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Abstract: Polymers with different structures and morphology have been extensively used to construct
functionalized surfaces for a wide range of applications because the physicochemical properties of
polymers can be finely adjusted by their molecular weights, polydispersity and configurations, as well
as the chemical structures and natures of monomers. In particular, the specific functions of polymers
can be easily achieved at post-synthesis by the attachment of different kinds of active molecules such
as recognition ligand, peptides, aptamers and antibodies. In this review, the recent advances in the
bioanalytical and biomedical applications of polymer modified substrates were summarized with
subsections on functionalization using branched polymers, polymer brushes and polymer hydrogels.
The review focuses on their applications as biosensors with excellent analytical performance and/or
as nonfouling surfaces with efficient antibacterial activity. Finally, we discuss the perspectives and
future directions of polymer modified substrates in the development of biodevices for the diagnosis,
treatment and prevention of diseases.

Keywords: branched polymers; polymer brushes; polymer hydrogels; substrates; bioanalytical and
biomedical applications

1. Introduction

Polymers, including synthetic polymers, semi-synthetic polymers and biopolymers,
have been demonstrated as a valuable tool for tuning the physicochemical properties
of a surface [1–17]. Polymer modified substrates have been extensively applied in vari-
ous fields such as biomedicine, food safety, environment protection and microelectron-
ics, because the polymers with high molecular weight provide multiple options for the
immobilization of bioactive molecules with diverse functionalities and various labeling
probes suitable for different detection principles [3–17]. In the presence of properly se-
lected reactive groups, including hydroxyl, carboxyl, aldehyde and amine on polymer
chains, bioactive compounds can be easily immobilized on the polymer surfaces through
covalent reactions and non-covalent interactions. For instance, antibodies can be effi-
ciently immobilized on the surface of hydrophilic polymer brush, poly(2-hydroxyethyl
methacrylate-co-2-carboxyethyl acrylate) (p(HEMA-co-CEA)) modified substrate through
a simple 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydroxysuccinimide
(EDC/NHS) chemistry [18]. Furthermore, the native bioactivities of biological compounds
can be preserved by reducing steric constraints and shielding the compounds from hy-
drophobic surface-induced denaturation when these compounds are tethered to a solid
substrate via a polymer [4,15]. In addition, the polymer brushes can not only increase the
loading capacity of antibodies on the substrate surface, but can also provide an antifouling
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layer on the hydrophobic substrate [14–16]. These phenomena result in the significant
improvement of the analytical performance of biosensor.

Careful selection of a constructing technique is a prerequisite for the successful mod-
ification of a substrate with a particular polymer. Several surface methods/strategies,
including wet chemical, self-assembly, ionized gas treatments and UV irradiation, have
been developed to construct polymer modified substrates with reactive sites [4,19–21].
These methods/strategies have their own inherent advantages and disadvantages. For ex-
ample, the wet chemical approach can be achieved in most laboratories without specialized
equipment, which allows for surface functionalization of two- and three-dimensional (2D-
and 3D-) substrates. However, the wet chemical method exhibits poor specificity, which
may not produce repeatable polymer layer modified substrate on a large scale. The self-
assembly strategy can generate an ordered, single molecular polymer layer on the surfaces
of inorganic substrates such as glass or silicon by using organosilanes as crosslinkers, and
on copper, silver or gold by the formation of metal-sulfur covalent bonds. Unfortunately,
the self-assembled polymer monolayer can be decomposed under harsh experimental
environments, including high temperatures and extremely high or low pH values. Ionized
gas treatments, such as oxygen plasma, corona discharge and flame treatment, can generate
finely controlled polymer layer on substrate, but they normally require expensive experi-
mental facilities and well-trained technicians [4,19–21]. The UV irradiations can be used to
generate reactive sites on polymer surfaces and initiate UV-induced graft polymerization
on the substrates [21]. The amount and depth of reactive sites can be adjusted by varying
the parameters of UV irradiation such as wavelength and intensity of light and irradiation
time. However, the treatment consistency of UV irradiation is strongly affected by the
optical properties of polymer.

For bioanalytical and biomedical applications, the bioactive compounds were nor-
mally immobilized on the polymer modified substrates through covalent reactions, ligand–
receptor pairing (e.g., biotin–avidin) and non-covalent adsorptions (e.g., electrostatic in-
teractions and hydrogen bonds) [4,11,15]. Non-covalent adsorption is a simple process
with the benefits of time saving and low cost. However, the non-covalent binding of
a bioactive compound with polymer is not strong enough to yield stable functionalized
surfaces capable of withstanding the harsh experimental conditions of subsequent bio-
logical reactions, resulting in strong non-specific reactions and poor reproducibility. The
biotin–avidin (streptavidin) interaction is attractive in surface bioconjugations because
of the strong affinity of biotin and avidin (streptavidin) and the number of biotinylated
reagents available. Although the covalent attachment is more complex than the electrostatic
interaction or physical adsorption immobilization techniques, the covalent binding of
bioactive compounds with polymer offers high stability and is demonstrated to be quite
robust in complex reaction conditions. In particular, the covalent immobilization can be
used to increase the bioactivity of a biomolecule and prevent its metabolism.

Polymer modified substrates have been utilized with the goal of developing specific
applications of immobilized biomolecules within a wide range of scientific disciplines.
This review focuses on their medical applications as biosensors with excellent analytical
performance and/or as nonfouling surfaces with efficient antibacterial activity. The purpose
of this review is to try to introduce readers to a general view on the recent development of
branched polymer-, polymer brush- and polymer hydrogel-modified substrates and their
representative applications.

2. Branched Polymers

Various dendrimers, including polyamidoamine (PAMAM), poly(propylene imine)
(PPI), poly(ester amides) and phosphorus dendrimers, have been synthesized since the
hyperbranched polymers were first defined by Flory in 1952 [22–25]. Some of these highly
branched polymer modified substrates have been extensively used to construct biosen-
sors and/or as drug carriers because polymers with different core structures, terminal
groups, generations and grades of purity are commercially available [1,11,12,25–40]. For
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instance, Idris et al. developed an electrochemical (EC) immunosensor for the detection of
alpha-feto protein (AFP) through the immobilization of anti-AFP antibodies on the gold
nanoparticles (AuNPs) and the generation of a 3 PPI dendrimer co-modified glassy car-
bon electrode (GCE) [31]. The as-prepared immunosensor exhibited a wide concentration
range, from 0.005 to 500 ng mL−1, with low detection limits (LODs) of 0.0022 ng mL−1

(square wave voltammetry (SWV) measurement) and 0.00185 ng mL−1 (electrochemical
impedance spectroscopy (EIS) measurement). In addition, the EC immunosensor exhibited
good stability over a period of 2 weeks, when it was stored at 4 ◦C. Gu et al. developed
a regenerated EC biosensor combined with an in vivo microdialysis system by using hyper-
branched polyethyleneimine (hPEI) as a regenerated recognition unit for Cu2+ (as shown
in Figure 1) [35]. The EC biosensor was capable of determining Cu2+ with a linear range
from 0.05 to 12 µmol L−1 and a low LOD of 13 nmol L−1. The EC biosensor can be easily
regenerated by thr dissociation of Cu2+ and Cu+ ions using ethylenediaminetetraacetic
acid (EDTA) disodium salt. The EC biosensor has been successfully employed for the
repetitive analysis of Cu2+ in rat brains under global cerebral ischemia/reperfusion events.
Hao et al. developed a microfluidic system for the detection of E. coli O157:H7 through
the immobilization of aptamers against E. coli O157:H7 on the surface of a generation
7 PAMAM modified polydimethylsiloxane (PDMS) microfluidic channel [39]. Due to
a significant increase in the amount of aptamers available on the microfluidic channel
surface, the as-developed microfluidic system exhibited a low LOD of 102 cells mL−1. Very
recently, Tsekeli et al. developed an aptasensor based on a PPI dendrimer-carbon nanofiber
nanocomposite (CNFs-PPI) immobilized GCE for the detection of bisphenol A (BPA) [41].
The amino modified aptamers were immobilized on the CNFs-PPI platform by covalent
bonding using glutaraldehyde as a cross-linker. The as-proposed aptasensor (GCE/CNFs-
PPI/NH-Apt) was able to selectively detect BPA in the range of 1 nmol L−1 to 10 nmol L−1,
with LODs of 0.03 nmol L−1 and 0.06 nmol L−1 obtained from differential pulse voltam-
metry (DPV) and EIS, respectively. The practicability of the GCE/CNFs-PPI/NH-Apt
was demonstrated by the detection of BPA in spiked water samples, which were stored in
a plastic (polycarbonate) bucket. Recoveries between 91.8% and 100.3% were obtained.
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Figure 1. (a) Schematic representation of hPEI modified GCE, (b) EDTA disodium salt-mediated
on-line regeneration of hPEI modified GCE in artificial cerebrospinal fluid (aCSF) solution containing
4µM Cu2+ and (c) concentrations of Cu2+ in rats under normal, ischemia and reperfusion conditions.
Data are expressed as mean±standard error of mean (SEM, n = 6). (Adapted from Gu et al. 2019 [35],
copyright 2019 Elsevier B.V. All rights reserved and reproduced with permission).



Polymers 2022, 14, 826 4 of 21

Because of its unique redox activity, Ferrocene (Fc) has been successfully used to
improve the performance of EC biosensors through the elimination of most electro-active
interferences [42,43]. However, it is difficult to immobilize/adsorb Fc onto the surface of an
electrode [44]. Branching conjugation of Fc with polymer enables the circumvention of this
drawback [44–49]. For instance, Li et al. synthesized a water soluble Fc-terminated hyper-
branched polyurethane (HPU-Fc), which was used for the fabrication of a non-enzymatic
glucose sensor through an electrodeposition process [47]. The as-developed EC sensor
showed a good response to glucose concentration with good stability, favorable accuracy
and high selectivity. Kowalczyk et al. developed an EC immunosensor for the selective de-
tection of C-reactive proteins (CRP) in blood samples by using branched polyethylenimine
(PEI) functionalized with Fc residues (PEI-Fc) as a recognition layer, which allows: (i) cova-
lent binding of an antibody in its most favorable orientation and (ii) voltammetric detection
of the CRP [48]. The PEI-Fc formed a thin, stable and reproducible layer on the electrode
surface through the electrodeposition process. The as-proposed EC immunosensor exhib-
ited a linear range from 1 to 5104 ng mL−1, with low LODs of 0.5 (DPV measurement) and
2.5 ng mL−1 (ESI measurement), which has been successfully employed for the detection
of CRP in rat blood samples. Gan et al. developed an EC biosensor for prolonged con-
tinuous monitoring of free flap failure caused by vascular occlusion after reconstructive
surgery [49]. In this case, FFc-containing chitosan-cografted-branched PEI redox conjugates
(CHIT-Fc-co-BPEI-Fc) were used as a pH-tuneable matrix for the attachment of glucose
oxidase and lactate oxidase on an electrode surface, respectively. The as-developed glucose
oxidase-sensor and lactate oxidase -sensor exhibited good sensitivities, and were found
to be 2.89 (± 0.06) µA/(mmol L−1) (glucose oxidase) and 2.95 (± 0.19) µA/(mmol L−1)
(lactate oxidase), with LODs of 0.047 mmol L−1 (glucose oxidase) and 0.172 mmol L−1

(lactate oxidase), respectively.
Branched biopolymers, including branched peptides (also known as Y-shape pep-

tides), branched DNAs and branched oligosaccharides modified substrates, have also been
used to fabricate biosensors with high analytical performance [50–57]. Luo’s group has been
developing a series of branched zwitterionic peptide-based EC biosensors for the detection
of various targets such as proteins, COVID-19 nucleic acid and cells in the complex bio-
logical samples [51–54]. For example, they fabricated an antifouling interface through the
covalent conjugation of branched zwitterionic peptides onto an electrodeposited polyaniline
film [51]. The branched peptide modified surface exhibited low adsorption of nonspe-
cific proteins and cells. After the immobilization of the mucin1 protein (MUC1) aptamer
as the recognition element, the as-developed EC aptasensor exhibited a linear range of
50 to 106 cells mL−1, with low LOD of 20 cells mL−1, which was used successfully to selec-
tively detect MUC1-positive MCF-7 breast cancer cells in complex samples. Recently, they
developed an antifouling EC biosensor based on all-in-one branched peptides that combine
anchoring, doping, antifouling and recognizing functions, which were immobilized onto
gold nanoparticle modified GCEs (as shown in Figure 2) [52]. After the electrodeposition of
a conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT) on the doping region of
a branched peptide for enhancing the interface conductivity, the as-developed EC biosen-
sor exhibited five orders of magnitude dynamic range (from 0.1 ng mL−1 to 10 mg mL−1

IgG), high stability, excellent selectivity, very low LOD (45 pg mL−1 IgG) and acceptable
accuracy for serum sample analysis. Jeong et al. fabricated a hybrid film for enhancing
the human pluripotent stem cells (hPSCs)-specific EC signals using immobilized AuNPs
and branched arginyl-glycyl-aspartic acid (RGD) peptides onto the gold electrode [55]. By
taking advantage of AuNPs and branched arginyl-glycyl-aspartic acid (RGD) peptides to
increase the adhesion as well as conductibility of hESCs, the as-developed EC biosensor
exhibited a linear range of 25,000 cells to 890,000 cells. Given the advantages of its being
enzyme-free and high-order growth kinetic, its high sensitivity and its simple operation, the
nonlinear hybridization chain reaction (HCR) is regarded as a powerful signal amplifier for
the detection of various biomarkers [58,59]. Recently, Jia et al. developed an ultrasensitive
EC biosensor for the detection of specific DNA based on nonlinear HCR by triggering the
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chain-branching growth of DNA dendrimers on the surface gold electrode [58]. Because
of the high-order growth kinetic of DNA dendrimers on an electrode surface by HCR,
the as-developed EC biosensor exhibited low LOD of 0.4 fmol L−1 and was capable of
discriminating single nucleotide polymorphism (SNP) among concomitant DNA sequences.
Some examples of the bioanalytical and biomedical applications of branched polymers are
summarized in Table 1.
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Figure 2. (a) Schematic representation of the preparation of an all-in-one branched peptide-based
biosensor, (b) DPV responses of the biosensor to target IgG, peak current signal suppression of
the biosensor after incubation with various concentrations of IgG in the absence (c) and presence
(d) of 1.0 mg mL−1 HSA in PBS and (e) assay results of clinical serum samples using the developed
and reference (black column) methods. The differences (%) in these two methods are labelled. The
insets of (c) and (d) show the corresponding calibration curves. (Adapted from Liu et al. 2021 [52],
copyright 2021 The Royal Society of Chemistry. All rights reserved and reproduced with permission).
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Table 1. Some examples of the bioanalytical and biomedical applications of branched polymers
modified substrates.

Polymers Modification
Methods

Detection
Method Analytes Linear Ranges Limit of Detection Ref.

Poly(propylene imine) Electrodeposition SWV and EIS AFP 0.005 to 500 ng mL−1 0.0022 ng mL−1 (SWV) and
0.00185 ng mL−1 (EIS) [31]

Polyethyleneimine Covalent
modification DPV Cu2+ 0.05 to 12 µM 13 nM [35]

Polyamidoamine Covalent
modification Fluorescence E. coli

O157:H7 - 1 × 102 cells mL−1 [39]

Poly(propylene imine) Covalent
modification

EIS, DPV
and CV BPA 1 to 10 nM 0.03 nM (DPV) and 0.06 nM (EIS) [41]

Polyurethane Drop-casting CV Glucose 0.1 to 40 mM 60 µM [47]

Polyethylenimine Electrodeposition CV and ESI CRP 1 to 5 × 104 ng mL−1 0.5 ng mL−1 (CV) and
2.5 ng mL−1 (ESI) [48]

Polyaniline Electrodeposition DPV MCF-7 50 to 1 × 106 cells mL−1 20 cells mL−1 [51]
Poly(3,4-

ethylenedioxythiophene Electrodeposition DPV IgG 0.1 to 1 × 107 ng mL−1 4.5 × 10−2 ng mL−1 [52]

Branched
arginyl-glycyl-aspartic

acid peptides

Covalent
modification DPV

Human
embryonic
stem cells

2.5 × 104 to 8.9 × 104 cells 2.5 × 104 cells [55]

SWV: square wave voltammetry; ESI: electrochemical impedance spectroscopy; DVP: differential pulse voltamme-
try; CV: cyclic voltammetry; BPA: bisphenol A; CRP: C-reactive protein.

3. Polymer Brushes

Polymer brushes are surface-tethered polymer chains forming an extremely thin poly-
mer film, which are normally synthesized through surface-initiated atom-transfer radical
polymerization (SI-ATRP) [2,14,60–62]. Polymer brushes can significantly alter surface
properties because it is easy to introduce massive functional groups to them [61]. Currently,
polymer brushes have been extensively used for anti-biofouling in biosensors and biomedi-
cal equipment, and hold great promise for the development of the next generation of biosen-
sors and diagnostic devices [2,14,60–95]. For example, hydrophilic macromolecules such as
polyethylene glycol (PEG), polyacrylic acid (PAA) and poly(2-hydroxyethyl) methacrylate
(PHEMA) have been grafted onto the substrate surface, providing strong resistance to
protein and algae adhesion [2,14,60–66]. In addition, some examples of the bioanalytical
and biomedical applications of polymer brushes are summarized in Table 2.

Table 2. Some examples of the bioanalytical and biomedical applications of polymer brushes
modified substrates.

Polymers Modification
Methods Detection Method Analytes Linear Ranges Limit of Detection Ref.

Poly(2-hydroxyethtyl
methacrylate) SI-ATRP Electrochemiluminescence OTA 0 to 10 ng mL−1 0.82 ng mL−1 [68]

Poly(oligo ethylene glycol
methacrylate) SI-ATRP SERS Rhodamine 6G - 0.1 fM [70]

Polydimethylsiloxane Covalent
modification CV ROS - - [76]

Polycarboxybetaine
methacrylate and
polysulfobetaine

methacrylate

SIPP Fluorescence BSA - 10 ng mL−1 [83]

Poly(glycidyl methacrylate) SI-ATRP Fluorescence biomolecules - - [92]
Poly(oligo(ethylene glycol)
methyl ether methacrylate SI-ATRP Fluorescence BNP - 0.02 ng mL-1 [93]

Poly(glycidyl methacrylate-
co-2-hydroxyethyl

methacrylate)
SI-ATRP Fluorescence MMPs - 10 pM (MMP-1) [95]

SI-ATRP: Surface-initiated atom-transfer radical polymerization; OTA: ochratoxin A; BSA: bovine serum albumin;
ROS: reactive oxygen species; SIPP: surface-initiated photo-polymerization; BNP: B-type natriuretic peptide;
MMPs: matrix Metalloproteinases.

3.1. Polymer Brush-Based Biosensors

The polymer brush modified substrates have been employed to construct different
biosensors with a high analytical performance [67–76]. Costantini et al. developed an ap-
tasensor for the detection of Ochratoxin A (OTA) in a beer sample by the immobilization of
aptamer on the PHEMA brush modified glass substrate [68]. The stability and specificity of



Polymers 2022, 14, 826 7 of 21

the aptasensor was significantly enhanced by the PHEMA brush. The aptasensor exhibited
high sensitivity (0.32 pA L mg−1) and low LOD (0.82 mg L−1). Greene et al. demonstrated
that an anti-adhesive lubricin brush could be utilized to filter and separate small analyte
molecules from large, potentially fouling molecules [69]. Therefore, the lubricin brush
coated electrode can be used for highly sensitive amperometric/voltametric detection of
small electroactive compounds in highly fouling samples (e.g., 50% diluted blood plasma)
with minimal, immediate impact upon the electrochemistry. Ferhan et al. fabricated 2D- and
3D- assemblies of gold nanorods (AuNRs) on polymer brush (termed as surface-floating
super-aggregates) with high-density and uniform distribution through the immersion of
a poly(oligo ethylene glycol methacrylate) brush-modified substrate in an AuNR solution
without any form of functionalization [70]. The surface-floating super-aggregates exhibited
strong improvement in surface-enhanced Raman spectroscopy (SERS) sensing performance.
The surface-floating super-aggregate-based SERS can be used to detect rhodamine 6G
at as low as sub-femtomolar levels. Very recently, Yang et al. developed an integrated
three-electrode system (ITES) modified with a “liquid-like” PDMS brush for continuously
and stably monitoring reactive oxygen species (ROS) in complex fluids [76]. Benefitting
from the antifouling of PDMS brush, the sensing performance of as-developed ITES with
PDMS (termed as PMITES) could remain stable and free of bacterial attack even after 3 days
of incubation with bacteria. In particular, the PMITES enables the continuous recording
of ROS levels in bacterial rich fluids with excellent stability over 24 h, which opens new
pathways for the continuous and real-time monitoring of biomarkers in complex biofluids.

3.2. Polymer Brush-Based Microarrays

Because of their inherent antibiofouling nature, the fabrication of microarrays on the
polymer brush modified substrates allows biomolecular immobilization and recognition
with low nonspecific interactions, resulting in a significant improvement of the specificity
and reproducibility of microarray [77–95]. In addition, the 3D structure of polymer brush
modified substrates provide a high biomolecule immobilization capacity and accessible
scaffolds with sufficient space for biomolecule binding, leading to an increase in the sensitiv-
ity of microarrays. Sun et al. developed ultra-low fouling microarrays for protein detection,
which included functionalizable polycarboxybetaine methacrylate (pCBMA) grafted arrays
for immobilization of biomolecular probes and a nonfunctionalizable polysulfobetaine
methacrylate (pSBMA) grafted background (as shown in Figure 3) [83]. Both pCBMA and
pSBMA highly resist nonspecific protein adsorption. Due to its strong antifouling property,
the microarray can detect as low as 10 ng mL−1 bovine serum albumin (BSA) in the sample
matrix of bovine serum. In addition, the pCBMA and pSBMA modified substrate can be
used to fabricate surface-tension droplet arrays for surface-directing cell adhesion and
growth. The pCBMA and pSBMA modification provides an excellent antifouling interface
in protein and cell microarrays for possible applications in various bioassays and bioengi-
neering. Hou et al. developed a 3D smart binary polymer-brush pattern on the polymer
substrate for generating multiple cell microarrays by using the thermo-responsiveness
of poly-(N-isopropylacrylamide) (PNIPAM) and the reaction of concanavalin A (Con A)
with poly(D-gluconamidoethyl methacrylate) (PGAMA) [85]. The smart binary polymer-
brush pattern-based multiple cell microarrays exhibited high versatility and specificity.
Very recently, Valles et al. fabricated a novel glycan microarray on the [ethylene gly-
col dimethacrylate] (EGDMA) and pentaerythritol tetrakis(3-mercaptopropionate) (PETT)
copolymer brush, which binds the mannose-specific glycan binding protein, concanavalin
A (ConA), with sub-femtomolar avidity [90]. This finding opens a new era in glycobiology,
where the detection of glycan-binding proteins (e.g., lectins) meets the requirements of
medical and biological events.
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Figure 3. (a) Synthetic strategies for the preparation of pCBMA functionalized surfaces on glass
substrates, (b) schematic diagram of microarrays for cell patterning (left) and protein analysis (right)
by photopolymerization of zwitterionic polymers on glass substrates, (c) detection of fluorescently
labeled BSA on a pCBMA and pSBMA constructed antifouling microarray (scale bar: 100 µm), and
(d) representative microscopy images of MCF-7 cells patterned and grown on GMA grafted squares
for 2 days (scale bar: 100 µm). (Adapted from Sun et al. 2018 [83], copyright 2017 Elsevier B.V. All
rights reserved. and reproduced with permission).

The analytical performance of microarray can be further improved by integrating the
advantages of nanomaterials and polymer brushes [91–96]. Liu et al. developed a sphere-
polymer brush hierarchical nanostructure-modified glass slide (termed as PGMA@3D(160)
substrate) for fabricating high-performance microarrays through growing a poly(glycidyl
methacrylate) (PGMA) brush layer on the 160 nm silica particle-self-assembled mono-
layer coated glass slide [92]. The as-developed PGMA@3D(160) substrate can provide
3D polymer brushes containing abundant epoxy groups for directly immobilizing var-
ious biomolecules such as glycans, DNA and protein detection. As a typical exam-
ple, the interactions of three monosaccharides (4-aminophenyl β-D-galactopyranoside,
4-aminophenyl β-D-glucopyranoside, and 4- aminophenyl α-D-mannopyranoside) with
two lectins (biotinylated ricinus communis agglutinin 120 and biotinylated concanavalin
A from Canavalia ensiformis) have been assessed by PGMA@3D(160) substrate-based
carbohydrate microarrays. The carbohydrate microarrays exhibited good selectivity, strong
multivalent interaction and low LOD in the picomolar range without any signal ampli-
fication, making it a promising platform for bioanalytical and biomedical applications.
Cruz et al. developed a microarray-based point-of-care (POC) diagnostic device by inkjet-
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printed antibodies on a polymer brush (poly(oligo(ethylene glycol) methyl ether methacry-
late) (POEGMA)) modified gold film (as shown in Figure 4) [93]. By the integration of
a sandwich immunoassay microarray within a plasmonic nanogap cavity between gold
film and silver nanocubes, the as-developed microarray can detect as low as 0.02 ng mL−1

B-type natriuretic peptide (BNP), which is an important biomarker for the prognosis and
long-term monitoring of cardiac disease. Jian et al. developed a peptide microarray-based
fluorescence assay for profiling multiple matrix metalloproteinases (MMP-1, -2, -3, -7, -9
and -13) activities in the progression of osteosarcoma (OS, a primary malignant bone tumor)
by immobilization of different peptide substrates on the poly(glycidyl methacrylate-co-2-
hydroxyethyl methacrylate) brush coated zinc oxide nanorod (ZnONR@P(GMA-HEMA)
decorated glass slides [95]. The microarray-based fluorescence assay exhibited excellent
selectivity and sensitivity, which enables the detection of the activities of cellular secreted
MMPs at picomolar level. The result of the peptide microarray-based fluorescence assay
demonstrated that the activity pattern of MMPs in serum is positively relevant to the
progression of OS.
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Figure 4. (a) Schematic representation of a microarray-based point-of-care (POC) diagnostic device by
inkjet-printed antibodies on a polymer brush (POEGMA) modified gold film. Silver nanocubes were
adhered to the assay for enhancement of fluorescence intensity by using an interfacial poly(allylamine
hydrochloride) (PAH) layer. (b) The attachment of silver nanocubes leads to 216-fold fluorescence
enhancement of the capture spots for a 1.9 ng/mL BNP concentration and a 151-fold increase when
compared to a glass control at the same concentration. (Adapted from Cruz et al. 2020 [93], copyright
2020 American Chemical Society All rights reserved and reproduced with permission. The CC-BY-
NC-ND license does not allow third-parties to create derivative works such as translations and only
permits other types of use for noncommercial purposes. For more details on the Creative Commons
license, please visit the Creative Commons website: www.creativecommons.org (The accessed date
of the link: 22 January 2022)).

3.3. Infection Resistance of Polymer Brush Modified Substrates

Bacterial adhesion and biofilm formation have a great impact on the service life of med-
ical devices. It is demonstrated that polymer brush coating can efficiently prevent the adhe-
sion of bacteria on the surface [96–108]. For instance, Ibanescu et al. found that both poly(2-
hydroxy ethyl methacrylate) brush and poly(poly(ethylene glycol)methacrylate) brush
exhibited strong anti-adhesion capability of Staphylococcus epidermidis [96]. Sae-ung et al.
demonstrated that the adhesion of Escherichia coli on a silicon surface was efficiently pre-
vented by a coating of copolymer of methacryloyloxyethyl phosphorylcholine (MPC) and
a methacrylate-substituted dihydrolipoic acid (DHLA) [98]. Su et al. developed an an-
tibiofouling surface through grafted PAA-g-PEG (MW 2000, 6000, and 11,000 Da) on the
plastic and elastomer surface [102]. Comparison with the initial substrate, the PAA-g-PEG
modified substrate, shows excellent and long-lasting antibiofouling properties to resist the
adhesion of algae, demonstrating that the hierarchical comb hydrophilic polymer brushes
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exhibit strong capacity against the adhesion of marine microorganisms. Wang et al. con-
structed two types of polymer brushes with different hierarchical structures (termed as
polyDVBAPS/poly(HEAA-g-TCS) and poly(DVBAPS-b-HEAA-g-TCS)) through integra-
tion of salt-responsive polyDVBAPS (poly(3-(dimethyl(4-vinylbenzyl) ammonio)propyl
sulfonate)), antifouling polyHEAA (poly(N-hydroxyethyl acrylamide)) and bactericidal
TCS (triclosan) onto single silicon wafer surface [103]. Due to a synergistic effect of the
three compatible components, both the polyDVBAPS/poly(HEAA-g-TCS) brush and the
poly(DVBAPS-b-HEAA-g-TCS) brush modified surface exhibited excellent antibacterial
activity, offering a promising strategy to fabricate next-generation infection-resistant sur-
faces for various antibacterial applications. Dhingra et al. systematically studied the
infection resistance of three polymer brushes, namely PHEMA, poly (poly (ethylene glycol)
methacrylate) (PPEGMA) and poly[(2-methacryloyloxyethyl] trimethyl ammonium chlo-
ride) (PMETA) on hydroxyl functionalized polyester substrate [104]. Among the three poly-
mer brushes, PMETA exhibited the highest antibacterial activity, with only ~3% and ~4% ad-
herence of Escherichia coli and Staphylococcus aureus, respectively. Very recently, Wu et al.
fabricated a mixed-charge copolymer brush (#1-A) modified polyurethane (PU) catheter by
using two oppositely charged monomers, the anionic SPM (3-Sulfopropyl methacrylate)
and the cationic AMPTMA ((3-Acrylamidopropyl) trimethylammonium chloride) [106].
The #1-A exhibited 99% reductions against all six Gram-positive and Gram-negative
bacteria including methicillin-resistant Staphylococcus aureus (MRSA BAA38), methicillin-
resistant Staphylococcus epidermidis (MRSE 35984), vancomycin-resistant Enterococcus faecalis
(VRE V583), Pseudomonas aeruginosa PAO1, uropathogenic Escherichia coli (UTI89) and
carbapenem-resistant Acinetobacter baumannii (AB-1).

4. Polymer Hydrogels
4.1. Polymer Hydrogel-Based EC Biosensor

Conducting polymer hydrogels (CPHs) have been extensively used for the devel-
opment of EC biosensors because they have a large specific surface area, good biocom-
patibility and 3D continuous conducting network [109–117]. For instance, Geleta et al.
developed a cost effective, environmentally friendly and disposable EC aptasensor (termed
SPCE/PAM/PA/PDA/Apt) for the detection of Aflatoxin B2 (AFB2) through the im-
mobilization of an AFB2 aptamer (Apt) on a conducting porous polyacrylamide/phytic
acid/polydopamine (PAM/PA/PDA) hydrogel modified screen printed carbon electrode
(SPCE) [112]. The as-developed SPCE/PAM/PA/PDA/Apt exhibited a wide dynamic
range from 0.1 pg mL−1 to 100 ng mL−1 and a low LOD of 0.10 pg mL−1, which was
successfully used to determine AFB2 in spiked corn extracts. Wang et al. developed
an EC biosensor for the detection of human epidermal growth factor receptor 2 (HER2),
a well-known breast cancer biomarker, through the fabrication of an antifouling sensing
interface based on the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and
a biocompatible peptide (Phe-Glu-Lys-Phe functionalized with a fluorine methoxycarbonyl
group, Fmoc-FEKF) hydrogel (as shown in Figure 5) [115]. The as-developed biosensor ex-
hibited a wide linear range from 0.1 ng mL−1 to 1.0 µg mL−1, with a low LOD of detection
of 45 pg mL−1, which was capable of detecting HER2 in human serum with good accuracy.
Ma et al. developed a polypyrrole and vinyl Fc/mono-aldehyde β-cyclodextrin (β-CD)
complex-based EC immunosensor for the detection of motilin [116]. The as-developed EC
immunosensor exhibited a wide linear range of 10 pg mL−1 to 100 ng mL−1, low LOD
of 2.73 pg mL−1 and a highly sensitive response, with the slope value as high as 31.342,
making great sense in the practical diagnosis. Yang et al. developed an EC biosensor by
using a conjugated polypyrrole (PPy) hydrogel with conductive sulfonated multi-walled
carbon nanotubes (s-MWCNTs) as crosslinking agents [117]. Due to the integration of the
advantages of PPy hydrogel and s-MWCNTs, the as-developed EC biosensor enables sensi-
tive in situ detection of biomolecules released from living cells and real-time monitoring of
cell proliferation.
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Figure 5. (a) Schematic description of the fabrication process of the PEDOT/peptide hydrogel-based
HER2 sensor. (b) DPV responses of the HER2 biosensor after incubation in HER2 for a range of
concentrations. Inset: DPV responses after background removal. (c) Corresponding response signal
change of the HER2 biosensor. Inset: calibration curve of the HER2 biosensor. (d) Responses of the
HER2 biosensor to 0.1 mg mL−1 of IgG, CEA, IgM, AFP, HSA and a solution mixture (Mix) of those
proteins, respectively. (e) HER2 determination of breast cancer patient serum utilizing a commercial
ELISA Kit (blue) and the developed biosensor (red). Error bars show the standard deviations of
three repeated measurements. (Adapted from Wang et al. 2021 [115], copyright 2021 American
Chemical Society. All rights reserved and reproduced with permission).

4.2. Polymer Hydrogel-Based Optical Biosensor

Because polymer hydrogels have the ability to expand/shrink through the absorp-
tion (or desorption) of water by external stimuli (e.g., a pH change and temperature
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change), their volume change could induce a change of optical properties. Therefore,
the polymer hydrogels are good candidates for fabricating optical biosensors [118–123].
Noh et al. fabricated a biosensor array using an interpenetrating polymer network consist-
ing of photonic film templated from reactive cholesteric liquid crystal (CLC) and urease-
immobilized PAA [121]. The as-fabricated dots of biosensor array changed their color at
7.5 × 10−3 mol L−1 urea, which could be used as a cost-effective and easy visual detec-
tion without any sophisticated instruments. Makhsin et al. developed a metal-clad leaky
waveguide (MCLW) biosensor by using acrylate based-hydrogel including PEG diacrylate
(PEGDA, Mn 700), PEG methyl ether acrylate (PEGMEA, Mn 480), and acrylate-PEG2000-
NHS coated 9.5 nm titanium waveguide layer on a glass substrate [122]. Under optimized
experimental conditions, the as-developed MCLW biosensor generated a single-mode
waveguide signal with a refractive index (RI) sensitivity of 128.61 ± 0.15◦ RIU−1 and LOD
of 2.2 × 10−6 RIU with excellent signal-to-noise ratio for glycerol detection.

4.3. Polymer Hydrogel-Based Microarray

Polymer hydrogels have been extensively used to construct various microarrays for
screening biomaterials and biomarkers, studying the interactions of biomolecules and
detecting different targets [124–148]. Jia et al. developed peptide-functionalized hydrogel
microarrays for the discovery of culture substrates through light-assisted copolymerization
of poly(ethylene glycol) diacrylates (PEGDA) and methacrylated peptides [129]. They
found that PMQKMRGDVFSP exhibited high activity to support adhesion and sarcomere
formation of hiPSC-derived cardiomyocytes (hiPSC-CMs). The as-developed offers a novel
strategy for screening biological ligands to develop biomaterials for stem cell and tissue
engineering applications. Using surface plasmon resonance imaging (SPRi) as a detection
technology, Zhou et al. developed a protein microarray on a 3D-dextran hydrogel chip sur-
face for the profiling of the interactions between small molecule drugs (or candidates) and
target proteins [136]. The as-developed protein microarray on 3D-dextran hydrogel exhib-
ited good quality and uniformity (CV = 10.3%, n = 48), which could be used as a label-free
high-throughput technology for screening/forecasting side effects of drugs (or candidates)
and identifying personalized medicine, etc. Scherag et al. developed an antibody mi-
croarray on the polydimethylacrylamide with a 5 mol % 4-methacryloyloxobezophenone
(PDMAA-5%BP) modified substrate [139]. The as-fabricated PDMAA-5%BP modified
substrate exhibited protein-repellent properties for avoiding unspecific adsorption of an-
alyte molecules during the assay, resulting in a simplification of the assaying procedure,
a reduction in background signals and an improvement of the detection sensitivity of
the microarray immunoassays. Díaz-Betancor et al. developed a dextran-based nucleic
acid microarray by the immobilization of capture probes in dextran polymer hydrogel via
a lightinduced thiol–acrylate coupling reaction and polymerization [140]. This approach
enables the detection of as low as 2.92 pg µL−1 miR-182, which is much lower than the
normal amount of circulating miRNA (within the ng µL−1 range). Tian et al. developed
a lectin microarray based on the polyacrylamide hydrogel for screening the high expression
of glycans on the colorectal cancer (CRC) cell surface and to identify new lectin biomarkers
for CRC [141]. The immobilized lectins on PAAM hydrogel provide multivalent binding
scaffolds to the cellular glycans, resulting in increased binding affinity and the selectivity
of lectin with glycan. They demonstrated that Uelx Europaeus Agglutinin I (UEA-I) could
be used as new biomarker for CRC subtype SW480. The finding opens up possibilities for
discovering lectin biomarkers toward various biomedical applications, including cancer
diagnosis and therapy. Recently, Hageneder et al. developed a responsive hydrogel binding
matrix for dual signal amplification in fluorescence affinity biosensors and peptide microar-
rays by using a terpolymer modified metallic sensor surface [148]. The terpolymer, derived
from poly(Nisopropylacrylamide) (pNIPAAm), was arranged in arrays of sensing spots
and employed for the specific detection of human IgG antibodies against the Epstein−Barr
virus (EBV) in diluted human plasma by using a set of peptide ligands. The possibility
of using the temperature-induced collapse of the pNIPAAm hydrogel for compacting the
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captured analytes yielded a route for efficient in situ fluorescence measurements with
the combined enhancement factor > 103 under realistic conditions and complex samples.
The as-developed offers a new platform for rapid and sensitive fluorescence monitoring
of biomolecular interacting events in conjunction with external actuation (e.g., tempera-
ture). For the convenience of readers, some examples of the bioanalytical and biomedical
applications with polymer hydrogels are summarized in Table 3.

Table 3. Some examples of the bioanalytical and biomedical applications of polymer hydrogels
modified substrates.

Polymers Modification
Methods Detection Method Analytes Linear Ranges Limit of Detection Ref.

Polyacrylamide and
polydopamine Drop-casting DPV Aflatoxin B2 1 × 10−4 to 100 ng mL−1 1 × 10−4 ng mL−1 [112]

Poly(3,4-
ethylenedioxythiophene) Self-assembly DPV HER2 0.1 to 1 × 103 ng mL−1 4.5 × 10−2 ng mL−1 [115]

Polypyrrole Drop-casting EIS and SWV Motilin 1 × 10−2 to 100 ng mL−1 2.73 × 10−3 ng mL−1 [116]
Polypyrrole Drop-casting Chronoamperometry Biomolecules - - [117]

Polyacrylic acid UV-curing Absorption spectra Urea - - [121]
PEG diacrylate, PEG methyl

ether acrylate and
acrylate-PEG2000-NHS

Covalent
modification

Single-mode
waveguide Glycerol - 2.2 × 10−6 RIU [122]

Dextran T-2000 Spin-coating SPRi drugs - - [136]
Dextran methacrylate Photopolymerization Fluorescence miR-182 - 2.92 ng mL−1 [140]

Polyacrylamide SI-ATRP Fluorescence Glycans - - [141]

Poly(Nisopropylacrylamide) Spin-coating Fluorescence

Human IgG
antibodies
against the

Epstein−Barr
virus

- - [148]

HER2: human epidermal growth factor receptor 2; SPRi: Surface plasmon resonance imaging.

4.4. Polymer Hydrogel-Based Bioelectronics

Polymer hydrogels such as PDMS hydrogel and PEG hydrogel have been extensively
applied for the construction of stretchable electronic devices because PDMS offers a number
of attractive properties, including biocompatibility, ease of process, optical transparency
and a moderate elastic modulus [149–153]. Zhang et al. fabricated high-resolution metal
microelectrodes with a channel length as short as 5 µm on PDMS by using ultrathin Pary-
lene film (2 µm thick) transfer patterning (as shown in Figure 6) [149]. A fully stretchable
organic EC transistor (OECTs) was achieved by combining transfer patterning of metal
electrodes with orthogonal patterning of the poly(3,4-ethylenedioxythiophene) doped with
polystyrenesulfonate (PEDOT:PSS) on a prestretched PDMS substrate and a biocompat-
ible “cut and paste” hydrogel. Aggas et al. developed a complex hydrogel disk for the
attachment and differentiation of PC-12 neural progenitor cells by mixing PEDOT:PSS
in poly(2-hydroxyethyl methacrylate-co-polyethyleneglycol methacrylate) p(HEMA-co-
EGMA) [152]. The experimental results demonstrated that as-developed hydrogel disk
array exhibited good electroconductivity and low cytotoxicity.
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American Chemical Society All rights reserved and reproduced with permission).

5. Conclusions and Outlook

Polymer modified substrates show great potential for bioanalytical and biomedical
applications. For instance, various EC biosensors have been developed for the accurate
de-termination of different analytes with high sensitivity and good selectivity through
efficient immobilization of different biorecognition units (i.e., biomolecular probes) on
the conductive polymers and/or dendrimers modified electrode surfaces. Polymer-based
microarray has been demonstrated as a powerful tool to study biomolecular interactions,
the relationship between material physiochemical properties and stem cell responses, etc.
Different anti-adhesive hydrophilic polymer brushes have been extensively employed to
build antifouling surfaces for the prevention of microbial adhesion and protein adsorp-
tion. Polymer hydrogels have been used for the construction of bioelectronics with high
biocompatibility. Because of the rich variety of polymer materials, the ability to create
a well-defined surface with specific functionality opens new perspectives in bioanalytical
and biomedical fields.

The generation of a high quality polymer modified surface is very complex, which
requires a deeper understanding of the surface science. It is important to thoroughly
consider the selection and design of the polymer for each specific application because the
physicochemical properties of polymers play an essential role in surface functionality. The
biosensors and microarrays require large numbers and a high reactivity in the molecules in
the surface layer, which might be satisfied by increasing the network structure of hydrogel
and the density of functional groups in polymer brushes and hyperbranched polymers.
The surface antibacterial capability can be improved significantly by the integration of
a hydrophilic component and a bactericidal component into one polymer brush through
grafting polymerization. Biocompatibility is important factor in the construction of poly-
mer modified substrate for cell adhesion and in vivo applications. Stimulus-responsive
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polymer may help to develop self-reporting biosensors and a self-cleaning device. In addi-
tion, the long-term stability and the failure conditions should be carefully explored when
the polymer modified substrate is used to fabricate regeneration devices and wearable
bioelectronics. These developments will benefit from a close collaboration among scientists
in the fields of material, chemistry, biology and surface science, which will have a strong
impact on the diagnostics market.
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