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ABSTRACT

Drug repurposing, or repositioning, is to identify new uses for existing drugs. Significantly 
reducing the costs and time-to-market of a medication, drug repurposing has been an 
alternative tool to accelerate drug development process. On the other hand, ‘real world 
data (RWD)’ has been also increasingly used to support drug development process owing 
to its better representing actual pattern of drug treatment and outcome in real world. In 
the healthcare domain, RWD refers to data collected from sources other than traditional 
clinical trials; for example, in electronic health records or claims and billing data. With 
the enactment of the 21st Century Cures Act, which encourages the use of RWD in drug 
development and repurposing as well, such increasing trend in RWD use will be expedited. 
In this context, this review provides an overview of recent progresses in the area of drug 
repurposing where RWD was used, by firstly introducing the increasing trend and regulatory 
change in the use of RWD in drug development, secondly reviewing published works using 
RWD in drug repurposing, classifying them in the repurposing strategy, and lastly addressing 
limitations and advantages of RWDs.

Keywords: Drug Repurposing; Real World Data; Electronic Health Record; 21st Century 
Cures Act

INTRODUCTION

Drug repurposing
Drug repurposing, or repositioning, is to identify new uses for existing drugs [1]. 
Significantly reducing the costs and time-to-market of a medication as compared to a 
de-novo drug development, it has been an alternative tool to accelerate drug development 
process [2].

Repurposing approaches can be divided into experimental screening and in silico 
approaches, where in silico approaches are also called computational approaches.

Experimental screening uses in-depth high-throughput screening skill to screen known 
molecules either approved or failed with some knowledge about safety or the mode of action [3].
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in silico approaches are based on the knowledge of drug activity and disease pathophysiology. 
It can be divided into knowledge-based, signature-based, and phenotype-based repurposing, 
where knowledge-based repurposing includes target-based, pathway-based, and targeted 
mechanism-based repurposing. These repurposing approaches were extensively addressed in 
the previous publication [4].

While in-silico methods do not require experimental work and are therefore cost-effective, 
their analytics are still within the molecular domain, limited in accurately predicting 
clinical outcomes.

Advent of RWD in drug development
In the healthcare domain, the term ‘real world data (RWD)’ refers to data collected from 
sources other than traditional clinical trials, including electronic health records (EHRs), 
claims and billing data, and registries among others [5-7].

RWD contains detailed patient information such as disease status, treatment, treatment 
outcomes, and comorbidities that are tracked longitudinally. The information generated 
from RWD provides important real-world evidence (RWE) to inform patient care, safety 
surveillance, therapeutic development, outcomes research, and comparative effectiveness 
studies [8].

While randomized controlled trials (RCTs) are gold-standards in drug development, besides 
the high cost and long development time, there have been more fundamental limitations as 
follows. The first limitation is the generalizability. Due to strict selection criteria, patients 
with conflicting comorbidities and/or co-medications are excluded, ending up with a very 
low representation of a specific subpopulation. Second, RCTs are highly controlled and 
patients should visit a clinic at a fixed time specified in the protocol, which in reality patients 
can hardly abide by. Therefore, RCTs do not accurately predict actual patterns of drug use in 
clinical practice.

In contrast, RWD does not suffer from the issue of cost and time, and is not constrained by the 
above limitations also. RWD studies based on EHRs guide clinical researches at a very little 
cost and does not have strict selection criteria, so broader populations and/or subpopulations 
of patients can be included. It provides information that represents the way most of the 
population receives the care. Clinical studies performed in the routine care environment help 
understand better how medicines behave when people have multiple diseases and use multiple 
medications. Accordingly, there has been an increasing trend toward using RWD instead of 
clinical trial data or in conjunction with it to inform medical decisions.

The key difference is that RWE, which is derived from analysis of RWD, informs effectiveness 
and safety in larger populations with greater power, allowing real life behaviour to be 
possible, with patients of co-morbidities and co-medications included.

Noticing such importance of RWD in drug development, the 21st Century Cures Act was 
enacted into the US law in December 2016, which aims to accelerate the FDA drug and 
medical device approval processes by replacing some of the data requirements from clinical 
trials with observational data or RWD settings [9]. It also placed additional focus in the area 
of drug repurposing, encouraging the use of RWD in getting the approval of new indications 
or label expansions for approved drugs.
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These regulatory changes in the USA have become a basis to increase opportunities to use 
RWD in drug development, leading to FDA guidance on the use of EHR data [5] as well as 
guidance on incorporating RWD into regulatory submissions [10].

With this background, this paper will review the works that used RWD for drug repurposing.

METHODS

Literature search on the works that used RWD for drug repurposing revealed that drug 
repurposing was performed using different strategies, in terms of the modality of database 
used; either single modal database (EHR or another RWD or genomics), multimodal 
database (i.e., the combination of different modalities of data or multi-omics data), or 
multimodal database including animal data for validation. In this context, this section 
reviews the previous works, classifying them in the database modality used as follows.

Repurposing using single modal database
Recent evidence showed that, in patients treated with metformin, cancer survival increases 
[11,12] while cancer risk decreases [13], which suggests a repurposing hypothesis that 
metformin could be used as an antineoplastic agent.

Xu et al. [14] conducted a retrospective study to validate the above hypothesis. In their work, 
automated informatics methods including natural language processing (NLP) were applied to EHR 
data to identify patient cohorts and medication information, and then it was assessed whether 
metformin can be repurposed to cancer treatment. They found that metformin decreased mortality 
after cancer diagnosis compared with diabetic and nondiabetic cancer patients not on metformin. 

In the work of Visanji et al. [15], using ML methods the authors have performed a 
computational analysis of published literature to rank several existing antihypertensive drugs 
that are predicted to reduce alpha synuclein oligomerization. Then, to provide evidence of a 
possible disease modifying effect in Parkinson's disease (PD), they analyzed RWD consisting 
of a cohort of individuals with incident hypertension, which was constructed using IBM 
MarketScanâ Research Databases containing healthcare claims information, and identified 
angiotensin receptor blockers in combination with dihydropyridine calcium channel blockers 
as a combination of potential disease-modifying effect in PD.

In another clinical drug repurposing study using EHR data, Kuang et al. [16] developed a 
ML-based drug repurposing approach, called baseline regularization, to predict the effects of 
drugs on different physical measurements such as fasting blood glucose to identify potential 
repurposing. They used the continuous self-controlled case series problem to solve for the 
pathway solution [17].

Wu et al. [18] proposed detecting drug repurposing signal by screening the effect of 
noncancer drugs on the survival of cancer patients using two large EHRs at Vanderbilt 
University Medical Center (VUMC) and Mayo Clinic. Based on EHR data at VUMC, they 
showed that, among 146 noncancer drugs analyzed, 22 drugs of 6 drug classes (statins, 
β-blockers, α-1 blockers, angiotensin-converting enzyme inhibitors, proton pump inhibitors, 
nonsteroidal anti-inflammatory drugs) improved overall cancer survival. When their results 
were replicated using EHR data at Mayo Clinic, 9 of the 22 drugs were validated.
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Ozery-Flato et al. [19] and Laifenfeld et al. [20] presented a framework that systematically 
analyzes real-world longitudinal data for a large cohort of patients. Using causal inference 
methodology, the framework emulates a maximal number of RCTs based on observed 
healthcare data, while adjusting for selection and confounding biases. They applied the 
proposed framework in drug repurposing for PD to identify candidates for disease-modifying 
effects on PD progression. Constructing cohorts of PD patients sampled from medical 
databases, Explorys SuperMart (N = 88,867) and IBM MarketScan Research Databases (N = 
106,395), they conducted an observational study and applied causal inference methods to 
estimate the effectiveness of 218 drugs on delaying dementia onset as a marker for slowing 
PD progression. As a result, they found that rasagiline, prescribed for PD motor symptoms, 
and zolpidem, a psycholeptic, are effective for delaying PD progression in both datasets.

Repurposing using multimodal database
Brilliant et al. [21] combined EHR and insurance claim data to support the protective 
potential of L-DOPA (Levodopa) against age-related macular degeneration (AMD), which 
was found in their previous work illustrating that L-DOPA activates GPR143 expressed in the 
retinal pigment epithelium, such that GPR143 signaling may protect from AMD [22,23].

The authors demonstrated that AMD was significantly delayed in patients receiving L-DOPA 
prescription compared with those not treated and found that the odds ratio for AMD 
development was significantly negatively correlated with L-DOPA use.

The work by Goldstein et al. [24] investigated associations between EHR phenotypes and 
genetic variants to identify drugs that could prevent or treat gestational diabetes mellitus 
(GDM). Identifying 129 active drugs and 196 genes associated, which are considered safe in 
pregnancy, they extracted 37,380 patients' data that include DNA samples and analyses from 
Vanderbilt University Medical Center's EHR, with patients de-identified using the Synthetic 
Derivative. Using the Illumina Infinium Human Exome Bead Chip that represents 306 SNPs 
in 130 genes among 196 genes of interest, they tested for associations between GDM and/or 
type 2 diabetes (DM2). A routine 50-gram glucose tolerance test (GTT) was also performed to 
test for the association with glucose tolerance during pregnancy. They found 11 drug classes 
had an association between their target genes and GDM/DM2. For changes in GTT, they 
found 6 drug classes were associated. Two drug classes, L-type calcium channel blocking 
antihypertensives (CCBs) and Serotonin receptor type 3 (5HT-3) antagonist antinausea 
medications, were identified in both analyses, where the former produced a decrease and the 
latter an increase in glucose level during GTT. In conclusion, CCBs were identified as a drug 
class considered safe in pregnancy and effective in preventing or treating GDM while 5HT-3 
antagonists may worsen glucose tolerance.

In the work of Zhou et al. [25], an integrated drug repurposing strategy was presented for 
opioid use disorders (OUD) that integrates computational prediction, clinical corroboration 
using EHRs and mechanisms of action analysis. First, building a drug side effect-gene (DSEG) 
computational drug prediction system, the top 20 drug candidates to treat OUD were predicted. 
Second, using patient EHR data, for each of the top 20 candidate drugs, a retrospective case-
control study was performed to evaluate the odds ratio for remission comparing the exposure 
group versus the comparison group in which both groups suffered OUD. Here, for EHR data, 
de-identified population-level data collected by the IBM Watson Health from 360 hospitals 
and 317,000 providers were used, which represented 20% of the US population. Five drugs of 
tramadol, olanzapine, mirtazapine, bupropion, and atomoxetine were selected as they were 
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associated with increased odds of OUD remission. Third, for the 5 repurposed drugs selected, 
genetic and pathway enrichment analysis showed that OUD-associated target genes include 
BDNF, CYP2D6, OPRD1, OPRK1, OPRM1, HTR1B, POMC, and SLC6A4, and target pathway 
includes opioid signaling, G-protein activation, serotonin receptors, and GPCR signaling.

Similarly combining drug–target interaction prediction and clinical corroboration, 
the authors applied another integrated drug repurposing strategy to identifying novel 
repositioned candidate drugs for Alzheimer's disease [26].

Repurposing using multimodal database including animal data
Nagashima et al. [27] conducted FAERS (FDA adverse event reporting system) analysis 
to search for a coexisting drug that can reduce the hyper-glycaemia risk of atypical 
antipsychotics. They found that a vitamin D analogue can significantly decrease 
quetiapine–induced adverse events relating hyper-glycaemia. Through signaling pathway 
and gene expression analyses, they showed quetiapine-induced downregulation of Pik3r1. 
They validated their results using a mouse model. These results suggest that, when co-
administered, vitamin D can prevent antipsychotic-induced hyperglycaemia by reducing 
insulin resistance by PI3K upregulation.

Based on the assumption that similar drugs can treat similar diseases, Paik et al. [28] 
generated disease and drug pair similarity scores in genomics and EHR-extracted lab test 
data, independently. As a result, terbutaline sulfate, a β2-adrenoceptor agonist widely used 
for the treatment of asthma, was identified as a candidate for treatment of amyotrophic 
lateral sclerosis (ALS), on the one hand based on similarity between terbutaline sulfate and 
ursodeoxycholic acid, but on the other hand based on similarity between Kawasaki syndrome 
and ALS. Then, to validate the potential therapeutic benefit of terbutaline sulfate for ALS, 
using a zebrafish ALS model, prevention of defects in axons and neuromuscular junction 
degeneration was demonstrated.

DISCUSSION

As seen in the Methods section, the previous works using RWD in repurposing illustrates 
various repurposing strategies with different modalities of database used, which might be 
taken into account as a guide in designing a repurposing study at a given scope of data. It is 
noticeable that, when single modal RWD was used, another RWD (of the same modality) was 
also used for the validation purpose [14,18,19]. While most of the works tried to validate their 
repurposing results with another modality of data (e.g., results obtained from EMR were 
validated using genomic or multi-omic data or vice versa), it is hardly found that validation 
was made in human or in clinical trials. This is also true for the work validated with animal 
data [28].

One essential limitation with RWD studies is that many RWD sources have the data quality 
issue, associated with data inconsistency such as selection bias and missing data as in RWD 
collection across different data sources is usually heterogeneous and entails the lack of 
standardization and harmonization [29].

Nevertheless, on top of basic advantages addressed in the Introduction section, there are 
several advantages with RWD studies, some of which are described in the following:
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First, if RWD incorporated, clinical trials can be simulated more realistically. Traditionally, 
clinical trial simulation (CTS) uses virtual populations to test various trial designs before 
conducting the actual clinical trial [30]. CTS incorporating RWD can simulate virtual 
populations more realistically.

Furthermore, the recent development of emulating trials with RWD [19, 20] enables the 
unbiased estimation of casual relationships [31]. Thus, if the traditional CTS approach is 
combined with the concept of modern trial emulation, different assumptions of a clinical 
trial can be systematically tested, which can be used to inform future trial design and produce 
RWD based causal results [32].

Another emerging trend of RWD approach to facilitate the drug development process is 
linking EHRs with other modality of data such as biobank data to better understand drug-
phenotype and drug-gene relations [24,25,28].

Finally, the establishment of large observational research network would facilitate the sharing 
of RWD. One such example is found in Observational Health Data Sciences and Informatics 
(OHDSI) consortium [33].
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