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Abstract: In this work, two main fiber strengthening systems typically applied in masonry structures
have been investigated: composites made of basalt and hemp fibers, coupled with inorganic matrix.
Starting from the experimental results on composites, the out-of-plane behavior of the strengthened
masonry was assessed according to several numerical analyses. In a first step, the ultimate behavior
was assessed in terms of P (axial load)-M (bending moment) domain (i.e., failure surface), changing
several mechanical parameters. In order to assess the ductility capacity of the strengthened masonry
elements, the P-M domain was estimated starting from the bending moment-curvature diagrams.
Key information about the impact of several mechanical parameters on both the capacity and the
ductility was considered. Furthermore, the numerical analyses allow the assessment of the efficiency
of the strengthening system, changing the main mechanical properties. Basalt fibers had lower
efficiency when applied to weak masonry. In this case, the elastic properties of the masonry did
not influence the structural behavior under a no tension assumption for the masonry. Conversely,
their impact became non-negligible, especially for higher values of the compressive strength of the
masonry. The stress-strain curve used to model the composite impacted the flexural strength. Natural
fibers provided similar outcomes, but a first difference regards the higher mechanical compatibility
of the strengthening system with the substrate. In this case, the ultimate condition is due to the
failure mode of the composite. The stress-strain curves used to model the strengthening system
are crucial in the ductility estimation of the strengthened masonry. However, the behavior of the
composite strongly influences the curvature ductility in the case of higher compressive strength for
masonry. The numerical results discussed in this paper provide the base to develop normalized
capacity models able to provide important information on the out-of-plane behavior of masonry
elements strengthened with inorganic matrix and several kinds of fibers, both synthetic and natural.
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1. Introduction

A large part of the existing building stock is made of masonry structures, and recent calamitous
events have shown the high vulnerability of these structures. The strong vulnerability is due to
different factors: many structures were built in periods when the lack of building codes promoted
design approaches based on empirical and geometrical rules. Furthermore, masonry structures are
often characterized by a strong heterogeneity both in the materials and in the building techniques.
Tight measures were applied only for particular prestigious buildings. In fact, many heritage buildings
showed high seismic performances under several earthquakes [1]. Conversely, a large part of the
ordinary building stock was built according to poor construction techniques. In these cases, without
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specific measures, most of the ordinary building stock shows a high seismic vulnerability. Many failure
modes are due to local mechanisms rather than global mechanisms. In this background, the modelling
of masonry structures represents a crucial aspect. The issues increase when the attention is focused on
poorly built structures. Recent scientific research on innovative materials confirmed that the modern
strengthening techniques are very effective in improving the seismic behavior of existing structures.
In the strengthening field, several materials can be used for existing structures. The present work
focuses on novel composite materials made of inorganic matrices and synthetic or natural fibers. Basalt
fibers guarantee high mechanical compatibility with good masonry (i.e., solid clay brick) if compared
to other fibers like carbon, because of the lower elastic modulus (closer to masonry modulus). Similarly,
hemp fibers show high mechanical compatibility with poor masonries (i.e., adobe masonry), because
the elastic modulus is lower for both. Furthermore, these composites can be easily applied in heritage
buildings where the restoration criteria must be satisfied.

Hemp fibers provide low environmental impact on the built environment. Low impact now
represents a primary condition to be respected by the construction industry. Natural fibers represent
a highly sustainable material, and there is increasing scientific interest in construction applications,
due to their good mechanical properties. In fact, the tensile strength of fibers can reach even 1000 MPa
in the case of flax fiber, and about 800 MPa in the case of jute fiber, whereas hemp fiber exhibits a
tensile strength up to 690 MPa. The Young’s modulus is about 30 GPa for jute and flax fiber, while for
hemp fiber it varies up to 60 GPa. However, woven composites exhibit lower performance, but natural
fibers can be competitive with the most-used synthetic fibers for masonry applications. Recent studies
provide an overview of the different natural fiber composites available in the market [2,3].

The numerical results discussed in this paper provide important information on the out-of-plane
behavior of masonry elements strengthened with inorganic matrix and several kinds of fibers.
They constitute the base to develop normalized capacity models, which are currently not available in
the building codes.

Many engineering applications have proved the potential of composite materials made of synthetic
fibers (carbon or glass) and organic matrix (resin). Carbon fiber reinforced polymers (CFRPs) and
glass fiber reinforced polymers (GFRPs) have been widely used in many applications on different
kinds of masonry [4–6]. However, for some masonries these strengthening techniques may show some
problems (e.g., the presence of mortar joints limiting the bond performance [7], the need to improve the
bond [8], or the dynamic response [9]). In addition to experimental activity, Finite Element Modelling
(FEM) for brick masonry [10] or adobe [11] has also been used to deepen knowledge on strengthening
different kinds of masonry. In particular, some materials like resins and carbon could be incompatible
with the restoration criteria—especially when the intervention strategies involve heritage buildings.
Therefore, inorganic materials usually replace the resin, such as lime or cementitious-based mortar to
bond carbon [12], basalt [13], steel [14], or glass [15] fibers to masonry. These composites are named
fabric-reinforced cementitious matrix (FRCM) or textile-reinforced mortar (TRM), having a higher
physical and mechanical compatibility with masonry substrate [16–18]. This property refers both to
the fiber and to the matrix. In fact, the resins show several issues when applied on damp substrates
such as the masonry. Similarly, basalt or hemp show mechanical properties more compatible with the
substrate. High-performance fibers are less efficient due to the high differences between composite and
substrate. Furthermore, previous issues increase when the strengthening interventions are performed
on weak masonries like adobe [11], and in this case, highly performing materials like basalt would
not allow the full exploitation of the strengthening system’s capacity. Fiber elements made of natural
materials would ensure greater compatibility with the weak masonry substrate [2,3]. Furthermore,
in poor regions, the low cost of natural fibers makes them a good alternative to the classical synthetic
systems, given their several advantages, such as recycling, reduced pollution, and ready availability.
These strengthening systems certainly satisfy the sustainability requirements.

The positive effects of the previously discussed strengthening systems have been demonstrated
in many scientific works [19–23]. Great confirmations have been provided by the experimental
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activity [19,20], but also by the numerical activity [21–23]. The common experimental approach is
based on statically- or dynamically-tested masonry specimens before and after the strengthening
intervention. However, without a normalized design approach, many intervention strategies are
characterized by low efficiency. With reference to the strengthening strategies applied on concrete or
steel structures, several analytical models are available and many of them were included in modern
building codes.

In many engineering applications, the interventions on masonry in the past were performed
without a proper design, or simply according to suggestions by manufactures. This approach often
favors low efficiency of the strengthening systems or a deleterious behavior of composites. In particular,
composites applied in unnecessary amount present low internal stresses (low efficiency), and they
could favor a brittle behavior of the masonry elements, pushing the failure of the masonry.

Given the previously discussed background, the structural analyses in this study focused on
composites made of inorganic matrix and natural (hemp) and synthetic (basalt) fibers. The experimental
results allow the two composites to be numerically modeled. A solver algorithm was implemented
to parametrically assess the ultimate behavior of strengthened masonry elements, changing several
parameters. In a first step, the ultimate behavior was assessed in terms of the P (axial load)-M (bending
moment) failure surface.

The maximum bending moment of the strengthened masonry element was evaluated starting
from the bending moment-curvature diagram. This approach allows the internal stresses of the
composite to be monitored up to the ultimate state of the materials. Furthermore, this approach allows
the assessment of the impact of several parameters on the entire load curve. In fact, as clarified in the
following section, some parameters which apparently do not affect the maximum bending moment
greatly alter the entire bending moment-curvature diagram. This represents a critical aspect in order to
perform non-linear analyses. In particular, the bending moment-curvature diagram provides important
information on the ductility capacity of the masonry elements strengthened with composites.

For this reason, the bending moment-curvature diagrams were bi-linearized according to several
approaches to estimate the impact of key parameters on the ductility capacity of the masonry elements
strengthened with composite materials. The numerical results allow the behavior of composites to
be assessed under different load conditions. Furthermore, key information about the efficiency and
the failure modes of the strengthening system and masonry system were obtained. They constitute
the basis of developing normalized capacity models for structural nonlinear analyses of masonry
structures strengthened with composite materials. This study is mainly oriented to analyze the
flexural behavior, neglecting shear and flexure/shear interaction, as is common, for instance, in curved
structures (e.g., arches and barrel vaults [24,25]).

2. Theoretical Approach

Several tests were performed to provide both the entire stress-strain curves and the load capacity
by means of tensile tests on FRCM [2,12–15]. Starting from test results, the constitutive models
of composites were derived to perform the numerical investigation. The great number of tested
specimens allows to consider an average behavior of the masonry elements strengthened with
composite: inorganic matrix and synthetic (basalt) or natural (hemp) fibers.

The failure modes of the tested specimens can be due to the rupture of the fiber or the delamination.
In the first case, the tensile strength of the fiber is achieved after the matrix cracking. The latter failure
mode occurs for substrates characterized by poor adhesion properties.

Experimental results allow to identify different conventional threshold behaviors for the
strengthening systems. In particular, the stress-strain curve starts with an almost linear response.
It depends on the composite systems (combination of fiber and matrix) [26]. Under low stress level,
both the fiber and the matrix carry the load and the initial curve presents a stiffness that depends
mainly on the Young’s modulus of the matrix Emx. The initial almost linear stress-strain curve ends
when the matrix cracks. In this case, the stiffness reduces, but it is higher than the Young’s modulus
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of the fiber, Ef. In fact, after the cracking, the stress-strain curve depends on the tension stiffening
phenomena. In particular, the matrix cracks according to a non-uniform distribution [27,28]. The cracks
develop in a finite number of sections and, where the matrix is cracked, the load is carried by the fibers
only. Conversely, between cracks the internal stresses can be transferred by means of bond from the
fiber to the matrix. Therefore, the stiffness of the curve gradually shifts to the fibers only behavior with
a progressive reduction of the stiffness to Ef. This effect influences the entire response of the composite
and depends on the mechanical and physical characteristics of the constituent materials.

When the fiber element is made of basalt grid, according to experimental results [13], two conventional
behaviors can be identified. For a very weak matrix, the tension stiffening phenomena tend to zero
and the transfer from the non-cracked to the cracked condition occurs at very low stress levels. For this
reason, the entire stress-strain curve mainly involves the behavior of the fiber element only (this is
very similar to the behavior of FRP).

When the composite is made of high performance matrices, the cracking threshold occurs at
high stress levels [28–30]. In this case, once the cracking threshold is achieved, the stress-strain curve
progressively shifts to the curve of the fiber element only. According to the experimental results,
the previous behavior typically characterizes the composite material made of inorganic matrix and
basalt grid [13].

When natural fiber (hemp) replaces synthetic elements, the behavior changes. The hemp fiber is
characterized by lower mechanical properties if compared to the synthetic fibers. In this background,
using highly performing mortars is often useless [4]. Therefore, also the matrix must be made of
materials compatible with the natural fiber and the masonry substrate. For these composites, the shift
from the non-cracked to the cracked condition is always present. Therefore, if the matrix is made of
extremely weak materials, stress-strain curve almost immediately shifts from the uncracked to the
cracked condition. Conversely, if the matrix is characterized by more compatible properties with
the fiber, the stress-strain curve shifts from the uncracked to the cracked condition progressively.
According to the experimental results, the latter is typical of composite systems made of inorganic
matrix and hemp fibers [27].

2.1. Mechanical Models of Materials

Strengthened masonry is made of materials characterized by different mechanical properties.
These materials can be modelled by using several approaches [31]. In this work, several strategies
were used to model the strengthened system and the masonry. The masonry was assumed to carry
loads both in tension (to some extent) and in compression according to different mechanical behaviors,
while the strengthening system has strict no-compression behavior, carrying tensile stresses only.

The masonry in compression was modelled according to the ideal mechanical model of Eurocode
6 [32]. Initially, the curve is governed by a parabolic function. It depends on the first plastic strain
ε0 conventionally fixed equal to 2‰ and on the compressive strength, σ0. For strains higher than ε0,
the stress is constantly equal to σ0 up to the maximum compressive strain εmu, conventionally fixed
equal to 3.5‰. These limit strains are provided by Eurocode 6. This model is certainly simplified and
similar to models for concrete, as in both cases, experimental tests show similar stress-strain curves,
with softening after the peak load [33,34]. More complex stress-strain models can be adopted, but the
Eurocode 6 model was preferred to have a more general result.

Conversely, a brittle model was adopted for masonry in tension—in particular, a linear stress-strain
curve up to the low tensile strength of masonry, σt, with a drop to zero afterwards. It is assumed that
portions of masonry in tension can be cracked, hence they do not carry loads: this allows assessment
of the cracking and the effect of some masonry parameters (Young’s modulus and tensile strength) on
the ultimate behavior of the strengthened masonry element.

When the strengthening system is included, the effect of the tensile strength of masonry on
flexural capacity becomes negligible; however, the tensile strength usually has an impact on the
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entire response of the strengthened masonry, and hence in global nonlinear analyses of strengthened
masonry structures.

Several approaches can be used to numerically model an experimental stress-strain curve.
The multilinear model appears to be the favorite approach to modeling an experimental stress-strain
curve, which can be easily implemented into solver algorithms. However, the available experimental
results support an even more simplified approach. In fact, the strengthening system can be modelled
by linear, bi-linear, or tri-linear relationships.

For strengthening systems made of inorganic matrix and basalt fiber, the experimental results
confirm the linear and the bi-linear trends [12–15]. Instead, when natural hemp fiber replaces the
synthetic fiber, the experimental results confirm the bi-linear and tri-linear trends [2,3].

In order to implement previous mechanical models into a solver algorithm, a homogenized
approach can be suitable. The entire stress-strain curves can be homogenized to the fiber or to the
matrix, meaning that the global behavior of the FRCM is attributed to one of the two constituents,
by means of fictitious (i.e., homogenized) equivalent properties. The experimental tests provide the
ultimate strain of composite εc,u and the tensile strength σc,u. According to the typical failure modes
of composites, these values generally correspond to those of fiber εf,u and the tensile strength σf,u.
From these values, a Young’s modulus of the fiber only can be calculated as Ef = σf,u/εf,u. From the
experimental tests, the cracking level can be assessed from the stress-strain curve. As previously
discussed, a representative average behavior was chosen to perform the numerical modelling.

In particular, the tensile strength of mortar σm,cr provides the stress level at the cracking threshold.
The associated strain level, εm,cr, provides the cracking strain of composite εc,cr, assuming a perfect
bond between fiber and matrix. In the same way, the Young’s modulus of the matrix can be estimated
as Emx = σm,cr/εm,cr. Starting from these values, the stress-strain diagram—referred to the fiber
element—can be assessed. In particular, the initial homogenized (i.e., referred to fiber cross-section)
modulus E1

* can be calculated as follows:

E∗1 =
E f ·t f + Emx·tm

t f
(1)

where tf is the thickness of the fiber and tm is the thickness of the matrix. Once the initial Young’s
modulus E1

* is known, the cracking homogenized stress level can be evaluated as σm,cr
* = E1

*·εm,cr.
The homogenized mechanical parameters allow the simplified stress-strain curve of the composite

to be numerically modeled, according to the experimental results [2,12–15]. The linear model fits the
behavior of the fiber only, starting from a zero strain up to the ultimate strain of the composite εf,u
(linear stress-strain diagram with stiffness equal to Ef). Conversely, the bi-linear model is made of two
main parts. A first linear part with slope E1

* ranging between zero strain up to cracking strain εc,cr and
a second linear diagram characterized by a stiffness E2

* higher than Ef:

E∗2 =
σc,u − σc,cr

εc,u − εc,cr
(2)

According to a tri-linear model, the stress of the composite increases up to the cracking value σm,cr
*

(cracking strength of mortar homogenized to fiber). At increasing strain ε > εc,cr, the stress remains
constantly equal to σm,cr

* until the strain reaches the value ε2 = σm,cr
*/Ef. When the tensile stress

increases, the matrix cracks and the fibers only carry loads in the strengthening system. For this reason,
the stress-strain curve of composites close to failure tends to overlap with the fiber-only behavior
(e.g., the stiffness of the composite is similar to the stiffness of the fiber).

The mechanical models described previously were used to perform the numerical investigation.
These simplified stress-strain diagrams can be considered representative of an average behavior of
limit behaviors of these composites.
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2.2. Bi-Linearization of the Bending Moment-Curvature Diagram

The numerical approach discussed in Appendix A provides the non-linear bending moment-
curvature diagrams. In order to implement these diagrams into global numerical nonlinear
analyses of masonry structures, it can be useful to simplify them. Non-linear analyses are usually
performed according to bi-linearized simplified models of the bending moment-curvature diagrams
(elastic-perfectly plastic behavior).

Several bi-linearization approaches exist in the scientific literature [35]. Many of them are based
on energetic criteria. According to energy-based criteria, the bi-linear curve is defined guaranteeing
the same area of the original non-linear curve. Furthermore, the bi-linearized approach allows the
assessment of the ductility capacity of the masonry element. Two main approaches can be used
to bi-linearize the nonlinear diagrams. A first approach fixes the maximum bending moment and
changes the stiffness of the initial linear curve (i.e., elastic-linear behavior) to match the two areas
under the curves. This bi-linearized curve provides the minimum ductility capacity; it represents the
best approach if the interest focuses on the ductility estimation, but could provide low estimates of the
initial stiffness.

As an alternative, a second approach fixes the inclination of the initial curve through a particular
intersection point between the nonlinear and the bi-linear curves. This point is generally fixed at 60%
or 70% of the maximum load value. According to this second approach, the energetic criterion is
satisfied changing the maximum bending moment. The bi-linearized curve obtained with the latter
approach provides a ductility capacity higher than the previous one, but it provides a better estimate
of the stiffness of the curve. In this numerical investigation, the first approach was adopted because
the main interest is in (safe side) ductility estimations of the strengthened masonry elements.

3. Numerical Investigation

3.1. Mechanical Characteristics of Materials

The previously discussed numerical model was applied to perform a numerical investigation on
masonry elements strengthened with composite systems. Two strengthening systems were chosen to
perform the parametric investigation:

- Composite made of inorganic matrix and basalt fiber (synthetic fiber);
- Composite made of inorganic matrix and hemp fiber (natural fiber).

The geometry of the masonry refers to a masonry barrel vault actually tested at the University of
Naples, Federico II [36,37]. In particular, the cross-section vault has dimensions b × s (width × height)
equal to 2200 × 120 mm2. Masonry barrel vault can be analyzed as an arch with a slender cross-section
when it is loaded in its mid-plane [36,37]. A single layer of composite was applied on one side. In many
engineering applications, the strengthening system covers the elements on one side only, for several
reasons (i.e., presence of decorations, mosaics, paintings, etc.). The numerical investigation refers
to these cases. However, the strengthening system is supposed to be effective in tension only, as in
compression the contribution is neglected due to potential instability issues [29,37]. The thickness of
the matrix is equal to 10 and 15 mm for the synthetic and natural fibers, respectively. The geometrical
characteristics are shown in Figure 1.

A bi-directional grid was used for both strengthening systems. The basalt grid had cross-section
equal to 39.09 mm2/m (i.e., equivalent thickness of 0.039 mm). The hemp grid was made of strands
characterized by an average diameter of 3.0 mm and a spacing of 20 mm, which corresponds to a
cross-section of 353.25 mm2/m (i.e., equivalent thickness of 0.353 mm).

The mechanical properties of masonry change according to the masonry typologies found in the
Italian Building Code [38], (Figure 2a); however, for extremely weak masonry, the tensile strength
σt and the Young’s modulus Em were limited, as shown in Table 1. In particular, for a compressive
strength of 1 MPa, the tensile strength was limited to 0.3 MPa and the Young’s modulus to 1100 MPa,
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as typically occurs in weak masonry. The weaker masonry represents a typical masonry made of tuff
stone and weak mortar, while the upper bound properties are representative of a masonry made of
clay bricks and cementitious mortar according to the Italian Building Code [38].
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Figure 1. Main geometrical characteristics of masonry cross-section (dimensions in mm).

Table 1. Mechanical properties of masonry considered in the numerical investigation.

Compressive strength σ0 (MPa) Tensile strength |σt| (MPa) Young’s modulus Em (MPa)

1, 3, 8 0, 0.15, 0.3, 0.6 700, 1100, 3000, 5000

With reference to the strengthening systems, the mechanical properties change both for the matrix
and for the fiber element. The mechanical properties of single elements are shown in Table 2. Table 3
shows the mechanical properties of the stress-strain curve homogenized to the fiber section (some
values seem high, but they refer to fibers only, hence stresses become forces through multiplication by
thin fiber cross-sections). These values refer to an average behavior of the two strengthening systems,
as reported in data sheets [39,40]. They were used to perform the numerical investigation (Figure 2b).
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Figure 2. Stress-strain curves: (a) masonry material; (b) strengthening systems based on synthetic fiber
(red lines) and based on natural fiber (blue lines).

Table 2. Mechanical properties of strengthening systems.

Element Tensile strength (MPa) Young’s modulus (MPa) Ultimate tensile strain (-)

Basalt 1538 71,891 0.0214
Mortar (matrix for basalt) 8 8000 -

Hemp 47 7000 0.00671
Mortar (matrix for hemp) 0.35 8000 -
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Figure 2 shows the numerical stress-strain curves used to perform the numerical investigation for
the masonry (Figure 2a) and for the strengthening systems (Figure 2b). Masonry curves in tension are
close to each other.

More than 2000 numerical tests were performed combining the mechanical models used for
the materials.

Table 3. Mechanical properties of strengthening systems (homogenized to fiber section): inorganic
synthetic fiber-based (I.S.F) and inorganic natural fiber-based (I.N.F.). Both specimens are made of
bi-directional fiber grids.

Strengthening
system

Young’s
modulus E1

*

(MPa)

Young’s
modulus E2

*

(MPa)

Young’s
modulus
Ef (MPa)

Tensile cracking
strength |σm,cr|

(MPa)

Tensile
strength

|σcu| (MPa)

Initial
cracking strain

|εm,cr| (-)

Final
cracking

strain |ε2| (-)

Ultimate
strain

|εf,u| (-)

I.S.F 1,242,982 45,198 71,891 485 1538 0.00039 - 0.0214
I.N.F 346,531 4773 7000 15.16 47 0.000044 0.00217 0.00671

3.2. P-M Domains: Assessment of Masonry Cross-Sections Strengthened with Composite

The first goal of this research regards the assessment of the impact of mechanical parameters on
the ultimate performance of masonry cross-sections strengthened with composites. The symmetry
of the failure surface is missing because the strengthening system was applied on one side only.
The mechanical properties of masonry provide a negligible influence on the maximum bending
moment. This effect is due to the sharp difference between masonry and strengthening system at
ultimate conditions. In fact, when the strengthening systems carry loads (i.e., under tensile stress),
the Young’s modulus and tensile strength of the masonry show a negligible influence. This effect is
shown for all the stress-strain models of the composites and for both strengthening systems (synthetic
and natural fibers). Conversely, the constitutive laws used to model the composite provide significant
differences in the P-M failure surface. Figure 3 shows the P-M domains for a masonry cross-section
strengthened with composite made of inorganic matrix and synthetic fiber (basal grid), while Figure 4
shows the counterpart with natural fiber (hemp grid). In Figures 3 and 4, the numerical results of the
linear, bi-linear, and tri-linear models used for the strengthening systems are shown with different lines
(dotted and solid, respectively) according to the corresponding constitutive law depicted in Figure 2b.
The three different masonry constitutive laws (different Young’s modulus and tensile strength for each
compressive strength σ0) provide negligible effects; in fact, the three corresponding curves are almost
overlapping (e.g., the three dotted lines are almost overlapping).
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cracking 

strain |ε2| (-) 

Ultimate 
strain 

|εf,u| (-) 

I.S.F 1,242,982 45,198 71,891 485 1538 0.00039 - 0.0214
I.N.F 346,531 4773 7000 15.16 47 0.000044 0.00217 0.00671
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compressive strength σ0) provide negligible effects; in fact, the three corresponding curves are almost 
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Figure 4. P-M domains of the strengthening system with natural fiber: bi-linear model (dotted line),
tri-linear model (solid line).

It is interesting to note that the impact of the stress-strain model used for the composite prevails
for masonry with lower mechanical properties. In particular, for low compressive strength masonry,
the stress-strain model of the composite has a strong impact on the P-M domain, particularly at low
axial load levels. This effect decreases upon increasing the compressive strength of the masonry. In fact,
for weak masonry, the ultimate condition is generally due to the failure of the masonry. However, the
impact of the stress-strain model of the FRCM decreases in the case of hemp because the mechanical
properties of the materials (masonry and composite) become closer.

At very high axial loads, the curves are perfectly overlapping because the strengthening system is
not loaded there and the cross-section is almost entirely compressed.

3.3. Bending Moment-Curvature Diagrams

When the focus is on the ultimate behavior of the strengthened masonry, the Young’s modulus
and the tensile strength σt apparently do not affect the load-carrying capacity of the masonry
cross-section strengthened with composites [41]. However, it is interesting to assess the entire bending
moment-curvature diagrams upon changing several parameters.

Figure 5 shows the bending moment-curvature diagrams (left black axis) and the corresponding
stress-strain curve of the strengthening system (red axis) when parametrically changing the tensile
strength and the Young’s modulus of masonry. The diagrams were assessed for a null value of the axial
load P, where the numerical differences are more clear. Furthermore, the stress level achieved by the
composite system is shown (as percentage of composite tensile strength). This information is crucial to
assess the efficiency of the strengthening system. It refers to the masonry element strengthened with
inorganic matrix and basalt grid. Figure 5a,b show the cases with compressive strength σ0 of masonry
equal to 1 MPa. Furthermore, the two stress-strain curves to model the composite are shown: linear
(solid line) and bi-linear (dotted line) model.

When no tension is assumed, the Young’s modulus Em provides negligible impact on the P-M
domains. In this case, the several P-M domains are overlapping and this parameter provides no
influence on the bending moment-curvature diagram. Figure 5a shows the strong difference in terms
of the maximum bending moment between the two stress-strain curves of the composite. In these
cases, the efficiency reduces when considering a linear model for the composite (about 40% and 50%



Polymers 2018, 10, 334 10 of 26

for the linear and bi-linear, respectively). Assuming a tensile strength for the masonry (Figure 5b),
the bending moment-curvature diagram depends on the Young’s modulus of the masonry. In particular,
upon increasing the Young’s modulus, the cracking point becomes clear on the curve. Furthermore,
the efficiency of the composite decreases when the Young’s modulus increases.

Figure 5c,d show the impact of the tensile strength σt on the global behavior of the strengthened
masonry. The tensile strength of masonry provides an increase of the initial stiffness and a small
decrease of the efficiency on the composite. This effect is shown for both mechanical models—bi-linear
(dotted lines) and linear (solid lines)—used to model the composite. The impact of the tensile
strength of masonry σt for the linear model is higher than for the bi-linear model. When tensile
strength σt is assumed for masonry, the bending moment-curvature curve presents a cusp, and the
Young’s modulus has an influence on them, due to the cracking behavior. Increasing the axial load
P (or the normalized axial load p = P/P0), the Young’s modulus has less influence on the bending
moment-curvature diagram.

Another key parameter is represented by the stress level achieved in the strengthening system.
When basalt fiber is applied on weak masonry substrates, its stress level remains low. In all cases, the
stress level is lower than 50% of the tensile strength of the composite. This result confirms that the
strengthening amount is frequently excessive.
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Figure 6 shows the same numerical results on masonry characterized by a compressive strength 
σ0 = 8 MPa. Figure 6a,b show the influence of the Young’s modulus on the bending moment-curvature 

Figure 5. M-χ and σc,u-χ diagrams: P = 0 N, σ0 = 1 MPa, σt = 0 and 0.3 MPa, Em = 700 and 1100 MPa for
linear (solid lines) and bi-linear (dotted lines) relationships for the strengthening system (basalt fiber):
(a) σ0 = 1 MPa, σt = 0 MPa changing Em (b) σ0 = 1 MPa, σt = 0.3 MPa to changing Em (c) σ0 = 1 MPa,
Em = 700 MPa changing σt (d) σ0 = 1 MPa, Em = 1100 MPa changing σt.
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Figure 6 shows the same numerical results on masonry characterized by a compressive strength
σ0 = 8 MPa. Figure 6a,b show the influence of the Young’s modulus on the bending moment-curvature
diagrams. The impact of Young’s modulus is clear, given the higher compressive strength of the
masonry. This allows the stress level of the strengthening system to be increased, increasing its
efficiency. In particular, for several numerical analyses, the stress level of the composite reaches about
90% of the ultimate strength. When the tensile strength is zero, the impact of the Young’s modulus is
negligible. However, as evident from recent studies, no tension should not be assumed to estimate
the load capacity of some masonry structures [37]. Finally, the compressive strength of masonry has a
significant influence on the efficiency of the strengthening system.
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experimental results. Figure 7 shows the bending moment-curvature diagrams for masonry with 
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Figure 7c,d show the influence of the tensile strength. The higher mechanical compatibility of the 
composite with the masonry substrate guarantees a high efficiency of the retrofit strategy. In fact, for 
all the numerical analyses, the failure of the strengthening system is reached. When the strengthening 
system becomes more compatible with the substrate, the effect of the elastic properties of masonry 
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Figure 6. M-χ and σc,u diagrams: P = 0 N, σ0 = 8 MPa, σt = 0 and 0.6 MPa, Em = 700 and 5000 MPa for
linear (solid lines) and bi-linear (dotted lines) relationships for the strengthening system (basalt fiber):
(a) σ0 = 8 MPa, σt = 0 MPa changing Em (b) σ0 = 8 MPa, σt = 0.6 MPa to changing Em (c) σ0 = 8 MPa,
Em = 700 MPa changing σt (d) σ0 = 8 MPa, Em = 5000 MPa changing σt.

A similar approach was used for the composite made of inorganic matrix and natural fiber
(hemp fiber). In this case, bi-linear and tri-linear constitutive laws were adopted, according to the
experimental results. Figure 7 shows the bending moment-curvature diagrams for masonry with
compressive strength σ0 equal to 1 MPa under pure flexure (i.e., without axial load P). Figure 7a,b show
the impact of the Young’s modulus for the two values of tensile strength of masonry, while Figure 7c,d
show the influence of the tensile strength. The higher mechanical compatibility of the composite with
the masonry substrate guarantees a high efficiency of the retrofit strategy. In fact, for all the numerical
analyses, the failure of the strengthening system is reached. When the strengthening system becomes
more compatible with the substrate, the effect of the elastic properties of masonry on the ultimate
behavior becomes clearer. In these cases, the Young’s modulus and the tensile strength of masonry have
a clear impact on the behavior of the strengthened masonry. In particular, assuming a tensile strength,
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the cracking behavior could govern the capacity. Furthermore, when the strengthening system becomes
more compatible with the masonry, the maximum bending moment of the strengthened masonry
cross-section is not strongly influenced by the stress-strain curve of the strengthening system. However,
it can strongly influence the ductility of the masonry cross-section, as clarified in the following.
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(a) σ0 = 1 MPa, σt = 0 MPa changing Em (b) σ0 = 1 MPa, σt = 0.3 MPa to changing Em (c) σ0 = 1 MPa,
Em = 700 MPa changing σt (d) σ0 = 1 MPa, Em = 1100 MPa changing σt.

Figure 8a–d outline the same results on masonry characterized by compressive strength σm equal
to 8 MPa. In this case, the cracking behavior is clear and it can control the capacity. In fact, the cusp
limits the ductility, promoting a brittle failure mode.

3.4. Ductility Estimation

The ductility estimation can be performed with several approaches, depending on the bending
moment-curvature bi-linearization. The minimum curvature ductility of the masonry cross-section
strengthened with composites can be calculated as previously clarified (first approach):

µ =
χu

χy
(3)

where χu is the ultimate curvature and χy represents the yielding curvature read on the bi-linearized
curve. Figure 9 shows the bending moment-curvature diagram bi-linearized according to the first
approach. The curves refer to P = 0 N, σ0 = 0 MPa, σt = 0 and 0.6 MPa, Em = 700 and 1100 MPa
for linear (solid lines) and bi-linear (dotted lines) relationships for the strengthening system made
of inorganic matrix and basalt fiber. The differences in terms of ductility appear clear in this figure.
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The strengthening system modelled by means of a linear stress-strain curve provides a curvature
ductility lower than the bi-linear one.
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The same numerical analyses were performed for the second group (Figure 10), where the
maximum compressive and tensile strength were increased to 8 and 0.6 MPa, respectively, and the
maximum Young’s modulus was fixed equal to 5000 MPa. The great difference in terms of curvature
ductility is even more visible.

Therefore, the constitutive laws used to model the composite have a significant impact on both
the maximum bending moment value and on the curvature ductility. Therefore, they represent key
elements in performing nonlinear analyses.
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Figure 10. Bi-linearized M-χ curves: P = 0 N, σ0 = 8 MPa, σt = 0 and 0.6 MPa, Em = 700 and 5000 MPa for
linear (solid lines) and bi-linear (dotted lines) relationships for the strengthening system (basalt fiber).

Finally, the curvature ductility was assessed for the two models as summarized in Figure 11.
The strengthening system modelled with a linear stress-strain relationship provides extremely low
ductility. Furthermore, with reference to the curvature ductility, the elastic parameters of masonry
provide a relevant impact on it.

Polymers 2018, 10, x FOR PEER REVIEW  15 of 26 

 

 
Figure 11. Ductility estimation for the two stress-strain relationships for basalt fiber: P = 0 N, for linear 
(solid lines) and bi-linear (dotted lines). 

Similar analysis was performed for the second typology of strengthening system (hemp fiber). 
Figure 12 shows the bi-linearized curves obtained for masonry with compressive strength σm equal 
to 1 MPa. It is interesting to note that when the strengthening system and the masonry substrate 
become more compatible, the scatter of the curvature ductility decreases for different mechanical 
models of the composite. The same effect can be seen for the elastic properties of masonry (Young’s 
modulus and tensile strength). 

 
Figure 12. Bi-linearized M-χ curves: P = 0 N, σ0 = 1 MPa, σt = 0 and 0.3 MPa, Em = 700 and 1100 MPa 
for tri-linear (solid lines) and bi-linear (dotted lines) relationships for the strengthening system (hemp 
fiber). 

Figure 13 shows the same analysis performed on masonry with compressive strength equal to 8 
MPa. When the compressive strength of masonry σm increases, the impact of both the mechanical 
model of the composite and of the elastic properties of masonry become significant in the ductility 
estimation. This aspect was clarified in Figure 14, where the ductility estimation is shown. 

Figure 11. Ductility estimation for the two stress-strain relationships for basalt fiber: P = 0 N, for linear
(solid lines) and bi-linear (dotted lines).



Polymers 2018, 10, 334 15 of 26

Similar analysis was performed for the second typology of strengthening system (hemp fiber).
Figure 12 shows the bi-linearized curves obtained for masonry with compressive strength σm equal to
1 MPa. It is interesting to note that when the strengthening system and the masonry substrate become
more compatible, the scatter of the curvature ductility decreases for different mechanical models of the
composite. The same effect can be seen for the elastic properties of masonry (Young’s modulus and
tensile strength).
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Figure 13 shows the same analysis performed on masonry with compressive strength equal to
8 MPa. When the compressive strength of masonry σm increases, the impact of both the mechanical
model of the composite and of the elastic properties of masonry become significant in the ductility
estimation. This aspect was clarified in Figure 14, where the ductility estimation is shown.
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In order to identify the key aspects, the previously discussed numerical results involve only
a few cases of the entire numerical investigation. However, it is interesting to analyze the entire
population. In particular, Figure 15 shows the probability density function (PDF) of the curvature
ductility for the composite made of synthetic fiber applied on weak masonry (σ0 =1 MPa). In particular,
Figure 15a shows the effect of the tensile strength on the curvature ductility for this strengthening
system. It is interesting to note that the linear model (solid lines) shows a lower dispersion compared to
the bi-linear (dotted lines). Furthermore, the dispersion decreases when increasing the tensile strength
of the masonry. Similarly, Figure 15b shows the effect of the Young’s modulus on the curvature ductility.
The linear model (solid lines) shows a lower dispersion compared to the bi-linear one (dotted lines).
Furthermore, the dispersion decreases with the Young’s modulus of the masonry.

Figure 15c,d show the same analysis performed on masonry with compressive strength equal to
8 MPa. The Young’s modulus and tensile strength have similar effects on the PDF. It is interesting to
note that the difference of the average ductility values decreases when increasing the compressive
strength of masonry.
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Figure 16 shows the same results for the composite made of natural fiber. An important aspect
regards the decrease of the dispersion of numerical results. In particular, the higher the compatibility
between composite and masonry substrate, the lower the impact of the stress-strain law of the
composite on the ductility estimation. Furthermore, the dispersion between the average values
of the curvature ductility also decreases.
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4. Conclusions

This work focuses on a numerical investigation to assess the impact of stress-strain relationships
(i.e., constitutive laws) of several FRCM materials on the flexural behavior of strengthened masonry
elements. In particular, the work focuses on strengthening with inorganic matrix and two kinds of
fibers (synthetic and natural fibers). The stress-strain curve of masonry was modelled according to the
ideal model proposed by Eurocode 6; conversely, the strengthening systems were modelled according
to several simplified constitutive laws fitted on the experimental results. When the composite is made
of synthetic fiber it can be modelled by means of a bi-linear or linear stress-strain curve, while if a
natural material replaces the synthetic fibers, a bi-linear or tri-linear stress-strain model can be adopted.

The strengthening system made of basalt grid is generally characterized by high mechanical
performance. Basalt has lower efficiency when applied on weak masonry; therefore, the ultimate
condition is due to the local crashing of the masonry. In this case, the mechanical model used to model
the composite strongly affects the global behavior of the strengthened masonry element. The elastic
properties of the masonry do not influence the structural behavior under a no tension assumption
for the masonry. However, if a tensile strength is assumed for masonry, the impact is non-negligible,
especially for higher values of the compressive strength of the masonry. The stress-strain curve used to
model the composite has an impact on the flexural strength. The numerical results obtained for natural
fibers provide similar outcomes, but a first difference involves the higher mechanical compatibility
of the strengthening system with the substrate. In this case, the ultimate condition is due to the
failure of the composite. On weak masonry, the variability of the structural behavior, changing the
elastic properties of masonry, decreases. Furthermore, the stress-strain curve of the composite also
has a negligible influence on the estimation of the flexural strength. The bending moment-curvature
diagrams show a clear cusp, which occurs when the masonry cross-section cracks, and in some cases,
this could limit the capacity of the strengthened masonry.

Finally, the numerical investigation involved the estimation of the curvature ductility according
to safe side criteria. The numerical results showed that the stress-strain curves used to model
the strengthening system are crucial in the numerical analysis, but the impact reduces when the
compressive strength of the masonry increases. However, FRCM behavior strongly influences the
curvature ductility at higher masonry compressive strength. The numerical results shown in this work
provide a basis for the development of normalized capacity models. They provide key information on
the nonlinear assessment and design of masonry elements strengthened with composites.
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Appendix A

Failure Surface of the Strengthened Masonry Section: Solver Algorithm

The ultimate behavior of the masonry cross-section strengthened with composites was assessed
starting from the evaluation of the bending moment-curvature diagram. Flexural strength was
evaluated for a discrete number of axial load values. The envelope of these points provides the
entire failure surface of the strengthened masonry element. Assuming that the strengthening system
was applied on one side of the cross-section, it contributes only to one sign of the bending moment
(i.e., composite carries loads only if stressed in tension) [18]. When the bending moment puts the
strengthening system in compression, it does not contribute and the behavior of the cross-section
depends on the masonry only.

The solver algorithm is based on a discrete approach where the cross-section is divided into a
finite number of elements (strips). The failure surface depends on the geometry of the cross-section
(masonry and strengthening system) and on the mechanical properties of constituents. Furthermore,
the accuracy of the numerical approach depends on the discretization level. Upon increasing the
discretization level, the solution becomes more accurate, but the duration of the calculation increases.
The following section describes the solver algorithm. The input data are:

- Size of the cross-section: b and s, respectively, width and height;
- Compressive strength of masonry σ0;
- Tensile strength of masonry through the parameter α. It is the ratio between the tensile strength

σt and the compressive strength σ0.

α =
|σt|
σ0

(A1)

- Young’s modulus of masonry Em;
- Multi linear stress-strain curve of strengthening system;
- Cracking stress of matrix σm,cr

* homogenized to the fiber element;
- Ultimate stress of the composite σc,u. It coincides with the tensile strength of the fiber element;
- Initial Young’s modulus E1

* and E2
* of the composite homogenized to the fiber element

(for bi-linear and tri-linear models);
- The Young’s modulus of the composite Ef (for linear, bi-linear, and tri-linear models);

- Number of strips, nf, to discretize the cross-section (the strengthening system is generally
modelled as a single strip element);

- Convergence tolerance for the equilibrium equation, generally equal to 1‰ of the axial load P;
- Number of steps nsP to split the axial load range;
- Number of steps nsχ in order to assess the bending moment-curvature diagram;
- Number of iterations for the solver algorithm. This value is variable and depends on the

convergence criteria.

The main parameters that influence the duration of the calculation are the number of steps nsP and
the number of iterations, while the precision of the calculation is due to both the discretization level
(i.e., number of strips nf) and the tolerance imposed. The stress is assumed to be uniformly distributed
in the generic strip. A sufficient discretization level ensures that the last assumption is acceptable.
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The first information is the maximum number of steps nsP. This value provides the number of
axial loads Pi at which the moment-curvature diagram is assessed. The maximum axial load P0 is
calculated through a pure compression condition:

P0 = σ0·b·s (A2)

Under compression stresses, the strengthening system does not react. The calculation was limited
to compression only, given the usual conditions for the masonry structures [24–26]. The entire range
between 0 and P0 is divided into a number of points Pi:

Pi = i·P0/nsP for i = 0, 1, ..., nsP (A3)

Starting from the bending moment-curvature diagram, the conventional flexural strength Mrd,i(Pi)
becomes a point of the failure surface. Once the number of strips nf is fixed, the cross-section is divided
into nf discrete elements. For each element (i.e., for each strip) the thickness sf and area Af can be
calculated as follows:

s f = s/n f (A4)

A f = b·s f (A5)

Another important parameter to implement the solver algorithm is the location of the barycenter
of each strip xG,j. This information is easily found by numbering the strips and starting from the top of
the cross-section; the position xG,j can be easily calculated as follows:

xG,j =
(
nj − 1

)
·s f + s f /2 for j = 1, 2, ..., n f (A6)

Finally, the number of steps to assess the bending moment-curvature diagram, nsχ, must be
defined. This value is different from that used for the axial range, nsP. The last strip, nf, corresponds to
the strengthening system.

The bending moment M and axial load P can be assessed by equilibrium equations of the internal
stress diagrams. Therefore, the first step is to assess the strain value achieved in each strip. Under
Bernoulli’s assumption, the strain in each strip can be expressed by a linear function. This assumption
shall be valid up to collapse, and it allows the assessment of the strain level in each strip. The strain
level refers to the barycenter Gj of a generic strip and it depends both on the discretization level nf and
on the step nsP. The strain level in the generic strip can be calculated starting from the strain value
achieved in the top of the cross-section εG,i,j=1,k. In particular, when the neutral axis depth xi,k is known,
this value can be expressed as follows:

εG,i,1,k = χi,k·xi,k for i = 1, 2, ..., nsP and k = 1, 2, ..., nsχ (A7)

Finally, the strain level in the generic strip can be expressed as a function of the curvature
value χi,k:

εG,i,j,k = εG,i,1,k − χi,k·xG,j for i = 1, 2, ..., nsP, j = 1, 2, ..., n f and k = 1, 2, ..., nsχ (A8)

For a generic strip, the stress value can be calculated from the strain level, according to the
mechanical model previously discussed for the masonry:

σG,i,j,k = Em·εG,i,1,k if εG,i,j,k < 0 (A9)

σG,i,1,k =
2·σ0
ε0

εG,i,1,k

(
1− εG,i,j,k

2·ε0

)
if 0 ≤ εG,i,j,k < ε0

for i = 1, 2, ..., nsP, j = 1, 2, ..., n f and k = 1, 2, ..., nsχ

(A10)
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σG,i,1,k = σ0 if ε0 ≤ εG,i,j,k < εu (A11)

and for the strengthening system:

(a) under a tri-linear model assumption:

σG,i,n f ,k = E∗1 ·εG,i,n f ,k if εG,i,n f ,k ≤ εm,cr (A12)

σG,i,n f ,k = σ∗m,cr for εm,cr < εG,i,n f ,k ≤ ε2 (A13)

σG,i,n f ,k = E f ·εG,i,n f ,k for ε2 < εG,i,n f ,k ≤ ε f ,u (A14)

(b) under bi-linear assumption:

σG,i,n f ,k = E∗1 ·εG,i,n f ,k if 0 < εG,i,n f ,k ≤ εm,cr (A15)

σG,i,n f ,k = E∗2 ·εG,i,n f ,k for εm,cr < εG,i,n f ,k ≤ ε f ,u (A16)

(c) under linear assumption:

σG,i,n f ,k = E f ·εG,i,n f ,k if 0 < εG,i,n f ,k ≤ ε f ,u (A17)

The axial load on a generic strip PG,i,j,k can be calculated from the internal stress level and the
axial load on the entire section Pi is as follows:

PG,i,j,k = A f ·σG,i,j,k

Pi = ∑
n f
j=1 PG,i,j,k

for i = 1, 2, ..., nsP, j = 1, 2, ..., n f and k = 1, 2, ..., nsχ (A18)

The internal axial load on the cross-section is fixed at each step. Therefore, once it is integrated
over the entire cross-section, it does not depend on k and j indices (i.e., it is not dependent on the
curvature χ value). The bending moment Mrd,i,j,k can be assessed with a similar approach. In particular,
the contribution of the generic strip is provided by the product between the axial load contribution
Pi,j,k of the strip and its distance from the center of the cross-section. The bending moment acting on
the cross-section Mi,k can be assessed by integrating the previous local bending moment values on the
entire section as follows:

Mi,j,k = PG,i,j,k·
( s

2 − xG,i
)

Mi,k = ∑
n f
j=1 Mi,j,k

for i = 1, 2, ..., nsP, j = 1, 2, ..., n f and k = 1, 2, ..., nsχ (A19)

In this case, the bending moment depends on the curvature (i.e., it depends on the k index). The k
index increases up to the collapse. The ultimate condition can be due to two main failure modes.
Starting from a zero curvature value, the stress increases both in the masonry and in the strengthening
system. A first threshold is achieved when the masonry cracks:

σG,i,n f−1,k = σt = −α·σ0 (A20)

where the expected stress is higher than |σt| value, masonry does not carry loads, and stress drops to
zero. The tensile strength of masonry provides a negligible contribution when the strengthening system
reacts, while it provides a key contribution when the strengthening system is compressed [42,43].
At increasing curvature values, the ultimate condition can be due to one of the three main failure modes:

- crashing of masonry;
- failure of the strengthening system under tensile stress;
- debonding failure mode between the strengthening system and the substrate.
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The last failure mode can be easily included as a lower tensile strength of the composite. In particular,
for each step nsχ, the stress achieved in the strengthening system must be compared to the debonding
stress value [43]. Otherwise, the calculation continues up to conventional collapse due to the other two
failure modes.

It is important to note that other failure modes exist for the strengthened masonry cross-sections.
In particular, the cross-section may not react if the compressive strength of the masonry, σ0, is exceeded.
In this case, the strips characterized by a compressive strain higher than the ultimate value do not react
and the equilibrium condition is achieved in a cross-section characterized by a reduced height s′ < s.
The curvature increases up to the failure of the strengthening system or up to the loss of equilibrium
condition. Figure A1 shows a typical distribution of the internal stresses on a masonry cross-section
strengthened with composites.Polymers 2018, 10, x FOR PEER REVIEW  22 of 26 
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Figure A1. Discrete model to assess the bending moment-curvature diagram.

Starting from zero, curvature can be increased with a fixed step. For a generic step χi,k, the axial
load Pi is known. The unknown parameter is represented by the neutral axis depth xi,k. It can be
calculated by means of an iterative approach. In particular, once a trial value of the neutral axis xi,k’ is
fixed, the strain level in each strip j is known. The axial load acting on each strip PG,i,j,k’ and on the
entire cross-section Pi,k’ are easily calculated. The actual neutral axis satisfies the equilibrium equation
if there is a convergence on the axial load value with a prefixed tolerance (e.g., 1%).

The next step consists of the evaluation of the bending moment value Mi,k by means of previous
equations, and the entire stress level (masonry and composite) can be assessed for each step.
The curvature χi,k is increased until ultimate condition. In this way, the bending moment-curvature
diagram can be assessed. Finally, the bending moment-curvature diagram can be regularized by means
of the bi-linearization methods discussed in the paper. Figure A2 shows a schematic flowchart of the
previously discussed algorithm.
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Abbreviations

Af area of the single strip
b width of the cross-section
E1

* initial Young’s modulus of composite, homogenized to fiber
E2

* second Young’s modulus of the bi-linear model of composite, homogenized to fiber
Ef Young’s modulus of the fiber
Em Young’s modulus of the masonry
Emx Young’s modulus of the matrix
M bending moment acting on the cross-section
Mrd bending strength of the cross-section
Mrd,i bending strength of the cross-section for an assumed axial load value
Mrd,i,j,k bending strength of the strip j for both assumed axial load and curvature value
Mi,k bending moment of the cross-section for both assumed axial load and curvature value
nf number of strips to discretize the cross-section
nsP number of steps to split the axial load range
nsχ number of steps to split the bending moment- curvature diagram
P axial load acting on the cross-section
P0 axial strength of the cross-section
Pi discrete value of the axial load
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PG,i,j,k axial load for each strip j for both assumed axial load and curvature value
p axial load normalized to the axial strength P0
s height of the cross-section
sf thickness of the single strip
xG,j distance of the barycenter of each strip j from the top of the cross-section
ε0 first plastic strain of masonry
ε2 final strain of the constant stress-strain curve of the tri-linear model of composite
εc,cr cracking strain of composite
εc,u ultimate strain of composite
εf,u ultimate strain of fiber
εG,j strain level for each strip j
εG,i,j strain level for each strip j for an assumed axial load value
εG,i,j,k strain level for each strip j for both assumed axial load and curvature value
εm,cr cracking strain of mortar
εmu maximum compressive strain of masonry
µ curvature ductility of the cross-section
σ0 compressive strength of masonry
σc,u tensile strength of composite
σc tensile stress of composite
σf,u tensile strength of fiber
σm,cr cracking strength of mortar
σm,cr

* cracking strength of mortar, homogenized to fiber
σt tensile strength of masonry
σG,j stress level for each strip j
σG,i,j stress level for each strip j for an assumed axial load value
σG,i,j,k stress level for each strip j for both assumed axial load and curvature value
α tensile strength of masonry, normalized to the compressive strength σ0
χ curvature value of the strengthened cross-section
χi,k curvature value for an assumed axial load
χu ultimate curvature of the bi-linearized curve
χy yielding curvature of the bi-linearized curve
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