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Food safety is a global concern, with upward of 2.2 million deaths due to enteric disease
every year. Current whole-genome sequencing platforms allow routine sequencing
of enteric pathogens for surveillance, and during outbreaks; however, a remaining
challenge is the identification of genomic markers that are predictive of strain groups
that pose the most significant health threats to humans, or that can persist in specific
environments. We have previously developed the software program Panseq, which
identifies the pan-genome among a group of sequences, and the SuperPhy platform,
which utilizes this pan-genome information to identify biomarkers that are predictive
of groups of bacterial strains. In this study, we examined the pan-genome of 4893
genomes of Salmonella enterica, an enteric pathogen responsible for the loss of
more disability adjusted life years than any other enteric pathogen. We identified a
pan-genome of 25.3 Mbp, a strict core of 1.5 Mbp present in all genomes, and a
conserved core of 3.2 Mbp found in at least 96% of these genomes. We also identified
404 genomic regions of 1000 bp that were specific to the species S. enterica. These
species-specific regions were found to encode mostly hypothetical proteins, effectors,
and other proteins related to virulence. For each of the six S. enterica subspecies,
markers unique to each were identified. No serovar had pan-genome regions that were
present in all of its genomes and absent in all other serovars; however, each serovar did
have genomic regions that were universally present among all constituent members,
and statistically predictive of the serovar. The phylogeny based on SNPs within the
conserved core genome was found to be highly concordant to that produced by a
phylogeny using the presence/absence of 1000 bp regions of the entire pan-genome.
Future studies could use these predictive regions as components of a vaccine to prevent
salmonellosis, as well as in simple and rapid diagnostic tests for both in silico and wet-
lab applications, with uses ranging from food safety to public health. Lastly, the tools
and methods described in this study could be applied as a pan-genomics framework to
other population genomic studies seeking to identify markers for other bacterial species
and their sub-groups.
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INTRODUCTION

The global burden of bacterial enteric disease, much of it
foodborne, results in an estimated 2.2 million deaths per year,
and an annual loss of 112,000 disability adjusted life years in the
United States alone (Bergholz et al., 2014; Scallan et al., 2015).
Nationwide molecular diagnostic networks, such as PulseNet in
North America, were designed to enable the rapid identification
of outbreaks by genetic fingerprinting the etiological agents of
disease, and keeping nationwide databases of genetic fingerprints
of specific pathogens associated with human disease. Since its
inception, PulseNet has relied on pulsed-field gel electrophoresis
(PFGE) for fingerprinting of bacterial pathogens to identify the
specific sources of outbreaks and prevent further infections.
Using this approach, it has been estimated that PulseNet prevents
277,000 illnesses from bacterial pathogens annually in the
United States, reducing the costs associated with medical care
and loss of productivity due to worker illness (Scharff et al.,
2016).

Despite the usefulness of PulseNet, the PFGE technique itself
is often unable to distinguish between related and unrelated
strains, due to its reliance on rare-cutting restriction enzyme
sites within the genome (Allard et al., 2012). Additionally,
the interpretation of the banding patterns among labs
requires extensive training and standardization to enable
meaningful comparisons. Lastly, the banding patterns provide
no information on the actual content of the genomes they
represent, so important information regarding human virulence,
such as the presence or absence of known toxins, is not available.

Lastly, while the presence of known virulence factors has been
correlated with severe human disease in a number of bacterial
species, it has also been shown that some lineages or clades
within these same species, while possessing specific virulence
factors, are rarely associated with human disease (Lupolova et al.,
2016; Waryah et al., 2016). Thus, multiple virulence factors, and
regulatory genes that influence the expression of key virulence
factors, or otherwise modulate the virulence of these strains, need
to be taken into consideration when attempting to predict the
strains of a bacterial species that are potential human health
threats (Opijnen et al., 2012).

Recently, whole-genome sequencing (WGS) has displaced
PFGE as the de facto standard for the complete characterization
of bacterial pathogens, in both ongoing surveillance and outbreak
investigations (Deng et al., 2016; Franz et al., 2016). WGS allows
clear definition between outbreak-related strains and those from
unrelated sources, and it has the ability to identify routes of
transmission, and attribute bacterial contaminants to specific
sources (den Bakker et al., 2014). It is currently being utilized
in reference laboratories worldwide. Examples of its application
include the sequencing of all Listeria monocytogenes isolated in
the United States, all Salmonella isolated by the Food and Drug
Administration in the USA, and by Public Health England as
part of routine surveillance (Ashton et al., 2016), and a large-
scale survey of Staphylococcus aureus in continental Europe. In
the latter study, the applicability of WGS for the identification
of the emergence and spread of clinically relevant Staphylococcus
aureus was demonstrated (Aanensen et al., 2016).

It has also recently been shown that antimicrobial resistance
(Tyson et al., 2015; McDermott et al., 2016; Zhao et al., 2016),
serovar (Levine et al., 2016; Yoshida et al., 2016b), and the
results of other traditional sub-typing schemes such as multi-
locus sequence typing (Sheppard et al., 2012) can be accurately
predicted in silico through the analysis of bacterial genome
sequences. However, identifying bacterial isolates that are most
likely to cause disease in humans, based on the genome sequence
alone, is a more complex task. In addition, markers that can
identify bacteria likely to exhibit particular phenotypes, such as
the ability to survive in a particular niche, or the ability to tolerate
harsh environments such as those found in food processing plants
are also required.

We have previously developed the software platform Panseq,
for the analyses of thousands of genomes in a pan-genome
context, where both the presence/absence of the accessory
genome and SNPs within the shared core-genome are computed
(Laing et al., 2010). Additionally, we recently released a platform
for the predictive genomics of Escherichia coli, called SuperPhy,
in which markers statistically biased within groups of bacteria,
based on any metadata category, can be identified (Whiteside
et al., 2016).

In this study we use our previously created software to
examine the pan-genome of Salmonella enterica, a pathogen that
causes an estimated 93.8 million cases of enteric illness worldwide
each year (Majowicz et al., 2010; Gal-Mor et al., 2014). The
species S. enterica is divided into six subspecies: enterica, salamae,
arizonae, diarizonae, houtenae, and indica. Over 99% of human
disease caused by S. enterica is done so by subspecies enterica,
with the World Health Organization estimating that S. enterica
infections from contaminated food alone constitute a loss of 6.43
million disability adjusted life years worldwide, more than any
other enteric pathogen (Kirk et al., 2015). Within this bacterial
subspecies, are human-adapted strains responsible for typhoid
fever, as well as a large number of animal-derived non-typhoidal
strains responsible for foodborne illness. In this study, we have
identified species- and subspecies-specific markers, as well as
markers predictive of serovar for subspecies enterica. While this
study focused on S. enterica, the tools and approach are broadly
applicable to any species or collection of genomes.

MATERIALS AND METHODS

All commands and parameters used to analyze the data and
generate the Figures are available as Supplementary File 1.
The scripts used for analyses are available at https://github.
com/superphy/gamechanger. The following is a summary of the
methods used.

Data Collection
All S. enterica genomes were downloaded from GenBank in
nucleotide fasta format. A full listing of the initial 4939 genomes,
including GenBank identifier, subspecies, serovar, the number of
species-specific core regions present, the number of contigs, and
whether the genome passed the quality filtering steps are listed in
Supplementary File 2.
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Serovar Identification
Most of the S. enterica genomes in GenBank had serovar
provided as part of their metadata; however, 321 were missing
this designation. The SISTR web-server, as well as the SISTR
commandline app were used to predict the serovar for these
strains (Yoshida et al., 2016b).

Pan-genome Analyses
Panseq (commit:1d0ab9d37e8e358d266e1d0aa80e9b27f28a1def)
was used to identify the pan-genome of the 4939 strains in this
study (Laing et al., 2010). Genomes were initially fragmented
into 1000 bp segments, and subsequently clustered using cd-hit
v.4.6 to remove potential duplicates/paralogs from the analyses
using a 90% sequence identity threshold (Fu et al., 2012).
Initially Panseq was used to determine the distribution of the
pan-genome among the genomes at a 90% sequence identity
threshold, from which a “conserved core” was identified. Within
the conserved core, Panseq was then used to identify single-
nucleotide polymorphisms.

Identification of S. enterica
Species-Specific Regions
To identify regions that were likely to represent the species
as a whole, we initially examined the 211 closed S. enterica
genomes in GenBank (Supplementary File 2), and identified
3832 regions of 1000 bp that were found in 90% (190) of
the 211 closed genomes using Panseq, at a 90% sequence
identity threshold. These regions were then screened against
the online GenBank nr database using megablast as a first-
pass filter with default parameters, searching across bacteria
(taxid:2), and excluding all Salmonella (taxid:590) hits that
had greater than 80% identity across 80% of the query length
from the results. The remaining 1482 genomic regions were
subsequently screened against the online GenBank nr database
of all bacteria (taxid:2), using the blastn algorithm, to identify
matches that were missed using the less-specific megablast
algorithm, with word size 11, an e-value cutoff of 0.001, and
excluding all Salmonella (taxid:590). These results were filtered
in the same manner, leaving 405 potentially species-specific
regions. Lastly, these regions were compared against Salmonella
bongori genomes in GenBank; one S. bongori hit was identified,
which left 404 genomic regions present in S. enterica but
no other bacterial genomic sequences within the GenBank nr
database.

The putative function of these regions was determined by
screening them across the GenBank nr database using blastx with
“max hits:10,” “taxid limit:1236 (gammaproteobacteria),” and an
“e-value threshold: 0.001.” The best matching hit above a 90%
sequence identity threshold was used for the putative functional
assignment.

Identification of Subspecies- and
Serovar-Specific Regions
The Fisher’s Exact test, using the Bonferroni correction for
multiple testing was applied as in the SuperPhy platform
(Whiteside et al., 2016), implemented here as the standalone

program feht1. The input for the program was Supplementary
File 2, which contained metadata for all the strains, as well as
the binary_table.txt output file from the Panseq analyses, which
denotes the presence/absence of each 1000 bp pan-genome region
among all the strains.

S. enterica Phylogenetic Analyses
The phylogeny based on SNPs within the core genome was
generated using RAxML v8.2.9, with the snp.phylip output file
from Panseq (Stamatakis, 2014). The phylogeny based on the
presence/absence of the pan-genome was also generated using
RAxML v8.2.9, with the binary.phylip output file from Panseq.

Generation of Figures and Tables
The R-statistical language v3.3.2 was used to generate the
summary Figures and Tables (R Core Team, 2016). The R-scripts
and all others used for the analyses can be found at https://github.
com/superphy/gamechanger/tree/master/src. The ggtree package
for R was used in the generation of the phylogenetic tree images
(Yu et al., 2016).

RESULTS

S. enterica Pan-genome
We initially determined the size and distribution of the S. enterica
pan-genome as genome fragments of 1000 bp in size, across the
4939 genome sequences of this study, which are summarized
by subspecies in Table 1, and within subspecies enterica by
serovar in Table 2. As can be seen in Figure 1, the pan-
genome comprised of 4939 S. enterica genomes was found to
be 25.3 Mbp in size, with 70% of the pan-genome present in
fewer than 100 strains. Conversely, the core genome was found
to be 1.5 Mbp in size, with all but 200 genomes (96%) containing
3.2 Mbp of shared genomic core. Only 17% of the pan-genome
was found in greater than 100 genomes, but fewer than 4739
genomes.

S. enterica Species-Specific Regions
To identify regions of S. enterica that were likely to be shared
among most genomes of the species, we examined all 211 closed
genomes of S. enterica in GenBank, looking for genomic regions
that were present in at least 190 (90%) of these genomes. We

1https://github.com/chadlaing/feht

TABLE 1 | The frequency of the subspecies observed within the study set of 4936
Salmonella enterica genomes, prior to any quality filtering.

Subspecies No.

enterica 4913

arizonae 7

diarizonae 7

houtenae 4

salamae 4

indica 1
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TABLE 2 | The serovars with more than 20 representatives in the current study set
of 4936 Salmonella enterica genomes, and their frequency, prior to any quality
filtering.

Serovar No.

Typhi 1977

Typhimurium 758

Enteritidis 413

Heidelberg 201

Paratyphi 158

Kentucky 155

Agona 136

Weltevreden 120

Bareilly 106

Newport 82

Tennessee 77

Montevideo 69

Saintpaul 48

Infantis 39

Senftenberg 35

Bovismorbificans 34

Hadar 33

Muenchen 30

Anatum 27

Schwarzengrund 27

Dublin 24

Cerro 21

The list of all serovars and their frequency within the current study is available as
Supplementary File 2.

identified 3832 regions of 1000 bp that were present in at least
90% of the closed genomes. These regions were subsequently
screened against the GenBank nr database, and any present in
non-Salmonella genomes were removed, leaving 404 putative
S. enterica species-specific regions (Supplementary File 3).

Figure 2 shows the carriage of these 404 regions among the
4939 genomes of this study. All but 105 genomes contained at
least 330 of these putative S. enterica specific regions. A stark
difference in carriage of these species-specific markers was
observed, with 4742 genomes containing at least 350 species-
specific markers, while only 2674 genomes contained 360 or more
species-specific markers.

Quality Filtering for Subsequent Analyses
To ensure the quality of the genomes in use for subsequent
analyses, we plotted carriage of the 404 species-specific regions
versus the number of contigs that each sequenced genome was
comprised of (Figure 3). As can be seen, the two genomes marked
in yellow contained only one, and the same, species-specific
region each, despite being comprised of relatively few contigs.
Subsequent searches against the GenBank nr database identified
these two genomes as Citrobacter spp. contamination, mislabeled
as S. enterica (GCA_001570325 and GCA_001570345). The
“Salmonella enterica species-specific region” found in both of
the contaminant Citrobacter genomes, did not match any other
Citrobacter spp. in GenBank above the thresholds used for
determining presence/absence in this study. However, due to the

FIGURE 1 | The distribution of the Salmonella enterica pan-genome, as
1000 bp fragments, among 4939 whole-genome sequences (WGSs).

FIGURE 2 | The carriage of the 404 S. enterica species-specific regions
among each of the 4939 genomes of this study. Each dot represents a single
S. enterica genome, which are arranged in order from those that contain the
fewest species-specific regions to those that contain the most.

presence of this region in what have been identified as Citrobacter
genomes, the region was removed from subsequent analyses.

The majority of genomes (4913) were from subspecies
enterica, with genomes from the five other S. enterica subspecies
present in drastically fewer numbers (Table 1). All closed
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FIGURE 3 | The carriage of the 404 S. enterica species-specific regions,
versus the number of contigs for each of the 4936 genomes. Colors indicate
the subspecies within S. enterica as follows: red: arizonae, lime: diarizonae,
teal: enterica, blue: houtenae, lavender: indica, magenta: salamae and yellow:
sample with Citrobacter contamination.

genomes from subspecies enterica contained greater than 250
species-specific regions, which was more than the genomes from
any other subspecies, with the exception of enterica genomes that
were of poor quality and comprised of many 1000s of contigs
(Figure 3). Genomes from subspecies houtenae and arizonae
contained fewer than 100 species-specific regions, while genomes
from diarizonae, indica, and salamae contained between 100 and
200 species-specific regions. All regions were screened against
S. bongori to ensure specificity to S. enterica; one region was
found to also be present in genomes from S. bongori and was
removed from further analyses.

Within subspecies enterica, a negative linear relationship
was observed among the number of species-specific regions
contained within a genome, and the number of contigs
the genome was comprised of, with the worst-case genome
(GCA_000495155) being comprised of 6945 contigs, but
containing only 13 species-specific regions. Other genomes
such as S. enterica Bovismorbificans strain GCA_001114865
contained both few contigs (140) as well as fewer species-
specific regions (209) than other enterica genomes. Additional
searches discovered sequencing gaps within the genome totaling
over 464 Kbp. A final outlier genome harbored nearly 5000
contigs, but also contained 403 of the species-specific regions.
It was determined by searching the GenBank database, that
this sequence (GCA_000765055) was actually a combination of
multiple genomes in a single file.

Given the above information, all genomes from the five
subspecies other than enterica were included in subsequent
analyses, while the thresholds for inclusion of enterica genomes
were set at a maximum of 1000 contigs, and a minimum of

250 species-specific regions. Following this quality filtering, 43
genomes were removed, leaving 4870 S. enterica subspecies
enterica genomes for the following analyses.

Phylogeny of S. enterica Using the
Conserved Core Genome
Based on the distribution of the pan-genome presented in
Figure 1, the “conserved core” of S. enterica was set at being
present in more that 4500 genomes, to fully capture the conserved
genomic regions within the species. A phylogeny based on the
SNPs among these shared regions was created, and is shown
along with the distribution of the S. enterica species-specific
regions in Figure 4. As can be seen, the majority of the
genomes are subspecies enterica, and the other five subspecies are
relatively more distant in the order of indica, salamae, houtenae,
diarizonae, and arizonae. However, the order of subspecies
in declining number of species-specific regions is: enterica,
diarizonae, salamae, indica, houtenae, and arizonae, which is
shown in Figure 3.

The serovar distribution within subspecies enterica was shown
to be largely concordant with phylogeny, as demonstrated in
Figure 5, where the 10 most abundant serovars in the current
study are highlighted. However, not all serovars clustered as
monophyletic groups, as can be seen with serovar Bareilly;
nor were all clades found to be comprised of single serovars,
demonstrated by the clade containing genomes of serovars
Bareilly and Agona.

The large clades within the phylogenetic tree also demonstrate
clade-specific patterns of presence/absence for the 404 species-
specific markers. Among the most abundant serovars,
Typhimurium, Heidelberg, Newport, and Enteritidis were
found to contain the most species-specific markers, and grouped
together near the center of the tree. Likewise, serovars Agona,
Welevreden, and Kentucky contained fewer species-specific
regions, and group together near the bottom of the tree, closer to
the non-enterica sub-species genomes.

Table 3 considers all serovars with at least 10 members in
the dataset, and the average number of species-specific markers
per serovar. As can be seen, the serovars with the largest
average number of species-specific regions were: Enteritidis
(401.7), Anatum (401.5), Muenchen (400.5), Hadar (400.3), and
Typhimurium (400.1); conversely, the serovars with the fewest
average number of species-specific regions were: Derby (360.7),
Montevideo (360.1), Typhi (358.1), Bovismorbificans (355.3),
and Cerro (342.0).

Phylogeny of S. enterica Using the
Pan-genome
A phylogeny based on the presence/absence of the pan-genome
among the 4893 S. enterica genomes was created, and is shown
along with the distribution of the S. enterica species-specific
regions in Figure 6. As can be seen this phylogeny based on the
presence/absence of the entire 25.3 Mbp pan-genome is highly
concordant with the phylogeny based on the SNPs found in the
conserved core of the same strains (Figure 5). In both trees
the serovars cluster together and in the same relation to each
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FIGURE 5 | The phylogeny of the 4893 S. enterica genomes post quality-filtering based on SNPs found within the conserved core genome. The 10 most abundant
serovars of subspecies enterica in the current study (Agona, Bareilly, Enteritidis, Heidelberg, Kentucky, Newport, Paratyphi, Typhi, Typhimurium, Weltevreden) are
labeled on the tree. The matrix to the right of the phylogeny represents the 404 species-specific regions, with blue being the absence of a region, and green being
the presence of a region, for each of the genomes of the study.

other, for example serovars Typhi and Paratyphi strains form
a discrete monophyletic clade. However, the branch lengths in
the pan-genome tree are larger than those in the conserved SNP
tree, due to the larger variation among the presence/absence of
the pan-genome than to sequence variation among shared core
regions.

Identification of a Minimum Set of
Species-Specific Genomic Markers
Within the 404 species-specific markers, none were specific for
any of the subspecies. That is, a marker was always present in
genomes from at least two subspecies.
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TABLE 3 | The average number of species-specific genomic regions found among
serovars of subspecies enterica, that contained at least 10 representative
genomes, within the 4870 quality filtered subspecies enterica genomes of this
study.

Serovar Average no. species-specific
regions

Enteritidis 401.7

Anatum 401.5

Muenchen 400.5

Hadar 400.3

Typhimurium 400.1

Newport 399.8

Thompson 399.7

Saintpaul 399.6

Heidelberg 397.4

Dublin 395.2

Infantis 394.9

Braenderup 392.8

Weltevreden 390.0

Bareilly 388.5

Kentucky 380.3

Plymouth/Zega 377.9

Senftenberg 376.5

Mbandaka 374.5

Lubbock 374.1

Reading 370.4

Agona 369.5

Tennessee 368.3

Schwarzengrund 362.3

Paratyphi 361.5

Derby 360.7

Montevideo 360.1

Typhi 358.1

Bovismorbificans 355.3

Cerro 342.0

We next determined that the presence of a minimum
set of two genomic regions was required to unambiguously
identify genomes of S. enterica, within the 4893 genomes of
the current study. A combination of two genomic regions
were all that was required, and two such markers that were
also present in the most S. enterica genomes were found
at the following locations within the Typhimurium reference
genome LT2: (1336001.. 1337000) and (2467001.. 2468000)
(Supplementary File 3). All members of S. enterica examined
contained at least one of these markers, but many other
combinations within the 404 species-specific markers are also
possible.

Putative Functional Identification of the
S. enterica Species-Specific Regions
The putative function of the 404 quality-filtered S. enterica
species-specific regions were determined from the GenBank nr
database. The annotation of each of the 404 regions is available

as Supplementary File 1. Table 4 summarizes the frequency of
functional annotation categories, after annotating each region
with the single best match. As can be seen, hypothetical proteins
accounted for the majority (64) of the 404 annotations, with
secreted effector and membrane proteins being the next most
frequent category among the species-specific regions. Other
membrane, transport, and secretion proteins were observed. The
species-specific regions also included proteins involved in core
metabolic functions, protein and DNA synthesis, and response to
stress.

Identification of Subspecies-Specific
Markers from the Pan-genome
Having identified species-specific markers, we employed the
same techniques, utilizing the presence/absence of all pan-
genome markers, just as was carried out in identifying the
404 species-specific ones, to identify subspecies-specific markers.
The number of markers that were completely unique to a
subspecies is given in Table 5. Subspecies arizonae contained
the most unique markers, at 207, and enterica contained the
least, at 9.

Identification of Universal Serovar
Markers within Subspecies enterica from
the Pan-genome
Subspecies enterica genomes were the vast majority of those
available, so we attempted to identify serovar-specific markers
for the top 10 serovars, in the same manner that we identified
subspecies-specific markers. We found that there were no
genomic markers that uniquely defined any of the serovars based
on their presence or absence; however, there were a number of
genomic regions that were universally present or absent among
serovars, as well as statistically over- or under- represented with
respect to all other serovar genomes from this study; they are
shown in Table 6.

To further assess the validity of these markers, a dataset
comprised of 3948 genomes from EnteroBase2, was selected
to have an identical number of strains belonging to each of
nine serovars in our GenBank dataset. The EnteroBase dataset
was used to test the predictive markers we identified from the
GenBank dataset in the first part of the study. The results of this
comparison are shown in Figure 7. As can be seen, the markers
were well-conserved among the EnteroBase dataset, with eight
of the nine serovars having a subset of the predictive markers
present among all of the test genomes; serovar Typhimurium
had a marker subset that was present in all but one of the test
genomes.

DISCUSSION

S. enterica Pan-genome
Previous examinations of the S. enterica pan-genome were based
on relatively small datasets of 45 and 73 genomes (Jacobsen

2https://enterobase.warwick.ac.uk/species/index/senterica
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FIGURE 6 | The phylogeny of the 4893 S. enterica genomes post quality-filtering based on the presence/absence of the entire pan-genome as 1000 bp fragments.
The 10 most abundant serovars of subspecies enterica in the current study (Agona, Bareilly, Enteritidis, Heidelberg, Kentucky, Newport, Paratyphi, Typhi,
Typhimurium, Weltevreden) are labeled on the tree. The matrix to the right of the phylogeny represents the 404 species-specific regions, with blue being the absence
of a region, and green being the presence of a region, for each of the genomes of the study.

et al., 2011; Leekitcharoenphon et al., 2012). While others have
analyzed 1000s of S. enterica genomes, the analyses were not
conducted to examine the population structure. For example,
in demonstrating the software program Roary, 1000 S. Typhi
genomes were used to test the program (Page et al., 2015).
Likewise, the GenomeTrackR project utilized 32 S. enterica
genomes to identify a S. enterica core, which was subsequently
used as the basis for genetic distance estimates for nearly 20,000
genomes (Pettengill et al., 2016).

Previous estimates placed the core-genome size of S. enterica
at ∼2800 gene families, and the pan-genome at ∼10,000 gene
families (Jacobsen et al., 2011). The current study identified a
strict core of 1.5 Mbp, and a conserved core of 3.2 Mbp shared
among 96% of the genomes, which given an average gene size of
1000 bp is ∼1500 and ∼3200 genes respectively, with a much
larger pan-genome of ∼25,300 genes. Previous analyses found
S. enterica to have a closed pan-genome (Jacobsen et al., 2011),

and thus the rate of discovery for new genomic regions would
decrease for each new genome of the species sequenced (Tettelin
et al., 2005).

In line with S. enterica having a closed pan-genome, when we
compared it to E. coli, a related bacterial species with an open
pan-genome (Tettelin et al., 2005), we found that the E. coli pan-
genome was larger (37.4 Mbp), despite the fact that the E. coli
study used less than half the number of strains in the current
Salmonella enterica study. Additionally, more of the pan-genome
of S. enterica was distributed among more genomes than in E. coli
(Whiteside et al., 2016). Specifically, in S. enterica 70% of the
pan-genome was found to belong to 100 or fewer of the genomes
examined, while in E. coli 80% of the pan-genome was found in
100 or fewer genomes.

It should be noted that erroneously labeled, and poor quality
assemblies, can greatly affect the size, analyses, and composition
of the pan-genome. Software tools to evaluate assembly quality
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TABLE 4 | The putative function of the S. enterica species-specific regions for
functions that were identified more than once, utilizing the best hit for each region.

Putative protein function Frequency

Hypothetical 64

Secreted effector 10

Membrane 7

Secretion system apparatus 5

Uncharacterized 5

Fimbrial 5

Pathogenicity island 2 effector 4

Fimbrial assembly 4

Outer membrane usher 4

mfs transporter 3

Oxidoreductase 3

Histidine kinase 3

Putative inner membrane 3

Putative cytoplasmic 3

lysr family transcriptional regulator 3

Transcriptional regulator 2

Permease 2

Outer membrane 2

Type III secretion 2

Phosphoglycerate transport 2

arac family transcriptional regulator 2

Conserved hypothetical 2

Methyl-accepting chemotaxis 2

Hybrid sensor histidine kinase/response regulator 2

Glycosyl transferase, partial 2

Phenylacetaldehyde dehydrogenase 2

Pathogenicity island 1 effector 2

n-Acetylneuraminic acid mutarotase, partial 2

Type III secretion system 2

Transcriptional regulator, partial 2

Cytoplasmic 2

Fimbrial chaperone 2

Putative sialic acid transporter 2

The complete list of all putative functions is available as Supplementary File 3.

TABLE 5 | The number of subspecies-specific pan-genome markers that were
universally present or absent among members of the subspecies, and not absent
or present among genomes from any other subspecies.

Subspecies No. markers

arizonae 207

diarizonae 93

enterica 9

houtenae 134

indica 192

salamae 135

have been created to help researchers identify bad data. These
include QUAST (Gurevich et al., 2013), which summarizes the
assembly statistics including average contig size and number of
contigs; as well as CGAL (Rahman and Pachter, 2013), which
uses a likelihood approach to infer assembly quality rather than

TABLE 6 | The number of pan-genome regions that were universally present and
absent, as well as statistically over- or under-represented in comparison to all
other genomes, within the 10 most abundant serovars within the 4870 subspecies
enterica genomes of this study.

Serovar No. universally present No. universally absent

Typhi 288 2720

Typhimurium 41 698

Enteritidis 18 440

Heidelberg 121 840

Paratyphi 65 202

Kentucky 177 331

Agona 161 638

Weltevreden 426 608

Bareilly 87 436

Newport 226 360

summary statistics. As demonstrated in the current study, having
a known set of species-specific genome regions can facilitate rapid
quality assessment and filtering of genome assemblies. Others
have proposed whole-genome MLST for this purpose as well
(Babenko et al., 2016; Yoshida et al., 2016b), but the benefit of a
pan-genome analysis is that it is schema free, requiring no agreed
upon reference set or central repository of alleles.

S. enterica Species-Specific Regions
Previous studies have identified gene targets that are useful in
the identification of Salmonella. These include the fimA gene
(Cohen et al., 1996), hilA (Guo et al., 2000), invA (Malorny et al.,
2003), ttr (Malorny et al., 2004), and ssaN (Chen et al., 2010).
Other markers, and combinations thereof have been developed
for use in RT-PCR (Postollec et al., 2011), and other detection
platforms such as loop-mediated isothermal amplification
(Kokkinos et al., 2014). Additionally, the identification of
serovar based on allelic variation in somatic and flagellar genes
has previously been conducted, with at least four laboratory
methods currently available [the Salmonella genoserotyping assay
(Yoshida et al., 2014), and the commerical assays: Salmonella
Serogenotyping Assay, Check&Trace Salmonella, and xMAP
Salmonella serotyping assay], capable of identifying over 100
of the most common Salmonella enterica serovars in some
cases (Yoshida et al., 2016a). The recently released software,
the Salmonella in silico typing resource (SISTR), is capable of
providing Salmonella serovar prediction from WGSs for 90%
(2,190) of all serovars (Yoshida et al., 2016b).

Despite the utility of the previously mentioned methods,
previous marker-discover studies have used at most 100s of
Salmonella strains, while the current study examines nearly 5000.
Further, the current study analyzes the entire pan-genome for
predictive markers, and identified over 400 that were specific to
the species, as well as others being predictive for both subspecies
and serovar.

The host intestinal environment consists of a multitude
of bacterial species competing for scarce nutritional sources
such as carbohydrates, direct antagonistic competition with
other bacterial cells, and competition for access to the host
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FIGURE 7 | The number of predictive markers from the GenBank dataset found within the EnteroBase dataset for nine serovars of S. enterica, which encompassed
a test set of 3948 genomes. The number of genomes for each serovar was the same between the GenBank and EnteroBase datasets, as shown in Table 6. The
size of the circles is proportional to the number of predictive markers from the GenBank dataset found in the EnteroBase dataset. The number of genomes for each
serovar is given in the horizontal axis label. Using serovar Agona as an example, there were 136 genomes in both the GenBank and EnteroBase datasets, and 129
of the 161 predictive markers from the GenBank dataset were found in all of the genomes from the EnteroBase dataset, whereas 21 of the GenBank predictive
markers were found in all but one (135) of the EnteroBase genomes examined.

intestine, where stable attachment and colonization of the
local environment are possible (Sana et al., 2016). The normal
intestinal microflora offer protection to the host against enteric
pathogens such as S. enterica, but disruption of the intestinal
environment by virulence factors and effector proteins secreted
by the pathogen itself, or external factors including antibiotics,
have been shown to alter the composition of the microbiota, and
allow pathogens such as S. enterica to proliferate (Ng et al., 2013).

Nutritional competition exists for free metabolic compounds,
such as carbohydrates that are readily available, as well as others
that are sequestered in forms such as the intestinal mucus, which
is composed of sialic sugar acids (McDonald et al., 2016). In
the gut, these sugar acids exists as a conjugate in the alpha
form, which to be useful for bacteria such as Salmonella, need
to be converted to the beta form by a mutarotase enzyme (Severi
et al., 2008). In this study, we identified n-acetylneuraminic acid
mutarotase genes as species-specific genomic regions, along with

sialic acid transporter genes. It is possible the presence of these
systems allow S. enterica to more efficiently compete with the host
microbiota by efficiently utilizing scarce metabolic sources.

It was also previously found that sialic acid on the surface
of host colon cells increased colonization by S. Typhi, and
disialylation of these cells reduced the adherence of the
Salmonella strains by 41% (Sakarya et al., 2010). This was also
demonstrated in S. Typhimurium, where following antibiotic
treatment, the presence of free sialic acid increased, and the
ability to utilize it was correlated with higher levels of bacterial
colonization of the host gut (Ng et al., 2013).

Enzymes that utilize sialic acids have previously been shown
to be present in 452 bacterial species, including other pathogens
such as Vibrio cholerae, but the genomic regions found in
the current study were sufficiently unique at the nucleotide
level to be determinative for S. enterica (McDonald et al.,
2016).
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In addition to species-specific regions used to gain a metabolic
advantage, a number of secretion system and effector proteins
were identified as diagnostic of S. enterica. These included
components of the Type VI secretion system (T6SS), which is
a contact-dependent, syringe-like secretion system that allows
S. enterica to directly kill other competing bacteria that it comes
into physical contact with (Brunet et al., 2015), and is encoded on
the Salmonella Pathogenicity Island 6 (Sana et al., 2016). It has
been demonstrated that silencing the T6SS via H-NS repression
(histone-like nucleoid structuring), reduces inter-bacterial killing
of S. enterica (Brunet et al., 2015). It was also previously shown
that commensal bacteria are killed by S. enterica in a T6SS-
dependent manner, that the T6SS was required for Salmonella
to establish infection in the host gut, and that increased
concentrations of bile salts resulted in a concomitant increase
in T6SS anti-bacterial activity (Sana et al., 2016). The T6SS itself
has been shown to have been independently acquired from four
separate lineages within five of the six S. enterica subspecies
(Desai et al., 2013).

Like the T6SS, the type III secretion system (T3SS) found
within S. enterica is a syringe like apparatus that injects effector
proteins into host cells (Kubori et al., 2000). There are two T3SS
found within S. enterica: the first is encoded on the Salmonella
Pathogenicity Island 1 (SPI1) and is required for invasion of
host cells; the second is encoded on Salmonella Pathogenicity
Island 2 (SPI2), and is required for survival and proliferation
within the host macrophage cells (Hensel et al., 1998; Bijlsma
and Groisman, 2005). The innate host immune system utilizes
the inflammatory response to help reduce the proliferation of
bacterial pathogens (Sun et al., 2016). S. enterica has developed
a means of regulating host inflammation via the SPI1 T3SS,
whereby secreted effector proteins target the NF-κB signaling
pathway, reduce inflammation and host tissue damage, and allow
increased S. enterica propagation within the host. S. enterica also
relies on free long-chain fatty acids within the host to regulate
T3SS expression, and provide a cue to the bacteria to up-regulate
genes necessary for host intestinal colonization (Golubeva et al.,
2016).

The current study identified many secretion system and
effector proteins as being species-specific, as well as proteins for
attachment to the host, such as fimbriae. These proteins allow
S. enterica to compete within the intestinal environment, and take
up residence within the host, where it can proliferate.

Effector proteins and other virulence factors aid in the
colonization of the host, and are frequently horizontally
acquired and are present on mobile elements such as integrated
bacteriophages (Moreno Switt et al., 2013). Previous work
identified clusters of phages that carried virulence factors such
as adhesins and antimicrobial resistance determinants within
S. enterica (Moreno Switt et al., 2013).

Additionally, many of the genes associated with bacteriophage
in S. enterica have been found to be of the putative and
hypothetical class (Penadés et al., 2015). The current study
identified a large accessory gene pool that contained many
hypothetical and putative genes, which were also the most
abundant category of species-specific genomic regions. The
proteins of putative and unknown function may aid in colonizing

warm-blooded animals, or specific animal or environmental
niches. Previous studies identified genotype/phenotype
correlations of S. Typhimurium that had particular gene
complements associated with specific food sources (Hayden
et al., 2016). The same study also postulated that specific phage
repertoires may give phylogenetically distant strains a similar
accessory gene content, and therefore similar niche specificity.
Previously, 285 gene families were identified as being recruited
into S. enterica, where most of these genes had unknown
function, but were postulated to be important for its survival
and infection of its host (Desai et al., 2013). It is therefore
not surprising to find that the most abundant species-specific
category of genomic regions are those of unknown or putative
function; they likely represent genes enhancing the ability of
S. enterica to propagate within warm-blooded animals, but they
have not yet been fully characterized. The other genomic regions
diagnostic of S. enterica include means for disseminating these
fitness genes within the population, competing for resources
in the host, and attaching and proliferating. The S. enterica
species-specific regions likely give a good overview of the
factors responsible for making it such an effective pathogen and
intestinal inhabitant.

Specific Regions for Subspecies and
Serovar
The current study recapitulates the phylogenetic relationship of
the six S. enterica subspecies that has been previously described
by others (Desai et al., 2013). However, the number of species-
specific regions found within each subspecies does not follow the
same pattern. For example, diarizonae is more distantly related
to enterica than subspecies indica, but contains more species-
specific regions, and the branch lengths on the tree are shorter.
This indicates that although the diarizonae strains diverged
longer ago than the houtenae strains, they have accumulated less
genomic change. Both subspecies diarizonae and houtenae strains
are associated with reptile-acquired salmonellosis (Schroter et al.,
2004; Horvath et al., 2016), but the differences in genomic change
may reflect the specific reptile niches that each inhabit.

Genomic regions specific to each subspecies were identified,
the presence of which were unambiguously indicative of each
subspecies. The most abundant subspecies in the current
analyses, enterica, had the fewest specific markers present (9),
while the most distantly related subspecies arizonae, had the most
specific markers (207). These results indicate that just as core
genome size decreases with the number of genomes examined, so
too do the number of markers “core” to each subspecies. As more
genomes in subspecies arizonae and closely related subspecies
are examined, we would expect fewer genomic regions to remain
specific for the subspecies. This has important implications for
designing a set of markers indicative for subspecies, indicating
that a group of redundant markers should be used, and that a
sampling of the diversity within a subspecies is first required to
identify genomic regions that are truly core.

This was also observed within serovar for subspecies enterica
strains. The original study examining the pan-genome of
S. enterica used a set of 45 genomes and was able to identify
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unique gene families for each serovar examined, with Enteritidis
having the fewest (29), and Typhi having the most (349) (Jacobsen
et al., 2011). The results of the current study showed no unique
genomic regions for any of the serovars with a sample set of 4893
quality filtered genomes. Although genomic regions universally
present for each serovar were observed, and followed the same
pattern with Enteritidis having the fewest (18), and Typhi having
the most (288), these regions were also observed among genomes
of other serovars, even though they were statistically over-
represented for the serovar in question. The presence of these
predictive markers in nearly all of the genomes within the
EnteroBase test dataset indicates that the markers are robust,
indicative of serovar, and could be combined to determine the
likelihood of a genome being of a particular serovar.

When examining the average number of the 404 species-
specific regions found among the enterica serovars, it was
interesting to observe that Enteritidis, which had the fewest
number of universal genomic regions, had the highest average
number of species-specific regions; likewise Typhi, which had the
most universally shared genomic regions, had one of the lowest
averages of species-specific regions present. These results indicate
that Enteritidis is the serovar that is closest to being the “core”
example of a S. enterica genome, while Typhi is the serovar that
is the most divergent. S. Enteritidis is the most common cause of
enteric Salmonella infection, causing upward of one quarter of all
infections, and is prevalent in chickens as well as their eggs (Chai
et al., 2012). Conversely, S. Typhi is a human adapted serovar,
responsible for Typhoid fever, and observed to have undergone
genome degradation, rearrangement, and acquisition through
horizontal gene-transfer, as it has evolved within its human host
(Sabbagh et al., 2010; Klemm et al., 2016). It thus appears that
genomic change enabling adaptation to a host creates a genomic
pool that distinguishes a group from others of the same species.
At the same time, genetically similar serovars that maintain a
broad host range do not undergo as much selection for genomic
change are much harder to distinguish as separate groups, but
much easier to identify as members of the subspecies.

Core and Pan-genome Comparison
Most phylogentic studies focus on variation within homologs in
the core genome to infer evolutionary relationships (Treangen
et al., 2014), as paralogs and horizontally transferred elements
confound the evolutionary signal found in genes obtained
through vertical descent over time (Gabaldón and Koonin,
2013). While this approach is undoubtedly useful for long-term
evolutionary analyses, when attempting to identify phenotypic
linkages between phylogenetic clades, the accessory genome
needs to be taken into account, as non-ubiquitous genomic
regions allow different groups within the species to occupy
and thrive in specific niches (Polz et al., 2013). Additionally,
it has recently been shown that regulatory switching to non-
homologous regulatory regions acquired via horizontal gene
transfer happens in many bacteria (Oren et al., 2014). It was
further shown that regulatory regions can move without the
genes they regulate moving, and that at least 16% of the
differences in expression observed within an E. coli population
were explained by this regulatory switching.

It is therefore prudent to examine both the accessory genome,
and not just genes, but non-coding DNA as well, as both have
been shown to influence gene expression, and niche specificity.
Recent studies have shown that the concordance between a
phylogeny based on core genome SNPs and the presence/absence
of pan-genome regions is high. For example, in a study examining
E. coli lineage ST131, the core and accessory genomes showed
high concordance, and the combined analyses of both allowed
the analyses of the evolution of the E. coli lineage at a resolution
not possible if only a restricted portion of the genome had been
considered (McNally et al., 2016). The current study shows the
same concordant relationship within S. enterica between the core
and accessory genome, indicating that the accessory genome is
not just randomly acquired genomic material, but that selection
within specific niches establishes a complement of genes and
regulatory elements that enable the survival of the S. enterica
strains present. It also suggests that to understand why particular
clades are more virulent, or possess a particular phenotype, a
pan-genomic approach should be used in comparative analyses.

CONCLUSION

We examined a quality filtered set of 4893 genomes, the largest
pan-genomic study of the S. enterica species to date. We identified
a pan-genome of 25.3 Mbp, a strict core of 1.5 Mbp present in
all genomes, and a conserved core of 3.2 Mbp found in at least
96% of the genomes in this study. In addition we identified 404
species-specific regions, within which a minimum set of two was
required to unambiguously identify a genome as being part of
the species S. enterica. These species-specific regions were found
to have functions related to the propagation in and colonization
of the host, including the utilization of sialic acid in intestinal
mucus, secretion systems for attachment to the host, and the
killing of other host microbiota. Within subspecies enterica, the
species-specific regions were found most frequently in serovar
Enteritidis. Each of the six subspecies was found to have genomic
regions specific to it; however, the number of subspecies-specific
regions appeared to be correlated with the level of sampling
of the diversity within the subspecies. No serovar had pan-
genome regions that were present in all of its representative
genomes and absent in all other serovar genomes; however, each
serovar did have genomic regions that were universally present
among all constituent members, and statistically predictive of
the serovar. S. Typhi, which is host-adapted to humans, was
found to have the most universal markers predictive of its
serovar. The phylogeny based on SNPs within the conserved core
genome was found to be highly concordant to that produced
by a phylogeny using the presence/absence of the entire pan-
genome, and both agreed with phylogenies previously reported
for S. enterica. Together, the core and accessory genome offered
a more complete picture of the diversity within the genomes
than either alone. The genomic regions identified in this study
that are predictive of the species S. enterica, its six subspecies,
and the serovar groups within subspecies enterica, could be
developed into simple and rapid diagnostic tests, with uses
ranging from food safety to public health. Additionally, the tools

Frontiers in Microbiology | www.frontiersin.org 13 July 2017 | Volume 8 | Article 1345

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-01345 July 28, 2017 Time: 15:52 # 14

Laing et al. Salmonella enterica Genomic Markers

and methods described in this study could be generally
applicable as a pan-genomics framework for future
population studies, or those looking for genotype/phenotype
linkages.
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