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Abstract

RIP140 is a transcriptional coregulator, (also known as NRIP1), which finely tunes the activity of various transcription
factors and plays very important physiological roles. Noticeably, the RIP140 gene has been implicated in the control
of energy expenditure, behavior, cognition, mammary gland development and intestinal homeostasis. RIP140 is
also involved in the regulation of various oncogenic signaling pathways and participates in the development
and progression of solid tumors. During the past years, several papers have reported evidences linking RIP140 to
hematologic malignancies. Among them, two recent studies with correlative data suggested that gene expression
signatures including RIP140 can predict survival in chronic lymphocytic leukemia (CLL). This review aims to
summarize the literature dealing with the expression of RIP140 in CLL and to explore the potential impact of this
factor on transcription pathways which play key roles in this pathology.
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Introduction
Chronic lymphocytic leukemia
Chronic lymphocytic leukemia (CLL) is the most common
form of leukemia in Western countries and mainly affects
elderly individuals. CLL is characterized by the accumula-
tion of malignant mature B cells in bone marrow, blood
and lymphoid tissues. The clinical course of CLL is ex-
tremely heterogeneous, with many patients presenting an
indolent disease, whereas others exhibit an aggressive
pathology and require treatment [1,2].
The diagnosis of CLL is based on biological criteria in-

cluding the presence of a chronic lymphocytosis (≥5.109/L)
with a typical phenotype characterized by a κ or λ light
chain restriction, the co-expression of B cell markers
(CD19, CD20, CD22 with a low density, CD23) with the
CD5 antigen (in the absence of other pan-T cell markers)
and the expression of additional markers like CD200 or
CD43 [3]. These characteristics are also sufficient for the
distinction between CLL and other mature B cell disorders
such as prolymphocytic leukemia, hairy-cell leukemia,
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mantle-cell lymphoma, or other lymphomas that can
mimic CLL.
CLL has previously been considered as a single entity

with a variable clinical course. Recently, there has been
considerable progress in the identification of molecular
and cellular markers that may predict disease progression
in patients with CLL [2]. Particularly, mutational profiles
of Ig genes and cytogenetic abnormalities have been dem-
onstrated to display a strong prognostic value (see below).
The transcription factor RIP140
The transcription cofactor RIP140 (receptor-interacting
protein of 140 kDa), known as nuclear receptor-interacting
protein 1 (NRIP1), was first identified in human breast
cancer cells through its interaction with the estrogen
receptor α [4]. RIP140 was also shown to interact with
many other nuclear receptors and transcription factors
(for a review see [5]). RIP140 mainly acts as a transcrip-
tional repressor by means of four inhibitory domains (see
Figure 1) that recruit histone deacetylases or C-terminal
binding proteins [6,7]. Moreover, several post-translational
modifications, such as sumoylation and acetylation, play
important roles in controlling the subcellular location and
repressive activity of RIP140 (for a review [8]). RIP140 is
an ubiquitously expressed gene, located on chromosome
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Figure 1 Structure of the RIP140 gene and protein. Schematic representations of the RIP140 gene and protein (not scaled). (Top panel) The
two promoters are shown together with the four exons (E1 to E4) which are represented by small rectangles, the blue one corresponding to the
RIP140 coding sequence. (Middle panel) The box represents the RIP140 molecule showing the four different repressive domains (RD). (Bottom
panel) The different nuclear signaling pathways either inhibited (−) or stimulated (+) by RIP140 are indicated.
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21 in humans, whose transcription is finely regulated at
the transcriptional level [9,10]. The RIP140 gene exhibits
two promoters and several exons, the last one encompass-
ing the whole coding sequence (see Figure 1).
The physiological importance of RIP140 has been eval-

uated using mice devoid of the RIP140 gene (RIPKO
mice). These animals are viable but display a wide range
of phenotypic alterations in various tissues and organs,
such as infertility of female mice [11] or reduced body
fat content [12]. A more recent work demonstrated that
they suffer severe cognitive impairments [13]. Besides
these important physiological roles, RIP140 has recently
been shown to regulate key oncogenic signaling pathways
that impact cancer initiation and progression [14-16].

RIP140 and hematopoietic stem cells
Hematopoietic stem cells (HSCs) are rare and multipo-
tent, self-renewing precursor cells which are able to gener-
ate all specialized cells of the blood system [17]. A precise
regulation of HSC proliferation and cell fate decisions is
necessary to maintain ongoing production of mature
blood cells throughout adult life and for rapid, regenera-
tive responses to hematologic injury. Several studies indi-
cated the importance of active maintenance of HSC stem
cell function and identified genes that perturb HSC quies-
cence and disrupt stem cell maintenance and homeostatic
Table 1 Expression of the RIP140 gene in the different hemat

Cell type T cells B cells

RIP140 relative expression 100 576

The expression levels of the RIP140 gene were determined in normal granulocytes
as percent of levels measured in T cells.
(Adapted from [22]).
blood cell production [18,19]. Many of these genes encode
transcription factors or cell cycle regulators that directly
modulate the proliferative activity of HSC.
By using gene expression microarray and systems biology

tools, a functional network reconstruction was performed
in cord blood CD133+ HSCs in order to identify genes
involved in stemness [20]. The RIP140 gene was found
highly expressed in HSC, as well as in mesenchymal and
neural stem cells. Another study identified the RIP140 gene
as being downregulated in mobilized HSC compared to
HSC at steady-state [21]. The same report described a
decrease in RIP140 expression in leukemic HSC obtained
from the bone marrow of Jun B-deficient mice (a model of
chronic myelogenous leukemia) as compared to HSC from
wild-type mice. Altogether, these data suggested that
RIP140 might be an important factor required for the
maintenance and function of normal quiescent HSC.
Concerning its expression in the different hematopoietic
cellular types, a study reported a low RIP140 gene expres-
sion in T cells and the highest expression level in NK cells
[22] (see Table 1).

RIP140 as a prognostic marker in CLL
Genetic aberrations such as recurrent losses or gains of
chromosomal material as well as mutations of key tumor
suppressors have been identified in CLL. Approximately
opoietic cellular types

Monocytes NK cells Granulocytes

453 1,825 138

and FACS-sorted monocytes, B cells, T cells and NK cells. Values are expressed



Figure 2 Prognostic value of RIP140 in CLL patients. (A) Patients
of the Herold’s cohort (n = 107) were ranked according to increasing
RIP140 expression and a maximum difference in OS was obtained
with an expression cutoff of 7.49 using the Maxstat R function. (B)
Low RIP140 expression is associated with a shorter time to the first
treatment in CLL patients. The data were normalized using the robust
multichip average (RMA) method and Affymetrix gene expression
data are publicly available via the online Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE22762, and GSE25571.

Table 2 Main studies describing the deregulation of the
RIP140 gene expression in CLL

Reference Date Number of
CLL patients

Association with
VH mutation

Correlation
with survival

Haslinger et al. [28] 2004 100 Yes –

Vasconcelos
et al. [29]

2005 145 Yes –

Oppezzo et al. [30] 2005 127 Yes –

Van’t veer
et al. [22]

2006 130 NS NS

Herold et al. [27] 2011 151 Yes Yes

Samra et al. [32] 2014 107 Yes Yes

NS not significant.

Lapierre et al. Journal of Hematology & Oncology  (2015) 8:20 Page 3 of 6
80% of CLL cases exhibit aberrations in a few recur-
rently affected chromosomal regions. These aberrations
are important “drivers” of the disease and are also con-
sidered as prognosis biomarkers. CLL has turned out to
be a multifaceted disease with pathogenic mechanisms
including genetic aberrations, antigen processing, and
microenvironmental interactions. As a consequence, there
is a remarkable heterogeneity in the clinical course among
patient subgroups with distinct genetic features.
According to the mutation status of immunoglobulin

heavy chain variable gene segments (IGHVs), CLL patients
can be classified in two groups displaying a very different
clinical course [23]. Patients with an unmutated IGHV
genetic profile show an unfavorable evolution, whereas
patients with mutated IGHV have a better prognosis.
Other poor prognostic markers in CLL are the chromo-
somal deletion at 11q (TP53 locus) or 17p (ATM locus).
Concerning patients with del(11q), the poor outcome of
is overcome by chemoimmunotherapy with fludarabine,
cyclophosphamide, rituximab (FCR) [2]. More recently,
recurrent mutations of NOTCH1, SF3B1, and TP53 have
been shown to be associated with an adverse prognostic
impact in CLL [24]. With the development of micro-
array technology and transcriptomic analyses, additional
markers such as zeta-associated protein 70 (ZAP70),
lipoprotein lipase (LPL), CLL upregulated 1 (CLLU1),
transcription factor 7 (TCF7), T cell leukemias/lymphoma
(TCL1A), or a disintegrin and metalloprotease domain 29
(ADAM29) have been characterized [25,26].
RIP140 was first identified as a CLL prognostic factor

in a gene expression-based study using a cohort of 130
patients [22]. Furthermore, the RIP140 gene was shown
as being part of a recently reported eight-gene expression
signature which defined a risk score for CLL patients
[27]. Low expression of RIP140 is associated with poor
prognostic value for overall survival (OS) and time to
treatment requirement (Figure 2). Although no studies
have exclusively been focused on RIP140 in CLL, several
other published data reported the deregulation of RIP140
gene expression in this pathology (Table 2). Many of these
studies showed its differential expression with regard to
IGHV mutational status [28-30]. In the study of van’t Veer
et al., it was observed that deletion 17p13, associated with
short treatment-free intervals, was more frequent in
RIP140 negative cases. Similarly, deletion 11q22, which is
accepted as an indicator of unfavorable prognosis [31],
was only seen in RIP140 negative cases [22]. More re-
cently, some of us reported a new gene expression-based
risk score in CLL specimens corresponding to 20 genes
(22 probe sets), whose expression splits patients of two
independent cohorts into two risk categories [32]. Inter-
estingly, the RIP140 expression kept prognostic value in
multivariate COX analysis leading to a new risk stratifica-
tion of patients with CLL.
Finally, emerging evidence indicates that the stromal
tumor microenvironment plays important roles in the
pathogenesis and progression of CLL. The expression of
stromal-associated genes has been evaluated using gene
expression profiling [33]. Interestingly, the NRIP1 gene
was found to be underexpressed in cells isolated from
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peripheral blood, bone marrow, and lymph nodes from
CLL patients in comparison with healthy donors.

Effect of RIP140 on key signaling pathways in CLL
Since its identification as an estrogen receptor binding
protein [4], RIP140 has been characterized as a partner for
many transcription factors involved in major oncogenic
signaling pathways (Figure 1). Although no published
studies support that RIP140 alters the biology of CLL,
some of the pathways targeted by RIP140 are highly
relevant in CLL biology.

Effect on NF-κB signaling
In CLL, NF-κB has been found to be activated regardless
of the disease stage or treatment status [34] and to confer
survival benefit through induction of anti-apoptotic pro-
teins including XIAP, BCL-XL, and FLIP [35]. In particular,
RelA binding complexes have been demonstrated to be
constitutively active in peripheral blood samples of CLL
patients, their activation being dependent on the action of
the transcription activator signal transducer and activator
of transcription-3 (STAT3) [36]. More recently, a role for
RelB and RelA has been demonstrated by studying B cells
isolated from bone marrow aspirates of CLL patients. RelB
activity appeared not only to sustain tumor cell survival but
also to enhance cell sensitivity to proteasome inhibitor [37].
More generally, the canonical and non-canonical NF-κB
pathways seem to cooperate to CLL progression.
Noticeably, Zschiedrich et al. have reported that RIP140

establishes direct protein-protein interactions with the
NF-κB subunit RelA and functions as a coactivator for
proinflammatory cytokine gene promoter transcription in
macrophages [38]. This coactivator function of RIP140 for
NF-κB activity relies on the cooperation with histone
acetylase cAMP-responsive element binding protein
(CREB)-binding protein (CBP). Treatment of macrophages
by TLR ligands such as LPS increased Syk-mediated tyro-
sine phosphorylation of RIP140 and its interaction with
RelA. This also induced the recruitment of the E3 ligase
SCF to Syk-phosphorylated RIP140, thus conducting to
the degradation of RIP140 and to inactivation of genes
encoding inflammatory cytokines [39].

Regulation of Wnt signaling
The Wnt signaling pathway plays a crucial role in the
specification and development of hematopoietic stem
cells and their microenvironment [40]. There is a grow-
ing body of evidence that Wnt signaling, known to play
a critical role in various types of cancer, also exerts a key
function in B lymphoid malignancies, particularly in
CLL [41]. Wnt proteins are overexpressed in primary
CLL cells and several physiological inhibitors are partly
inactivated in this pathology [42]. Furthermore, the tran-
scription factor lymphoid enhancer binding factor-1
(LEF-1) is highly overexpressed in CLL cells, as compared
to normal B cells [43]. Moreover, LEF-1 controls several
genes relevant in CLL biology and several components of
the Wnt signaling pathway significantly influence CLL cell
survival. Salinomycin treatment was shown to inhibit Wnt
signaling and induce apoptosis of CLL cells [44]. Nitric
oxide-donating acetylsalicylic acid (known to present anti-
tumor effect in Wnt active cancers) induced apoptosis of
primary CLL cells and reduced significantly tumor growth
in a CLL xenograft murine model [45].
Interestingly, our laboratory has recently reported that

RIP140 was a key regulator of the Wnt signaling pathway
in mouse and human intestinal epithelial cells [16].
RIP140 increases the transcription of the APC gene pro-
moter, the major tumor suppressor gene in colon cancer.
As a consequence, RIP140 inhibits β-catenin activation,
resulting in decreased expression of Wnt target genes
including c-Myc, c-Jun, endothelin-1, or jagged-1. In CLL,
endothelin-1 was demonstrated to promote survival and
chemoresistance through endothelin receptor A [46].

Effect on other signaling pathways
RIP140 regulates other signaling pathways highly relevant
for CLL biology. Indeed, RIP140 has been identified and
characterized as a major partner for nuclear receptors
[4,5] which have been shown to be key players in CLL.
For instance, high-dose glucocorticoids are used in the
treatment of CLL patients [47] and the nuclear recep-
tor PPARα seems to be involved in the resistance to
glucocorticoid-mediated cytotoxicity [48]. Another study
reported that B-CLL cell survival/viability was decreased
as a result of LXR agonist treatment [49]. In addition, the
majority of patients with CLL exhibit a significant expres-
sion of ERβ, suggesting that this nuclear receptor might
be relevant in CLL and used as therapeutic target [50].
Obviously, other signaling pathways important for CLL
biology such as p53, Notch, or Hedgehog [51] could be
also controlled by RIP140 and further work is needed to
uncover and decipher these putative regulatory activities.

Expression of RIP140 in other types of leukemia
Few studies have analyzed the deregulation of the RIP140
gene expression in other hematological diseases. RIP140
expression has been found to be significantly upregulated
in acute myeloid leukemia (AML) with complex karyo-
types and abnormal chromosome 21 [52]. By contrast,
RIP140 levels are decreased in acute promyelocytic
leukemia (APL), a subtype of AML most commonly char-
acterized by the fusion of the retinoic acid receptor α gene
to the promyelocytic leukemia (PML) gene [53,54].
The NRIP1 gene has also been involved in genomic

translocations. Array comparative genomic hybridization
analysis performed on a patient diagnosed with a precur-
sor B cell acute lymphocytic leukemia (ALL) with the t
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(9;22) translocation, identified the NRIP1 gene as being
interrupted at the breakpoints of 21q21.1, and joined
with the UHRF1 gene at 19p13.3 as a possible fusion gene,
5′-NRIP1/UHRF1-3′ on the derivative chromosome 19
[55]. Another paper described a breakpoint of t(3;21) (q26;
q11) that was assigned to be within the EVI1 and NRIP1
gene and generate a putative NRIP1-EVI1 fusion protein
[56]. Finally, another fusion event involving the NRIP1
gene was reported with the open reading frame C21orf34
(also at 21q21 approximately 1 MB apart) in a patient with
chronic myelomonocytic leukemia [57]. The fusion took
place just upstream of miR-125b-2 and was validated by
capillary sequencing. Altogether, these data suggest that
the NRIP1 gene could be involved in the pathogenesis of
different types of leukemia.

Conclusion and future directions
Data clearly suggest that a high expression of RIP140 is
a favorable prognostic marker in CLL. However, further
work is needed to demonstrate that RIP140 alters CLL
biology and to define precisely which signaling pathways
are critically regulated by this transcription factor and
account for its prognostic value. Several nuclear signal-
ing pathways, including Wnt and NF-κB, are known to
be regulated by RIP140 and could be good candidates.
In addition, cell models for CLL [58,59] and other types
of leukemia [60] have been established and will be useful
to define the role of RIP140 at the cellular level. Finally,
the use of mouse models with loss and gain of function
will be valuable to decipher the role of this gene in
normal and tumoral HSC biology.
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