

L1 = L1(λ, θ) =
∏n
i=1

fX (xi; λ)fT (ti; θ)
∫τ
0
fX (x

′; λ)FT (τ − x′; θ) dx′
/{ }

. (4)

This highlights that L1 depends on the distribution of T only through FT (t), its conditional distribution given T ≤ τ. In the
example given immediately above, this distribution is

FT (t) =
�t
0t

′(θ1−1) exp (− θ2t′) dt′�τ
0t

′(θ1−1) exp (− θ2t′) dt′
1 cm (0 < t ≤ τ). (5)

Any distribution F∗
T (t) for which equation (5) describes FT (t) = F∗

T (t)/F
∗
T (τ) would yield the same likelihood L1. Thus, the

data do not distinguish between T ∼ Gamma(θ1, θ2) and, for example, F∗
T (t) = FT (t). In the former case, F∗(τ) =

θθ12
�τ
0t

′(θ1−1) exp (− θ2t′) dt′/Γ(θ1); in the latter case, F∗(τ) = 1. Another possibility is that F∗
T (t) = FT (t) × 0.001, in

which case F∗(τ) = 0.001. In short, F∗(τ) could theoretically be anywhere between 0 and 1 and only FT (t) is non-
parametrically identified.

In practice, we might believe that the parametric model accurately describes the whole of the delay distribution, or we
might have additional information that makes us confident that F∗

T (τ) = 1, or the data themselves might suggest that F∗
T (τ)

equals 1 or is close to 1. The latter might be the case if there were a reasonably large number of sampled individuals with
truncation times close to τ and all or almost all of these individuals had delays that were far less than τ. The absence of any
longer delays among these people who could have been sampled even if their delays had been longer might lead one to
conclude that longer delays are rare. However, caution is warranted, because there remains a possibility that the distribution
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of delays is bimodal, with a fraction of the population having much longer delays than the rest. For example, this might be
the case for COVID-19 if some very seriously ill patients are kept alive on ventilators for a long period of time.

We should be careful not to be misled by a good fit of the parametric model to the data. We can assess the fit on this
parametric model only over the range t ∈ [0, τ]. In all three examples of distributions that give rise to equation (5), this fit is
perfect. In particular, if the proportion, θθ12

�τ
0t

(θ1−1) exp (− θ2t) dt/Γ(θ1), of the probability mass of the Gamma(θ1, θ2) dis-
tribution that lies in the interval [0, τ] is far from 1, then we are only judging the fit of the model in the early part of the
distribution. Note that while it is common in time-to-event studies (without right truncation) for administrative censoring to
prevent assessment of the fit of a parametric model in the tail of the distribution, this censoring prevents F∗

T (t) from being
(non-parametrically) identified only for times t after the censoring time.

An equivalent likelihood.
So far, we have assumed the data (x1, t1), . . . , (xn, tn) represent a sample from the population and that the sample size n is
fixed. An alternative framework involves assuming that initial events are generated from a (non-homogeneous) Poisson
process with rate h(t) at time t, the delays T are independent of the initial event times, and we observe all N individuals
for whom X + T ≤ τ 2. Now N is a random variable with N ∼ Poisson(αC), where α = �τ

0h(t) dt and C = C(λ, θ) =�τ
0fX (x

′; λ)FT (τ − x′; θ) dx′. Also, conditional on N = n, (X1, T1), . . . , (Xn, Tn) are i.i.d. with distribution given by equa-
tion (1) with fX (x) = h(x)/α. Hence the joint distribution of (N , X1, T1, . . . , XN , TN ) is

fN ,X1,T1,...,XN ,TN (n, x1, t1, . . . , xn, tn) =
αn exp (− αC)

n!

×
∏n
i=1

fX (xi)fT (ti) I(xi + ti ≤ τ),

which gives rise to the likelihood function

L2 = L2(α, λ, θ) = αn exp {− αC(λ, θ)}
∏n
i=1

fX (xi; λ)fT (ti; θ). (6)

Kalbfleisch and Lawless2 show that the maximum likelihood (ML) estimates and observed and estimated Fisher
Information for (λ, θ) are the same whether they are obtained from L1 or L2. Thus, θ (and λ) can be estimated from
whichever of these likelihoods is most computationally convenient, even if the assumption that the initial events are gen-
erated from a Poisson process does not hold (as might be the case, for example, if the initial events occur in clusters).

Applications.
Kalbfleisch and Lawless2 illustrate the use of L2. They estimate the distribution of time T from infection to onset of AIDS in
blood transfusion patients. A common assumption is that at the beginning of an epidemic, cases arise from a Poisson
process with rate h(t) = λ0 exp (λt). This means that α = λ0{ exp (λτ)− 1}/λ and fX (x; λ) = λ exp (λx)/{ exp (λτ)− 1}.
Kalbfleisch and Lawless make this assumption and assume that T has a Weibull distribution. They obtain the ML estimate
of (λ, θ) using a Fisher scoring algorithm. Another example of the use of L2 is given by Cox and Medley,11 who estimate
the distribution of the time T taken for an AIDS diagnosis to be reported to the Communicable Disease Surveillance Centre.
They allow the rate of AIDS diagnoses to be increasing sub-exponentially, by using h(t; λ) = λ0 exp (λ1t + λ2t2), and test
the null hypothesis that λ2 = 0. They consider several parametric models for the distribution of the reporting delay T .

Salje et al.7 use equation (1), the basis of the likelihood L1, to estimate fT (t), but do not use ML. In their application, T is
the time from hospitalisation with COVID-19 to death. They assume fX (x), the distribution of hospitalisation times in the
population, is known and model f ∗T (t) as a mixture of an exponential distribution and a log normal distribution. They esti-
mate the parameters of this mixture distribution by finding the values that minimise the sum of squared differences between
the distribution of fT (t ∣ X + T ≤ τ) implied by equation (1) and the observed distribution of delays T in the sample.

Modelling the distribution of T
Parametric modelling.
A third likelihood function that can be used to estimate θ comes from factorising fX ,T (x, t ∣ X + T ≤ τ) as fX (x ∣ X + T ≤
τ) × f ∗T (t ∣ T ≤ τ − x) and using only the second factor. This yields the likelihood

1644 Statistical Methods in Medical Research 31(9)



L3 = L3(θ) =
∏n
i=1

f ∗T (ti; θ)

F∗
T (ti; θ)

=
∏n
i=1

fT (ti; θ)

FT (τ − x; θ)

For example, if we assume T ∼ Gamma(θ1, θ2), then

L3 =
∏n
i=1

tθ1−1
i exp (− θ2ti)�τ−xi

0 t′(θ1−1) exp (− θ2t′) dt′
. (7)

We might refer to L3 as the ‘conditional-on-initial (event time)’ likelihood. The issues regarding the identifiability of F∗
T (t)

that were discussed in section ‘Parametric modelling of joint distribution of X and T ’ continue to apply when L3, rather
than L1, is used.

Non-parametric modelling
L3 is also the basis of a non-parametric estimator, F̂ (NP)

T (t), of FT (t). This estimator is obtained by applying the familiar
Kaplan-Meier estimator in reverse-time, that is, to τ − T . By reversing time, right truncation of T (i.e. T must be
≤ τ − X ) becomes left truncation of τ − T (i.e. τ − T must be ≥ X ). Left truncation (or ‘late entry’) is easily handled
by the original Kaplan-Meier estimator (or more accurately, the Lynden-Bell3 estimator, which extends the
Kaplan-Meier estimator to handle left truncation). For simplicity, we shall now describe the estimator F̂ (NP)

T (t) for discrete
T ; Lagakos et al.12 describe the corresponding estimator for continuous T .

Let Dj =
∑n

i=1 I(Ti = j) be the number of delays observed to equal j (j = 0, . . . , τ), and let Mj =
∑n

i=1 I(Ti ≤ j ≤ τ −
Xi) be the number of delays observed to be at most j in those individuals whose truncation time τ − X is such that a delay of
j would have been observed. Let Ĝj = Dj/Mj, which is a consistent estimator of P(T = j ∣ T ≤ j), the hazard in reverse
time (the usual hazard in forward time is P(T = j ∣ T ≥ j)). Since P(T ≤ t ∣ T ≤ τ) = P(T ≤ t ∣ T ≤ t + 1)×
P(T ≤ t + 1 ∣ T ≤ t + 2) × . . . × P(T ≤ τ − 1 ∣ T ≤ τ),

F̂ (NP)
T (t) =

∏τ
j=t+ 1

(1− Ĝj) (8)

is a consistent estimator of FT (t). F̂
(NP)
T (t) is asymptotically normally distributed and its variance can be consistently

estimated using the following adaptation of the Greenwood formula for the variance of the Kaplan-Meier estimator 12:

V̂ar{F̂ (NP)
T (t)} = {F̂ (NP)

T (t)}2 ∑τ
j=t+1 Dj/{Mj(Mj − Dj)}. 95% confidence limits for F̂ (NP)

T (t) can be calculated as

exp (− exp [K̂(t) ± 1.96 ×√V̂ar{K̂(t)}]), where K̂(t) = log {− log F̂ (NP)
T (t)} and V̂ar{K̂(t)} = { log F̂ (NP)

T (t)}−2∑τ
j=t+ 1 Dj/{Mj(Mj − Dj)}. This guarantees that the confidence interval lies within the interval [0, 1].
An alternative way to calculate the same estimator F̂ (NP)

T (t) is to define Yx,t (for x = 0, . . . , τ; t = 0, . . . , τ − x) as the
number of sampled individuals with X = x and T = t and fit the model Yxt ∼ Poisson{ exp (λx + θt)}. Now
F̂ (NP)
T (t) = ∑t

j=0 exp (θ̂j)/
∑τ

j=0 exp (θ̂j), where θ̂j is the ML estimate of θj
1. Obtaining an estimate of the variance of

F̂ (NP)
T (t) this way is, however, more difficult.
The non-parametric estimator F̂ (NP)

T (t) can be used to check the fit of a parametric model for T . When doing this, it is
important to compare F̂ (NP)

T (t) with the parametric estimate of FT (t), rather than of F∗
T (t). For example, if we maximise the

likelihood L3 given by equation (7), we obtain both an estimate of F∗
T (t) = P(T ≤ t), the distribution function of a gamma

distribution, and an estimate of FT (t) = F∗
T (t)/F

∗
T (τ) = P(T ≤ t ∣ T ≤ τ), the distribution function of a truncated gamma

distribution. F̂ (NP)
T (t) should be compared with the latter.

It is important to notice that only the Mτ individuals with X = 0, and hence a truncation time of τ, contribute to the
calculation of Ĝτ. Therefore, if Mτ is small, Ĝτ will have large variance, which causes F̂ (NP)

T (t) also to have large variance
not just for t = τ but for all values of t. In this case, it is advisable to choose a value τ∗ < τ such thatMτ∗ is reasonably large
and replace the estimator F̂ (NP)

T (t) of FT (t) by F̂ (NP.τ∗)
T (t) = ∏τ∗

j=t+1 (1− Ĝj), which is an estimate of P(T ≤ t ∣ T ≤ τ∗).

Relative efficiency of likelihoods L1 and L3
Unlike L1 (or equivalently L2), L3 does not require a model fX (x; λ) to be specified for the distribution of the initial event
times. This eliminates the risk that such a model may be misspecified. However, it has the disadvantage that some of the
information in the data is being discarded, which makes L3 less efficient than L1, especially when τ is small. Brookmeyer
and Gail13 found that the ML estimator of θ based on L3 could be considerably less asymptotically efficient that the esti-
mator based on L3 when the density of X is known. Jewell14 and Kalbfleisch and Lawless2 also comment that the loss of
efficiency from using L3 can be considerable. In section ‘Study of ARE of estimators’ we carry out a more extensive study
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of relative efficiency, comparing: (i) L1 treating the distribution of X as known; (ii) L1 treating this distribution as unknown;
(iii) L3; and (iv) the likelihood L4 described in section ‘Modelling the distribution of X given Y ’.

A simple example illustrates the information that L1 uses but L3 does not. Suppose X and T are discrete, with X equal to
either 0 or 1 and T equal to either 0 or 1, and τ = 1. We observe 10 individuals with (X , T ) = (0, 0), 10 individuals with
(X , T ) = (0, 1), and no individuals with (X , T ) = (1, 0). If we use L3, we would estimate fT (0) = fT (1) = 0.5. Now
suppose that we know that fX (0) = fX (1) = 0.5. Unlike L3, L1 uses this information. Since we have only observed indivi-
duals with X = 0, it seems likely that there are quite a few individuals with X = 1 whom we have not observed. Since we
have not observed them, they must all have T = 1. This suggests that fT (1) > 0.5.

In section ‘Parametric modelling of joint distribution of X and T ’, we considered the use of L1 only with parametric
models. If X and T are discrete variables (possibly formed by discretising continuous variables), the distribution of X
can instead be modelled non-parametrically. Writing λ = (λ0, . . . , λτ), with λx = fX (x), L1 then becomes

L(NP)1 = 1∑τ
x=0 λx FT (τ − x′); θ

( )n ∏n
i=1

λxi fT (ti; θ). (9)

Here, FT (t; θ) can be a non-parametric or parametric model. Kalbfleisch and Lawless2 show that the ML estimate of θ

obtained from L(NP)1 is identical to that obtained from L3. This is true whether T is modelled parametrically or non-
parametrically and regardless of how finely time (if continuous) is discretised. This shows that when L1 is more efficient
than L3, this greater efficiency comes from the modelling assumptions L1 makes about the marginal distribution of X .

Modelling the distribution of X given Y
Verity et al.5 proposed a fourth likelihood function, which arises from factorising fX ,T (x, t ∣ X + T ≤ τ) as fY (y ∣ X + T ≤
τ) × fX (x ∣ Y = y), where y = x+ t, and using only the second factor. This factor can be written as

fX (x ∣ Y = y) = fY (y ∣ X = x; θ) × fX (x; λ)�y
0fY (y ∣ X = x′; θ) × fX (x′; λ) dx′

(10)

They assume that the initial events follow a Poisson process with rate h(t) = λ0 exp (λt) and that T ∼ Gamma(θ1, θ2).
Equation (10) then becomes

fX (x ∣ Y = y) = (y− x)θ1−1 exp {− θ2(y− x)} × exp (λx) × I(x ≤ y)�y
0(y− x′)θ1−1 exp {− θ2(y− x′)} × exp (λx′) dx′

= tθ1−1 exp (− θ2t) × exp (− λt) × I (t ≤ y)�y
0t
′(θ1−1) exp (− θ2t′) × exp (− λt′) dt′

.

= tθ1−1 exp {− (θ2 + λ)t}�y
0t
′(θ1−1) exp {− (θ2 + λ)t′} dt′

,

which is the density of a truncated gamma distribution with shape θ1, rate θ2 + λ and truncated to [0, y]. This gives the
likelihood

L4 = L4(λ, θ) =
∏n
i=1

tθ1−1
i exp {− (θ2 + λ)ti}�yi

0 t
′(θ1−1) exp {− (θ2 + λ)t′} dt′

(11)

We might refer to L4 as the ‘conditional-on-final (event time)’ likelihood. It is evident from equation (11) that only θ1 and
θ2 + λ are identified. Practical use of L4 therefore requires that λ be known.

Verity et al.5 analysing data on 24 COVID-19 deaths that occurred in China very early in the epidemic, assumed λ = 0.14
per day and estimated that the mean time from onset of symptoms to death was 19 (95% CI 16–50) days. They did not
explain why they used L4, rather than L1. In view of the small sample, it was probably impractical to estimate both λ and
θ. However, L1 could have been used instead, also with λ fixed at 0.14. The appeal of L4 may have been ease of use: it
is just the likelihood of a truncated gamma distribution. Another advantage of L4 relative to L1, which may have been rele-
vant, is that the former is a valid likelihood no matter how individuals are sampled, provided that the sampling probabilities
depend only on Y . Validity of L1 as a likelihood requires a simple random sample of individuals with X + T ≤ τ.

Equation (11) is derived from the assumptions that fX (x) ∝ exp (λt) and T has a gamma distribution. The
‘conditional-on-final’ likelihood could also be derived from other assumed distributions for X and T , but would not
have the form of a truncated gamma distribution.
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Study of ARE of estimators
We carried out a study of the AREs of the ML estimators of the expected delay, E(T ), based on (i) L1 with known λ (‘Lkwn1 ’),
(ii) L3, and (iii) L4 (with known λ), all relative to the ML estimator based on (iv) L1 with unknown λ (‘Lest1 ’). We assumed
fx(x) ∝ exp (λx) and T ∼ Gamma(θ1, θ2), and considered multiple scenarios defined by different combinations of values of
λ, θ1, θ2 and τ. For the distribution of X , we used λ = 0, 0.035, 0.07, 0.14 and 0.28. For the distribution of T , we used
θ1 = 1, 2, 5 and 10, and set θ2 = θ1/19, so that T has mean E(T ) = 19. The mean of 19 (days) was chosen because it
was the estimate calculated by Verity et al. (2020) early in the COVID-19 pandemic. τ was varied from 10 to 60. Note
that the AREs are invariant to the choice of E(T ) = 19, in the sense that they do not change if λ and θ2 are both multiplied
by some constant and τ is divided by the same constant (keeping θ1 unchanged).

To calculate an ARE, we first calculated the asymptotic variance of each of the four ML estimators of θ = (θ1, θ2). Then
we obtained the corresponding asymptotic variance of each of the four ML estimators of E(T ) using the Delta Method. The
ratio of the asymptotic variances of two estimators of E(T ) is their ARE. The formulae used for these calculations are given
in the Supplemental Materials.

Figure 1 shows the results. Each row corresponds to a different value of λ; each column, to a different value of θ1.
The x-axis of each graph represents τ and the y-axis represents the ARE. The ARE of Lkwn1 (relative to Lest1 ) varies from
slightly over 1.0 to about 1.4. It increases with λ; it also increases with τ, at least when τ ≤ 30. The ARE of L3 (relative
to Lest1 ) varies from 0.67 to almost 1. It decreases with increasing λ or θ1, and mostly increases with τ. In particular, it is
close to 1 when X is uniformly distributed (λ = 0) and T is exponentially distributed (θ1 = 1), and is 0.67 when λ = 0.28,
θ1 = 10 and τ = 10. When X is uniformly distributed (λ = 0), L4 has exactly the same efficiency as L3 (see Supplemental
Material for proof). However, as λ increases, L4 becomes relatively more efficient, and approaches the efficiency of Lkwn1 ,
especially for larger values of τ.

We also calculated the AREs for the ML estimators of the median of T . These were almost identical to the AREs for the
expectation, E(T ) (see Supplemental Material).

Estimating and testing covariate effects
Let Z be a covariate or vector of covariates. We assume, unless stated otherwise, that Z is independent of X . We may be
interested in testing whether T is independent of Z and/or estimating the effect of Z on T .

Parametric models
A parametric model f ∗T (t ∣ Z = z; β) can be specified for the distribution of T given Z. For example, T might be assumed to
have a gamma distribution with logE(T ∣ Z) = β0 + β1Z and shape parameter β2. Then β = (β0, β1, β2) can be estimated
by maximising L1, L2 or L3. Just as in the case with no covariates (section ‘An equivalent likelihood’), the ML estimate
and Fisher information for β obtained from L1 and L2 are identical.

2If Z is a function of X , this same method can still be
applied using either L1 or L3. A likelihood ratio test or Wald test can be used for the null hypothesis that one or more ele-
ments of the vector β equal zero.

Kalbfleisch and Lawless2 give an example of using L2 with a Weibull regression model for the effect of age Z on time T
from HIV infection to AIDS diagnosis.

Semi-parametric models

Brookmeyer and Liao15 propose a generalisation of the discrete-time estimator F̂ (NP)
T (t) to estimate covariate effects. Fit

the τ binomial regression models g{P(T = j ∣ T ≤ j ≤ τ − X , Z = z) = β0j + β1z (j = 1, . . . , τ) simultaneously, where

g is a specified link function. Let β̂0j and β̂1 denote the resulting estimates. Then calculate F̂T (t ∣ Z = z)

= ∏τ
j=t+1 {1− g−1(β̂0j + β̂1z)}. In the absence of covariates, this is equivalent to F̂ (NP)

T (t). Brookmeyer and Liao recom-

mend using the complementary log link, g(p) = log {− log (1− p)}, because the model then implies FT (t ∣ Z = z) = {FT

(t ∣ Z = 0)}exp (β1z), which provides an interpretation of β1. The null hypothesis that β1 (or a subvector of a vector β1) equals
zero can be tested using a likelihood ratio test or Wald test. This method can also be used when Z is a function of X .

Kalbfleisch and Lawless16 extend the method of Brookmeyer and Liao to continuous time and derive score tests of the
null hypothesis that β1 = 0. Following a similar approach, Lagakos et al.12 had earlier described a log rank test for testing
independence of T and a binary covariate Z.

Seaman et al. 1647



The Poisson regression approach to calculating F̂ (NP)
T (t), described in section ‘Non-parametric modelling’, is extended

by Brookmeyer and Damiano1 to perform a likelihood ratio test of the global null hypothesis that β1 = 0. This is done by
including interaction terms in the Poisson model. This approach is less useful, however, for testing whether a set of cov-
ariates is conditionally independent of T given another set of covariates or for estimating covariate effects. 15

Proportional hazards models
A common assumption in both parametric and semi-parametric models for a time-to-event outcome is that hazards are pro-
portional. Brookmeyer and Liao’s15 semi-parametric model, described in section ‘Semi-parametric models’, assumes pro-
portional hazards, but in reverse time. This differs from the usual proportional hazards assumption, which is in forward time
and states that hazard ratios β1 are constant over time and 1− F∗

T (t ∣ Z = z) = {1− F∗
T (t ∣ Z = 0)}exp (β1z). Brookmeyer

Figure 1. For each of five values of λ and of four values of θ1, graph shows the asymptotic relative efficiency (ARE) of the estimator of

E(T) based on (i) Lkwn1 (solid line), (ii) L3 (broken line) and (iii) L4 (dot-dash line) all compared to (iv) Lest1 . The x-axis of each graph is τ and
the y-axis is the ARE.
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and Liao’s model implies that when β1z > 0 (respectively, β1z < 0), the (forward-time) hazard ratio comparing Z = z to
Z = 0 is initially greater (less) than one and decreases (increases) monotonically over time, becoming equal to one at
time τ − 1.

Finkelstein et al.17 show that the (forward-time) proportional hazards assumption suffices to identify F∗
T (τ), provided

that the hazard ratios of the covariates in the model do not all equal zero. When the hazard ratios all equal zero, F∗
T (τ)

is not identified, just as in the non-parametric case with no covariates. Finkelstein et al. describe how to fit the semi-
parametric proportional hazards model by ML. Provided that the hazard ratios of the covariates do not all equal zero,
this provides estimates of the hazard ratios and F∗

T (τ). Unfortunately, the identification of F∗
T (τ) relies entirely on the pro-

portional hazard assumption. If this does not hold, the estimate of F∗
T (τ) can be heavily biased. Moreover, if there is only

one covariate Z in the model, its hazard ratio is estimated very imprecisely. Finkelstein et al. discourage the use of their
method for estimating F∗

T (τ) or the hazard ratio of a single covariate. When there are multiple covariates with non-zero
hazard ratios in the model (and possibly additional covariates with zero hazard ratio), Finkelstein et al. find that these
hazard ratios can be estimated more precisely. However, it is unclear how big might be the effect of a small violation
of the proportional hazards assumption on the bias of these estimates when FT (τ) < 1. Alioum and Commenges18

suggest that when there is only one covariate, its hazard ratio could be estimated twice, once with F∗
T (τ) fixed at its

lowest value considered plausible, and once at its highest plausible value. However, the resulting range of hazard ratios
in their example is very wide.

Perhaps the main use of Finkelstein et al.’s method is for hypothesis testing with multiple covariates. Brookmeyer and
Liao (1990), Lagakos et al. (1988) and Brookmeyer and Damiano (1989) described simpler hypothesis testing methods.
However, if one wants to test whether one set of covariates is independent of T given another set of covariate, then
Lagakos et al.’s log rank test cannot be used, and although the binomial regression model of Brookmeyer and Liao or

Figure 2. Distribution of symptom onset times in the sample of 304 individuals.
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the Poisson model of Brookmeyer and Damiano could be used, the parameters in these models do not have interpretations
as standard hazard ratios, whereas those in Finkelstein et al.’s model do.

Finkelstein et al.’s method involves estimating the baseline hazard. Vakulenko-Lagun et al.19 propose a simpler Cox
regression approach with inverse probability weighting. This uses a modification of the Cox partial likelihood, which
does not depend on the baseline hazard. This method involves weighting the observed individuals so that they represent
both themselves and those individuals who were not observed because of the right truncation. The method requires either
that F∗

T (τ) = 1 or that F∗
T (τ ∣ Z = 0) is known. If F∗

T (τ ∣ Z = 0) is unknown, a sensitivity analysis can be performed, ana-
lysing the data using a range of plausible values of F∗

T (τ ∣ Z = 0). This method can be applied using the R package coxrt.
We are not aware of software being available for implementing Finkelstein et al.’s method.

Application to COVID-19
The first case of COVID-19 in the UK was reported on 30 January 2020. Public Health England (PHE) receives reports
every day of COVID deaths from National Health Service England, the Demographics Batch Service (DBS) and Health
Protection Teams (HPT). DBS and HPT also report date of symptom onset, when available, for these deceased individuals.
Here we illustrate some of the methods discussed above using data available early in the epidemic, specifically at 9 April.
We estimate the distribution of time (‘delay’) from symptom onset to death and investigate the effects of sex and age on this
distribution. This is intended only as a simple illustration of methods; results should be interpreted with caution.

To allow for reporting delays, we exclude deaths occurring between 6 and 9 April; around 80% of deaths are reported
within 4 days. 20Of the remaining 7415 deaths, the symptom onset date was known for 316 (4.3%). Of these 316, we
excluded 12 because of missing sex or age. The remaining 304 constitute the sample we shall use. 180 were male and
124 female; 25 were aged under 65, 33 aged 65–74, 100 aged 75–84, and 146 were aged over 85. Figure 2 shows the dis-
tribution of onset times X . The distribution is skewed, with most onsets being in the second half of March. This reflects
exponential growth in the early phase of the epidemic. The earliest observed onset date was 1 February (time zero); the two
individuals with onset on that day have the maximum truncation time of τ = 64 days. Only 13 other individuals have onsets
before 2 March (time 30), and so truncation times τ − X greater than 34 days; most truncation times are less than 20 days.

The mean delay in the sample is 7.1 days (range: 0–52 days). As only those who die by 5 April can be included in the
sample (right truncation), the mean in the population could be much greater. Using the R package flexsurv, 21 we estimated
the distribution of delays in the population by fitting two parametric models: a gamma distribution and a log normal dis-
tribution. Each was fitted in four ways: by maximising L1 with unknown λ (‘Lest1 ’), L1 with known λ (‘Lkwn1 ’), L3 and L4. For
Lkwn1 and L4, we assumed λ = 0.14, the estimate calculated early in the epidemic by Verity et al.5. Figure 3 shows the esti-
mates of the survival distribution (i.e. 1− F∗

T (t)). These are quite diverse. For example, estimated survival at 30 days varies
from 0.21 to 0.88. However, as expected, these estimates are all greater than the proportion (0.02) of the sample who have
delays greater than 30 days. The estimates from the log normal model are systematically greater than those from the gamma
model, and all estimates have wide associated confidence intervals. For a given model, the estimates from L3 and Lest1 are
similar to one another, and those from Lkwn1 and L4 are almost identical to one another. This is perhaps not surprising, given
our findings in section ‘Study of ARE of estimators’ for the gamma distribution. There we found that: (1) when λ ≥ 0.07,
L3 and Lest1 have similar asymptotic efficiency, unless τ is small compared to the mean delay E(T ); and (2) L3 and Lest1 have
similar asymptotic efficiencies when λ < 0.14 and the shape parameter of the gamma distribution equals 1. For the COVID
data, the estimates of E(T ) from the gamma model varied from 19 for L3 or Lest1 to 36 for Lkwn1 or L4, and the estimates of the
shape varied from 1.16 to 1.24.

For both the gamma and log normal models, the estimates of λ from Lest1 were 0.11 (95% CI 0.09–0.12). The difference
between this estimate and the assumed value of λ = 0.14 used by Lkwn1 and L4 may explain why the estimates of survival
from Lest1 and L3 are lower than those from Lkwn1 and L4. Compared to λ = 0.11, λ = 0.14 implies a later average onset time,
E(X ), in the population, and hence a higher proportion of people in that population that have delays too long to be sampled
(T > τ − X ). This implied greater extent of right truncation implies a greater difference between the mean delay in the
sample and the mean delay in the population.

We used the non-parametric estimate of survival conditional on T ≤ τ∗, that is, 1− F̂ (NP)
T (t), to assess the fit of the para-

metric models. To avoid having wide confidence intervals for F̂ (NP)
T (t), we used τ∗ = 31. This ensures that at leastMτ∗ = 20

individuals had truncation times of τ∗ days. Figure 4 compares 1− F̂ (NP)
T (t) with the corresponding parametric estimates of

survival conditional on T ≤ τ∗, that is, with the estimates of 1− FT (t)/FT (τ∗). The fit of the models using Lest1 and L3 is
reasonable during the first 15 days, but less good thereafter. The fit when Lkwn1 or L4 is used is considerably worse, pre-
sumably because the data do not support the choice of λ = 0.14. Note that the difference between the conditional (on
T ≤ τ∗) survivor curves estimated from the gamma model and the corresponding estimates from the log normal model
is much less obvious than the differences between the corresponding unconditional survivor functions (shown in
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Figure 3). This illustrates the point made in sections ‘Identifiability’ and ‘A joint-conditional likelihood’ that two models
can give similar estimates of FT (t) and yet very different estimates of F∗

T (t).
Next we fitted the gamma and log normal models with sex and age group (0–64, 65–74, 75–84 and ≥ 85) as covariates,

again using the R package flexsurv. This was done using the likelihood L3; flexsurv does not currently allow L1 or L4 to be
used with covariates. The gamma (respectively, log normal) model assumes that the log rate (respectively, mean of the log
delay) is a linear function of the covariates. Delays were estimated to be longer for males than females and for younger than
for older people. Both effects were borderline-significant in the gamma model. Neither was significant in the log normal
model, although age was found to be significant when a trend test was used (see Supplemental Materials).

If the gamma or log normal model is misspecified, tests of covariate effects may not be valid. Brookmeyer and Liao’s
method allow tests that do not depend on parametric assumptions. Using this method, we found again that delays are longer
for males and younger people. Neither effect reached statistical significance, although age was significant when a trend test
was used (see Supplemental Materials).

Finally, we used Vakulenko-Lagun’s et al.’s Cox regression method. This requires that either F∗
T (τ) = 1 or we specify a

value for F∗
T (t ∣ Z = 0). Figure 3 suggests it is unlikely that F∗

T (τ) is close to 1. Using the R package coxrt, we fitted the
model that included the covariate sex, varying F∗

T (t ∣ Z = 0) over the full range from 1.0 to 0.1, where here Z = 0 means
male. The method uses inverse probability weighting to account for the right truncation, with the weights being functions of
a Kaplan-Meier estimate of the truncation time distribution. As explained in the Supplemental Materials, this Kaplan-Meier
estimate could not be calculated for our data set, until we excluded the 12 individuals with onset times before 1 March. This
makes 1 March the new time zero, and so τ now equals 36. Figure 5 shows how the estimated log hazard ratio associated
with being female changes as P(T ≥ τ ∣ Z = 0) = 1− F∗

T (τ ∣ Z = 0) changes. Females are estimated to have a greater

Figure 3. Estimated survival curves from the gamma model (left) and log normal model (right), obtained using likelihoods Lest1 , Lkwn1 , L3
and L4. Dotted lines represent 95% confidence intervals (Estimates using Lkwn1 and L4 are so close they may be hard to distinguish.).
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hazard than males (and hence shorter mean delay) and the estimated log hazard ratio increases as P(T ≥ τ ∣ Z = 0)
increases. However, the confidence intervals, calculated using 1000 bootstrap samples, indicate that this effect is not sig-
nificant, at least not until P(T ≥ τ ∣ Z = 0) = 0.1. There were convergence problems: the percentage of bootstrap samples
for which convergence was not achieved was 0.0% when P(T ≥ τ ∣ Z = 0) is 0.2 or less, 0.3% when it is 0.3, 1.4% when it
is 0.5, 3.1% when it is 0.7, and 7.9% when it is 0.9. This may make the estimated confidence intervals unreliable for the
largest values of P(T ≥ τ ∣ Z = 0). We also tried to fit the model with age group, both as a four-level unordered categorical
variable and an ordinal categorical variable with linear effect, but the fitting algorithm did not converge. We could,
however, fit the model with age as a binary variable, although again with some convergence problems in the bootstrap
samples (see Supplemental Materials).

Discussion
We have considered ML estimation of the marginal distribution of the delay T , using four likelihoods. Likelihoods L1 and
L2 are based on the joint distribution of T and the time of the initial event X ; L3 on the distribution of T given X ; and L4 on
the distribution of T given the time of the final event Y = X + T . Estimates from L1 and L2 are identical. L3 has the advan-
tage of not requiring a model for fX (x) but the disadvantage of yielding the least efficient estimates. L4 requires fX (x) to be
known exactly. When fX (x) is known, L1 is more efficient than L4. L1 also has the advantage over L4 that it can be used
when fX (x) is a function of unknown parameters. However, L4 has the advantage that, unlike L1 and L3, it yields valid esti-
mates even when the sampling probabilities depend on the actual values of Y , rather than only on whether Y ≤ τ.

Figure 4. Comparison of non-parametric estimate (step function) of survival conditional on delay being less than 31 days with

corresponding estimates from the gamma model (left) and log normal model (right). Dotted lines represent 95% confidence intervals

for the non-parametric estimate. Estimates using Lkwn1 and L4 are so close that they are shown by a single line, and estimates using Lest1

and L3 are so close that they may be difficult to distinguish.
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In our study of asymptotic efficiency, we found the ARE of L3 relative to L1 varied between 0.67 and 1 when fX (x) was
unknown. Because L3 does not use information on fX (x), these AREs became more marked when fX (x) was known, varying
between 0.58 and 0.92. AREs of 0.67 and 0.58 correspond to reductions in sample size of 33% and 42%, respectively.
These AREs were calculated assuming a gamma distribution for the delay and exponential growth over time in the
number of initial events. In the early phase of an epidemic, the assumption of exponential growth may be tenable, but
it is unlikely to hold later on. More research on the AREs when X and T have other distributions is warranted, as well
as on finite-sample relative efficiencies.

The non-parametric estimator, F̂ (NP)
T (t), of the delay distribution has the attraction of not requiring distributional assump-

tions. It does, however, only estimate the distribution of T conditional on T ≤ τ; the unconditional distribution of T is
estimable only by using parametric assumptions. One use of F̂ (NP)

T (t) is to assess the fit of parametric models over the
range t ∈ [0, τ]. However, the confidence intervals associated with F̂ (NP)

T (t) may be very wide at the beginning of an epi-
demic, when the numbers of sampled individuals with large truncation times τ − X may be small.

To estimate the effects of covariates on the delay, and to test whether these effects are non-zero, L1 or L3 can be used
with parametric models. Brookmeyer and Liao’s (1990) semi-parametric model can also be used, particularly for the
purpose of testing whether the effect of a single covariate is zero. The semi-parametric Cox regression method of
Vakulenko-Lagun et al. (2019) allows hazard ratios of covariates to be estimated under a standard proportional hazards
assumption. However, it does assume that the covariates are independent of the truncation time τ − X , and hence of X .
Moreover, it requires that F∗

T (τ) be equal to one or that an interval can be specified within which F∗
T (τ) is believed to

lie. As this interval becomes wider, the uncertainty in the hazard ratios increases. We also had some convergence problems
when fitting these models to the COVID-19 data (section ‘Application to COVID-19’).

The R package flexsurv can be used to fit parametric models using L1, L3 and L4, and also to calculate F̂ (NP)
T (t).

Brookmeyer and Liao’s (1990) method can be applied using any software for fitting generalised linear models. The R
package coxrt applies the method of Vakulenko-Lagun et al. (2019). We have focussed on ML estimation, but also

Figure 5. Estimate of log hazard ratio associated with sex=female as a function of P(T ≥ τ ∣ sex=male). Dotted lines indicate 95%

confidence limits calculated by bootstrap; these may be unreliable when P(T ≥ τ ∣ sex=male) is large (see text).
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Bayesian analyses can be carried out using the likelihoods L1, L2, L3 and L4. Indeed, the analysis of Verity et al. (2020) was
Bayesian, using L4 with informative priors.

In addition to being right-truncated, Y may be censored. This is easily handled in parametric models by replacing f ∗T (ti)
in L1 and L3 by F∗

T (t
U
i )− F∗

T (t
L
i ), where [t

L
i , t

U
i ] is the interval within which individual i’s delay is known to lie. If individual

i is left-censored, tLi = 0; if right-censored, tUi = ∞. The estimator F̂ (NP)
T (t) is easily extended to allow left censoring of Y .

22The non-parametric estimator of FT (t) under general censoring of both X and Y and right truncation of Y is described by
Sun.23Alioum and Commenges (1996) generalise Finkelstein et al.’s (1993) method to allow interval censoring of Y .
Double truncation (i.e. simultaneous left and right truncation) of Y is addressed by, among others.4,24,25,18,23,26,27The R
package DTDA 28 can be used to calculate the non-parametric estimator of FT (t) when Y is double truncated (it can
also be used when Y is only right-truncated, but calculating F̂ (NP)

T (t) using equation (8) is faster). Brookmeyer and
Gail13 showed that when Y is double-truncated and the distributions of X and T are modelled parametrically, the efficiency
gain from using L1 rather than L3 to estimate fT (t) could be considerably greater than the efficiency gains we showed in
section ‘Study of ARE of estimators’. In the Supplemental Materials, we extend our study of ARE to double-truncated
data and replicate Brookmeyer and Gail’s finding.

FT (t) and F∗
T (t) describe the distribution of T in the population of individuals who will (eventually) experience the final

event. They do not describe what proportion of the population will never experience the final event. An alternative sam-
pling mechanism randomly samples individuals who experience any one of a number of mutually exclusive types of final
event by time τ. For example, one might have a random sample from the population of individuals who develop COVID-19
symptoms and go on to die or recover by time τ. This situation of competing risks and right truncation is discussed by
Hudgens et al.29 and de Una-Alvarez,30 who describe how to estimate cumulative incidence functions. These functions
describe what proportion of individuals who die or recover by time τ will die by time t and what proportion will
recover by time t (t ≤ τ).

In addition to the problems of right-truncation, censoring and competing risks, other issues can complicate the estima-
tion of a time-to-event distribution early in an epidemic. Overton et al.31 describes some of these, which include the pos-
sibility that some individuals who experience the final event leave the country before being detected, changes over time in
the definition of the final event or in the format of the data being collected, and delays in reporting the final event.
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