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Abstract

Sumoylation is a post-translational modification that is oftentimes deregulated in diseases such as cancer. Transcription
factors are frequent targets of sumoylation and modification by SUMO can affect subcellular localization, transcriptional
activity, and stability of the target protein. C/EBPbeta1 is one such transcription factor that is modified by SUMO-2/3. Non-
sumoylated C/EBPbeta1, p52-C/EBPbeta1, is expressed in normal mammary epithelial cells but not breast cancer cell lines
and plays a role in oncogene-induced senescence, a tumor suppressive mechanism. Although p52-C/EBPbeta1 is not
observed via immunoblot in breast cancer cell lines, higher molecular weight bands are observed when breast cancer cell
lines are subjected to immunoblot analysis with a C/EBPbeta1-specific antibody. We show that exogenously expressed C/
EBPbeta1 is sumoylated in breast cancer cells, and that the higher molecular weight bands we observe in anti-C/EBPbeta1
immunoblots of breast cancer cell lines is sumoylated C/EBPbeta1. Phosphorylation oftentimes enhances sumoylation, and
phosphorylation cascades are activated in breast cancer cells. We demonstrate that phosphorylation of C/EBPbeta1Thr235
by Erk-2 enhances sumoylation of C/EBPbeta1 in vitro. In addition, sumoylated C/EBPbeta1 is phosphorylated on Thr235 and
mutation of Thr235 to alanine leads to a decrease in sumoylation of C/EBPbeta1. Finally, using a C/EBPbeta1-SUMO fusion
protein we show that constitutive sumoylation of C/EBPbeta1 completely blocks its capability to induce senescence in WI38
fibroblasts expressing hTERT. Thus, sumolylation of C/EBPbeta1 in breast cancer cells may be a mechanism to circumvent
oncogene-induced senescence.
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Introduction

The post-translational modification sumoylation regulates the

function of a growing list of proteins that have roles in a variety of

cell processes. Because of this, deregulation of the SUMO pathway

has been observed in numerous diseases including neurodegener-

ative disorders [1] diabetes [2], and cancer [3]. Four members of

the SUMO (Small Ubiquitin-like MOdifier) family have been

identified, SUMO-1, -2, -3, and -4, all of which share homology

with ubiquitin [4]. SUMO-2 and SUMO-3 only differ from one

another by three amino acid residues and are viewed as being

functionally identical. SUMO-2/3 are 50% identical to SUMO-1

[5]. Much less is known about SUMO-4 than the first three

members of the SUMO family. SUMO proteins are a group of

polypeptides that conjugate to the lysine residue within the target

four amino acid consensus sequence: large, hydrophobic amino

acid, lysine, alanine, glutamate. SUMO is conjugated to target

proteins in much the same manner as ubiquitin. A SUMO-

activating enzyme (E1) carries out an ATP-dependent activation of

the SUMO carboxy terminus and then transfers the activated

SUMO to the SUMO-conjugating enzyme (E2), also known as

Ubc9. SUMO is then transferred from Ubc9 to the target,

oftentimes with the assistance of one of several SUMO E3 ligases

[4,5]. The SUMO peptides are about 11 kDa but they appear

larger on SDS-PAGE gels and can add as much as 20 kDa to the

apparent molecular weight of substrates [5]. SUMO-2/3 are able

to form chains on target proteins because the SUMO-2/3 peptide

contains a SUMO consensus site. It is thought that most of the

SUMO-1 in cells is conjugated to proteins whereas free pools exist

of the more abundant SUMO-2/3 [6]. SUMO-2/3 is believed to

be utilized when cells are exposed to a variety of stresses. The bulk

of SUMO substrates that have been identified are involved in

chromatin organization, transcription, RNA metabolism, and

cytoplasm-nuclear transport [6]. Sumoylation has been shown to

be involved in maintenance of genome integrity, protein

localization, inhibiting ubiquitination, and regulation of transcrip-

tion, among other cellular functions [5].

CCAAT/enhancer binding protein beta (C/EBPbeta) contains

a SUMO consensus site within its sequence centered around lysine

173 [7]. C/EBPbeta is a basic leucine zipper transcription factor

in which three protein isoforms exist due to alternative translation

initiation at three in-frame methionines. In humans, full-length C/

EBPbeta1 begins at the first in-frame methionine, is 346 amino

acids long (297 in rat and mouse) and has an apparent molecular

weight of 52 kDa. C/EBPbeta2 begins at the second in-frame

ATG, 23 amino acids (21 in rat and mouse) downstream from the

first, and appears as a doublet on immunoblots at 45 kDa and

48 kDa. C/EBPbeta3 starts at the final in-frame methionine at

amino acid 198 in humans and has an apparent molecular weight

of 20 kDa. C/EBPbeta1 and C/EBPbeta2 both contain the C-
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terminal DNA binding/dimerization domain as well as an N-

terminal transactivation domain, allowing them to function as

activators of transcription. C/EBPbeta3 is missing the N-terminal

transactivation domain and is thus a repressor of transcription [8].

It has been proposed that these three isoforms arise through the

presence of alternative translation initiation sites via a leaky

ribosome scanning mechanism [8,9]. A small upstream open

reading frame has also been demonstrated to be of importance in

regulating translation of C/EBPbeta2 [10]. There is further

evidence that C/EBPbeta3 can be produced via proteolytic

degradation of the longer isoforms [11].

C/EBPbeta is expressed and plays important roles in a wide

number of tissue types. The C/EBPbeta knockout mouse

demonstrated that C/EBPbeta plays an essential role in the

development of the mammary gland. These mice display a defect

in mammary epithelial cell proliferation in response to hormonal

stimulation at puberty or pregnancy and a defect in mammary

epithelial cell differentiation in response to lactation specific

hormones [12,13]. The production of multiple isoforms of C/

EBPbeta may explain how a single transcription factor can

regulate various functions. There is accumulating evidence that

the three isoforms of C/EBPbeta are functionally distinct. C/

EBPbeta3 has recently been found to play a role in autophagy and

cell death in breast cancer cells [14]. On the contrary, C/

EBPbeta2 has been shown to promote cell growth, transformation,

and invasiveness of the immortalized MCF10A mammary

epithelial cell line [15,16]. C/EBPbeta2 is not expressed in normal

mammary epithelial tissue from reduction mammoplasty, however

high expression of this second isoform is observed in primary

human breast cancer tissue [17,18]. Additionally, C/EBPbeta2 is

expressed in breast cancer cell lines and can transactivate cyclin

D1 and PLAC1, two genes whose protein products are involved in

proliferation and commonly upregulated in breast cancer [17,18].

In stark contrast to C/EBPbeta2, the first isoform of C/EBPbeta is

expressed in normal mammary epithelial tissue from reduction

mammoplasty but not in breast cancer cell lines [17,18]. The C/

EBPbeta1 isoform has been implicated in the differentiation of

myeloid cells through activation of genes involved in differentia-

tion such as mim-1. This activation was attributed to the ability of

C/EBPbeta1 to interact with and recruit the SWI/SNF chromatin

remodeling complex [19]. Moreover, C/EBPbeta has been shown

to be an essential player in onogene-induced senescence, a tumor

suppressive mechanism [20,21]. A recent report indicates that C/

EBPbeta1 is the isoform responsible for the induction senescence

[22,23].

Interestingly, C/EBPbeta1 is the only transactivator isoform of

C/EBPbeta that is sumoylated by SUMO-2/3 in Cos-7 cells even

though both C/EBPbeta1 and C/EBPbeta2 contain the SUMO

consensus sequence around lysine 173 [7]. It has been demon-

strated that C/EBPbeta-1 can be sumoylated on lysine 173 and

the first 23 amino acids unique to C/EBPbeta-1 are necessary for

efficient sumoylation. Mutation of this target lysine 173 to an

alanine did not affect sub-nuclear localization of C/EBPbeta-1 [7].

Sumoylation of transcription factors frequently causes transcrip-

tional repression. This transcriptional repression is oftentimes due

to sumoylation leading to an alteration in binding partners. The

sumoylated protein interacts with transcriptional co-repressors

such as histone deacetylases (HDACs), Daxx, members of the

NURD co-repressor complex, and Polycomb group proteins [24].

Elk-1 [25], PPAR-gamma [26] and Pax3 [27] are examples where

sumoylation of these transcription factors led to their association

with transcriptional co-repressors and consequently repression of

target genes. Although expression of the 52 kDa form of C/

EBPbeta1 is not observed in breast cancer cells, sumoylated C/

EBPbeta1 would migrate more slowly via SDS-PAGE resulting in

higher molecular weight bands. Since sumoylation oftentimes

leads to transcriptional repression of target proteins, negative

regulation of C/EBPbeta1 by sumoylation would give cancer cells

a growth advantage since C/EBPbeta1 plays a role in oncogene-

induced senescence, a tumor suppressive mechanism.

Additionally, phosphorylation of target proteins oftentimes

enhances sumoylation. Examples of this include phosphorylation

and subsequent enhancement of sumoylation of STAT1 [28],

PPAR-gamma [29], MEF2 [30,31], and Estrogen-related receptor

alpha-1 [32]. Phosphorylation cascades known to phosphorylate

C/EBPbeta are activated in breast cancer cells. For example, the

Ras pathway is activated in most breast cancer cells via activation

of upstream receptors, activation of Ras itself, or activation of

downstream kinases [33]. Activation of the Ras pathway leads to

the activation of numerous kinases that phosphorylate C/EBPbeta

on Threonine 235 (Thr235) including Erk-2 [34], cdk2 [35,36],

and p38 [37,38]. Therefore, phosphorylation of C/EBPbeta1 on

Thr235 in transformed cells may enhance sumoylation, thus

repressing the transcriptional ability of C/EBPbeta1 to induce

senescence. In the current study we demonstrate that an antibody

specific to C/EBPbeta1 recognizes higher molecular weight bands

in a panel of breast cancer cell lines. When C/EBPbeta1 is

exogenously expressed in breast cancer cells, sumoylation of C/

EBPbeta1 is evident. Importantly we show that the higher

molecular weight bands in breast cancer cell lines recognized by

the C/EBPbeta1-specific antibody are sumoylated C/EBPbeta1.

Additionally, phosphorylation of purified C/EBPbeta1 by Erk-2

enhances sumoylation, in vitro, and sumoylated C/EBPbeta1 is

phosphorylated on Thr235. Furthermore, mutation of C/

EBPbeta1Thr235 to alanine, thus preventing phosphorylation of

this residue, leads to a decrease in sumoylation of C/EBPbeta1.

Finally, a C/EBPbeta1-SUMO fusion protein is completely

incapable of inducing senescence in WI38 fibroblasts whereas

C/EBPbeta1 effectively induces senescence. Taken together, our

results indicate that activated Ras signaling in breast cancer cells

may lead to the sumoylation of C/EBPbeta1 and concomitant

inactivation of its ability to induce senescence, thereby comprising

a means to escape OIS.

Results

Sumoylation of C/EBPbeta1 in breast cancer cell lines
p52-C/EBPbeta1 is not observed via immunoblot analysis of

breast cancer cell lines [17], Figure 1a, however p52-C/EBPbeta1

is expressed in the MCF10A immortalized but non-transformed

mammary epithelial cell line [Figure 1a]. Figure 1a utilizes an

antibody raised to the first 23 amino acids present only in the first

isoform of C/EBPbeta. Using this C/EBPbeta1-specific antibody,

immunoblot analysis of a panel of breast cancer cells results in

higher molecular weight bands. These higher molecular weight

bands are likely post-translationally modified C/EBPbeta1,

because C/EBPbeta1 can be modified by a variety of post-

translational modifications known to increase the apparent

molecular weight of the protein via SDS-PAGE. It is likely that

these bands are not non-specific, as antibodies raised to other

regions of C/EBPbeta also recognize these higher molecular

weight bands (Figure 1c and data not shown).

Knowing that C/EBPbeta1 can be sumoylated in Cos-7 cells

and after observing higher molecular weight bands on the

immunoblots of breast cancer cells using the C/EBPbeta1-specific

antibody, we wanted to know if C/EBPbeta1 could be sumoylated

in breast cancer cell lines. We expressed T7-tagged C/EBPbeta1

(T7-C/EBPbeta1) by infecting breast cancer cells with a retroviral
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vector expressing T7-C/EBPbeta1-IRES-eGFP. Infected cells

were then sorted by fluoresecence activated cell sorting (FACS)

using green fluorescent protein (GFP) as a marker resulting in a

homogenous population of cells expressing T7-C/EBPbeta1 and

GFP. Immunoprecipitations were performed with T7 antibody

beads and resulting immunoblot analysis reveals that C/EBPbeta1

Figure 1. Sumoylation of C/EBPbeta1 in breast cancer cells. a. Cell lysates were prepared and were run on an 8% SDS-PAGE in the following
order: lane 1 MCF10A, lane 2 MDA231, lane 3 MDA468, lane 4 BT-474, lane 5 SK-BR3, lane 6 MDA435 and lane 7 T47D. Immunoblot analysis was
performed with a C/EBPbeta1-specific antibody raised to the first 21 amino acids unique to C/EBPbeta1 (Abcam 18F8). The bottom immunoblot was
performed as a loading control for GAPDH. Bars indicate the mobility’s of standard molecular weight markers, in kilo-Daltons (kDa), in all figures. b.
MDA231 breast cancer cells were infected with T7-C/EBPbeta1-IRES-eGFP-LZRS three times and sorted by FACs using GFP as a marker.
Immunoprecipitations of confluent 100 mm dishes were performed with uninfected MDA231s (lanes 1 and 3) or T7-C/EBPbeta1-MDA231 cells (lanes
2 and 4) using T7 antibody beads. The left is an immunoblot with an anti-SUMO-2/3 antibody and the immunoblot on the right is with an anti-C/
EBPbeta antibody. Sumoylated C/EBPbeta1 is indicated and the parent p52 C/EBPbeta1 is indicated by the arrow. c. Immunoprecipitations of
MDA468 cells were performed with protein A agarose beads cross-linked to a C/EBPbeta1-specific antibody (described in [7]). Lanes 3, 6, and 9 are the
immunoprecipitations whereas lanes 1, 4, and 7 are negative control beads only and lanes 2, 5 and 8 are negative control non-crosslinked beads
incubated with MDA468 extract. The left immunoblot is performed with an anti-SUMO-2/3 antibody, the middle immunoblot with a C-terminal C/
EBPbeta antibody (Abcam 47A1) and the right hand immunoblot with a C/EBPbeta1-specifc antibody (Abcam 18F8). Arrows indicate sumoylated C/
EBPbeta1. (231 = MDA231, beta1 = C/EBPbeta1, su = sumoylated).
doi:10.1371/journal.pone.0025205.g001
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is sumoylated when exogenously expressed in the MDA231 breast

cancer cell line (Figure 1b). The immunoblot on the left is with an

anti-SUMO-2/3 antibody, and there are distinct higher molecular

weight bands in the MDA231-T7-C/EBPbeta1 lane as compared

to control MDA231 only (lane 2 compared to lane1). These bands

coincide with bands in the MDA231-T7-C/EBPbeta1 lane (lane 4)

on the immunoblot on the right in which an anti-C/EBPbeta

antibody is used. Similar results were obtained using the SKBR3

and HCC1954 breast cancer cell lines (data not shown), allowing

us to conclude that sumoylation of C/EBPbeta1 occurs in breast

cancer cells.

Next we wanted to determine if the higher molecular weight

bands that are observed in the anti-C/EBPbeta1 immunoblot in

Figure 1a are sumoylated C/EBPbeta1. To examine this, we used

our C/EBPbeta1-specific antibody described in Eaton et al, 2001

cross-linked to protein A beads. Immunoprecipitations were then

performed with these beads using cell extracts from MDA468 and

MDA231 breast cancer cell lines. The results from the MDA468

immunoprecipitation are shown in Figure 1c. The immunoblot on

the left uses an anti-SUMO-2/3 specific antibody, the middle

immunoblot is with a C-terminal C/EBPbeta antibody, and the

immunoblot on the right is with the C/EBPbeta1-specific

antibody. Lanes 3, 6, and 9 are the immunoprecipitations with

MDA468 extract, whereas the other lanes are negative controls.

Lanes 3, 6, and 9 exhibit higher molecular weight bands that

correspond in mobility and are not present in the lanes with

control samples. The anti-SUMO-2/3 antibody recognizes these

unique higher molecular weight bands (Figure 1c lane 3), which

line up with the bands in the anti-C/EBPbeta immunoblots

(Figure 1c, lanes 6 and 9), thus demonstrating that endogenous C/

EBPbeta1 is sumoylated in breast cancer cell lines.

C/EBPbeta1 is phosphorylated on Thr235 by Erk2 and
this phosphorylation enhances sumoylation of C/
EBPbeta1

It is well-known that C/EBPbeta is phosphorylated on Thr235

by Erk-2, however few studies have examined which particular

isoform of C/EBPbeta is phosphorylated by Erk-2. One study has

determined that C/EBPbeta2 is phosphorylated by Erk-2 on

Thr235 [34], but no one has determined whether C/EBPbeta1

can be phosphorylated on this residue by Erk-2. To examine this,

we took purified rat C/EBPbeta1 protein and incubated it with

purified, active Erk-2. Figure 2a, right panel, is an immunoblot

with an anti-pThr235 C/EBPbeta-specific antibody illustrating

that C/EBPbeta1 is phosphorylated on Thr235 after incubation

with Erk-2 (compare lane 4 with lane 3), in vitro. Figure 2a, left

panel, is the same immunoblot only with the anti-T7 tag antibody

demonstrating approximately equal amounts of protein are

present in both lanes (compare lanes 1 and 2). Rat C/EBPbeta

is 298 amino acids compared to human C/EBPbeta which is 345

amino acids. Consequently, rat C/EPbeta1 (also termed LAP1)

migrates with an apparent molecular weight of 45 kD (Figure 2a,b)

compared to human C/EBPbeta1 at 52 kD in the human breast

cancer cell lines (Figure 1) or CMV-driven expression vector

(Figure 2c).

After determining that Erk-2 phosphorylates C/EBPbeta1 on

Thr235 in vitro, we wanted to determine if this phosphorylation

could enhance sumoylation of C/EBPbeta1, as this has been found

to be true for several other transcription factors. To do this we

incubated purified C/EBPbeta1 protein with Erk-2, followed by

the addition of purified SUMO-2/3 peptide, the SUMO

activating (E1) enzyme, and the SUMO conjugating (E2) enzyme.

Figure 2b is an immunoblot with the anti-T7 tag antibody

indicating that incubation with Erk-2 prior to incubation with

SUMO-2/3 enhances sumoylation of C/EBPbeta1 (compare

lanes 2 and 4). Although sumoylation is enhanced, very high

molecular weight bands, 75 kD or greater typical of C/EBPbeta1

sumoylated in vivo, are not observed in this in vitro assay. This is

likely because sumoylation in this purified system is inefficient,

quite possibly due to the absence of any E3 ligases which are

known to stimulate sumoylation in vivo.

Next we wanted to determine if sumoylated C/EBPbeta1 is

phosphorylated on Thr235. T7-C/EBPbeta1 and HA-SUMO-2/

3 were transiently transfected into Cos-7 cells and immunopre-

cipitations were performed with T7 antibody beads. The anti-

phosphoThr235 C/EBPbeta antibody was used on the immuno-

blot in Figure 2c, lanes 1 and 2. Figure 2c, lane 2 demonstrates

that sumoylated C/EBPbeta1 is phosphorylated on Thr235. The

middle immunoblot is with the anti-HA tag antibody (Figure 2c.

lanes 3 and 4) confirming that the higher molecular weight band is

sumoylated C/EBPbeta1 and the immunoblot on the right is with

the anti-C/EBPbeta C-terminal antibody (Figure 2c, lanes 5 and

6).

Mutation of Thr235 to alanine decreases sumoylation of
C/EBPbeta1

After observing that phosphorylation of C/EBPbeta1 by Erk-2

enhances sumoylation in vitro, we mutated the Thr235 phosphor-

yation site to an alanine to determine if preventing phosphory-

lation of this residue would lead to a decrease in sumoylation. T7-

C/EBPbeta1 or T7-C/EBPbeta1T235A with HA-SUMO-2/3

were transiently transfected into Cos-7 cells and immunoprecip-

itations were performed with T7 antibody beads. The middle

immunoblot in Figure 3a is with the anti-HA tag antibody and

demonstrates that mutant C/EBPbeta1T235A that cannot be

phosphorylated at Thr235 is sumoylated to a lesser extent than C/

EBPbeta1 (compare lanes 5 and 6). This is confirmed in lanes 8

and 9, which are the same samples only with the anti-C/EBPbeta

antibody. The anti-phosphoThr235 C/EBPbeta antibody was

used on the immunoblot on the left and lane three demonstrates

that T7-C/EBPbeta1T235A does not react with the anti-

phosphoT235 antibody because this residue has been mutated.

Figure 3b quantitates the difference in sumoylation between C/

EBPbeta1 and C/EBPbeta1T235A. T7-C/EBPbeta1 and the T7-

C/EBPbeta1T235A mutant were transiently transfected into Cos-

7 cells along with HA-SUMO-2/3. The immunoblot with the anti-

T7 tag antibody shown in Figure 3a demonstrates that the T7-C/

EBPbeta1T235A mutant is sumoylated to a lesser extent than wild

type T7-C/EBPbeta1 (compare lanes 3 and 2). Using the Odyssey

system, we quantified the percentage of sumoylated T7-C/

EBPbeta1 in the 75 kDa band compared to the non-sumoylated

parent 52 kDa band and determined that there is 3.25 +/2 0.26-

fold less sumoylated T7-C/EBPbetaT235A compared to wild

type. This supports our findings in Figure 2 that phosphorylation

of C/EBPbeta1 on Thr235 enhances sumoylation.

Sumoylated C/EBPbeta1 does not induce senescence
C/EBPbeta is required for oncogene-induced senescence, both

by oncogenic Ras and activated Raf [20,21]. We recently

demonstrated that C/EBPbeta1 is the primary transactivator

isoform responsible for the induction of senescence [14].

Sumoylated transcription factors frequently act as transcriptional

repressors and we have previously shown that this is the case for

C/EBPbeta1 [7]. Thus, we wanted to determine if sumoylated C/

EBPbeta1 would be unable to induce senescence. To address this

question we generated a chimeric protein in which SUMO2 is

covalently linked to the C-terminus of C/EBPbeta1. We generated

a retrovirus, LZRS-SUMO2-C/EBPbeta1/IRES/GFP, and in-
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fected WI38-hTERT cells (hTERT, the catalytic subunit of

telomerase). WI38-hTert cells express endogenous C/EBPbeta1

and are able to undergo senescence. In fact as shown in Figure 4,

exogenous expression of C/EBPbeta1 leads to a substantial

increase in beta-galactosidase-positive, senescing cells. We quan-

titated the number of blue cells in 10 fields (at 106magnification).

A representative field is shown in Figure 4A and the average values

from four independent experiments are shown in Figure 4B. There

were on average 2.5 blue cells in the control population and a

slight, insignificant increase to 4 blue cells in the GFP-only infected

population. Infection with LZRS-C/EBPbeta1/IRES/GFP led to

a substantial increase in beta-gal positive, blue cells. On average

there were 25.5 blue cells/10 fields or a 10-fold increase in

senescence. In contrast, infection with LZRS-SUMO2-C/EBP-

beta1/IRES/GFP resulted in no increase in blue cells. Rather, the

incidence of senescing cells dropped to less than one per 10 fields

(average 0.75 cells/10 fields in four experiments). To confirm the

expression of T7-C/EBPbeta1 and SUMO2-T7-C/EBPbeta1 we

performed an immunoprecipitation using T7-tag antibody beads

followed by western blotting with a C/EBPbeta1-specific antibody.

As seen in the upper panel of Fig. 4C, lane 5, SUMO-C/

EBPbeta1 migrates with an apparent MW between 75 and

100 kD, suggesting that the SUMO2 in the chimeric SUMO2-T7-

C/EBPbeta1 protein is itself sumoylated. Because of the large

amount of antibody heavy chain released from the T7-Ab beads,

T7-C/EBPbeta1 could not be observed since it migrates at nearly

the same apparent MW as the heavy chain. Thus, we detected T7-

C/EBPbeta1 in the same whole cell extract used for the

immunoprecipitation as shown in the lower panel of Fig. 4C,

lane 4. Both T7-C/EBPbeta1 and SUMO2-C/EBPbeta1 were

expressed at roughly equivalent levels. We conclude that

sumoylation of C/EBPbeta1 effectively blocks its ability to induce

senescence.

Discussion

p52-C/EBPbeta1 is not observed via immunoblot of breast

cancer cell lines with C/EBPbeta antibodies [17], Figure 1a,

however breast cancer cell lines exhibit higher molecular weight

bands that react with C/EBPbeta antibodies, including C/

EBPbeta1-specific antibodies (Figure 1a). C/EBPbeta1 is known

to be modified by post-translational modifications that can affect

the apparent molecular weight of the protein via SDS-PAGE,

including the post-translational modification sumoylation. C/

EBPbeta1 is modified by SUMO-2/3 when transfected into Cos-7

cells and C/EBPbeta1 is the only isoform of C/EBPbeta known to

be modified by sumoylation [7]. Modification by sumoylation adds

10–20 kDa to the apparent molecular weight of the target protein.

Additionally, SUMO-2/3 itself contains a SUMO consensus site,

so that SUMO-2/3 can be further sumoylated to form SUMO-2/

3 chains. This can result in a ladder of higher molecular weight

bands. We demonstrate that when T7-C/EBPbeta1 is expressed in

breast cancer cells such as MDA231s, a ladder of higher molecular

weight bands are observed with both a C/EBPbeta antibody and a

SUMO-2/3 antibody, indicating sumoylation of C/EBPbeta1

(Figure 1b). Furthermore, we demonstrate that the higher

molecular weight bands observed in the anti-C/EBPbeta1

immunoblot of breast cancer cells in Figure 1a are sumoylated

C/EBPbeta1 (Figure 1c).

Phosphorylation oftentimes enhances sumoylation, and it is well

known that signaling that activates phosphorylation of proteins is

commonly activated in breast cancer cells. One example of this is

the frequent activation of the Ras pathway in breast cancer cells.

Ras pathway activation leads to the activation of numerous kinases

known to phosphorylate C/EBPbeta on Threonine 235 (Thr235)

including Erk-2 [34]), cdk2 [35,36], and p38 [37,38]. Therefore

we wanted to determine whether phosphorylation of Thr235 in

C/EBPbeta1 was enhancing sumoylation of C/EBPbeta1.

Figure 2a demonstrates that full length C/EBPbeta1 is phosphor-

ylated on Thr235 by Erk-2 in vitro, and Figure 2b reveals that this

phosphorylation by Erk-2 on Thr235 enhances sumoylation of C/

EBPbeta1, in vitro. Moreover, Figure 3b demonstrates that

sumoylated C/EBPbeta1 in Cos-7 cells is phosphorylated on

Thr235. To further examine the effect phosphorylation of C/

EBPbeta1Thr235 had on sumoylation of C/EBPbeta1, we

mutated C/EBPbeta1Thr235 to an alanine so that this residue

could no longer be phosphorylated. Figure 3a and 3b demonstrate

that this mutant is sumoylated to a lesser extent than wild type C/

EBPbeta1, confirming that phosphorylation of Thr235 of C/

EBPbeta1 enhances sumoylation of this protein.

Finally, we generated a constitutively sumoylated C/EBPbeta1

protein by fusing SUMO2 to the C-terminus of C/EBPbeta1.

When introduced into human diploid fibroblasts WI38-hTERT,

sumoylated C/EBPbeta1 failed to induce senescence whereas C/

EBPbeta1 expression resulted in a 10-fold increase in senescing

cells. Taken together, our results indicate that breast cancer cells

may escape oncogenic Ras-induced senescence at least in part

because Ras-Raf-ERK2 mediated phosphorylation of C/EBP-

beta1 leads to its sumoylation which abrogates its ability to induce

senescence.

We have previously shown that expression of oncogenic Ras

expression can lead to the ubiquitination and degradation of C/

EBPbeta1 in immortal MCF10A mammary epithelial cells [22]. It

appears that there is more than one mechanism to prevent C/

EBPbeta1 from inducing senescence, involving either sumoylation

or ubiquitination. We know that C/EBPbeta1 is primarily

sumoylated on K173 [7] but we do not know the identity of the

lysines that are ubiquitinated prior to proteosome-mediated

degradation. Thus, sumoylation and ubiquitination of C/EBP-

beta1 may not be mutually exclusive, and both could be operative

in transformed cells to escape oncogene-induced senescence.

Materials and Methods

Reagents
Unless otherwise indicated, reagents were purchased from

Sigma Chemical Co. (St. Louis, MO, USA). The antibody

directed against C/EBPbeta was obtained from Santa Cruz

Figure 2. Phosphorylation of C/EBPbeta1 by Erk-2 enhances sumoylation in vitro and sumoylated C/EBPbeta1 is phosphorylated on
Thr235. a. Immunoblot analysis of purified rat C/EBPbeta1 (Lap1) (lanes 1 and 3) and C/EBPbeta1 incubated with purified, active Erk-2 (lanes 2 and 4).
The immunoblot on the left is with the anti-T7 tag antibody and on the right is with the anti-phosphoThr235 C/EBPbeta antibody. Rat C/EBPbeta1
migrates faster via SDS-PAGE because it is smaller in size than human C/EBPbeta1. b. Immunoblot analysis with the anti-T7 tag antibody. Lane 1 is
purified rat C/EBPbeta1, lane 2 is C/EBPbeta1 incubated with purified E1 SUMO activating enzyme, purified E2 SUMO conjugating enzyme, and
purified SUMO-3 peptide, and lane 3 is C/EBPbeta1 with Erk-2, E1, E2 and SUMO-3. Arrows indicate C/EBPbeta1 and sumoylated C/EBPbeta1. c. Cos-7
cells were untransfected (lanes 1, 3, and 5) or transfected with T7-C/EBPbeta1-pcDNA3.1 and HA-SUMO-2-pcDNA3 (lanes 2, 4 and 6). All samples were
immunoprecipiated with T7 antibody beads. Immunoblot analysis was performed with the anti-phosphoThr235 C/EBPbeta antibody (left), anti-HA
tag (middle), and anti-C/EBPbeta antibody (right). Arrows indicate sumoylated T7-C/EBPbeta1 and p52-T7-C/EBPbeta1. (beta1 = C/EBPbeta1).
doi:10.1371/journal.pone.0025205.g002
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Biotechnology, Inc. (Santa Cruz, CA, USA). The anti-T7 tag

monoclonal antibody was obtained from Novagen (Madison, WI,

USA) and the anti-C/EBPbeta1-specific antibody raised to the 21

N-terminal amino acids present only in C/EBPbeta1 is Abcam

18F8. The C-terminal C/EBPbeta antibody used in Figure 1c is

the Abcam 47A1 antibody. The anti-HA tag antibody, the

Figure 3. Mutation of Thr235 to alanine decreases sumoylation of C/EBPbeta1. a. Cos-7 cells were untransfected (lanes 1, 4, and 7),
transfected with T7-C/EBPbeta1-pcDNA3.1 and HA-SUMO-2-pcDNA3 (lanes 2, 5 and 8), or transfected with T7-C/EBPbeta1T235A-pcDNA3.1 and HA-
SUMO-2-pcDNA3 (lanes 3, 6, and 9). All samples were immunoprecipitated with T7 antibody beads. Immunoblot analysis was performed with the
anti-phosphoThr235 C/EBPbeta antibody (left), anti-HA tag (middle), and anti-C/EBPbeta antibody (right). Arrows indicate sumoylated T7-C/EBPbeta1
and p52-T7-C/EBPbeta1. b. Immunoblot analysis using the anti-T7 tag antibody of cell lysates from Cos-7 (lane 1), Cos-7 cells transfected with T7-C/
EBPbeta1-pcDNA3.1 and HA-SUMO-2-pcDNA3 (lane 2), and Cos-7 transfected with T7-C/EBPbeta1T235A-pcDNA3.1 and HA-SUMO-2-pcDNA3 (lane 3).
Arrows indicate p52-T7-C/EBPbeta1 and sumoylated T7-C/EBPbeta1. The relative amount of protein in the parent T7-C/EBPbeta1 band and the
75 kDa sumoylated T7-C/EBPbeta1 band was measured using the LI-COR Odyssey system. It was determined that there is 3.25 times more
sumoylated 75 kDa T7-C/EBPbeta1 as there is 75 kDa T7-C/EBPbeta1T235A. This was calculated relative to the p52-T7-C/EBPbeta1 and p52-T7-C/
EBPbeta1T235A bands. This was repeated three times with a standard deviation of +/20.26. (beta1 = C/EBPbeta1, su-beta1 = sumoylated C/
EBPbeta1).
doi:10.1371/journal.pone.0025205.g003
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SUMO-2/3 antibodies, the anti-rabbit and anti-mouse horserad-

ish peroxidase (HRP)-conjugated secondary antibodies were

obtained from Promega (Madison, WI, USA). The proteasome

inhibitor MG132 (Calbiochem, San Diego, CA, USA) was

resuspended in DMSO and used at a concentration of 50 uM.

N-ethyl maleimide was resuspended in DMSO and used at a

concentration of 5 mM. T7 tag antibody beads (Novagen).

Cell lines
Tissue culture media was obtained from Life Technologies, Inc.

(Carlsbad, CA, USA). Unless otherwise indicated, all tissue culture

supplements were purchased from Sigma Chemical Co. (St. Louis,

MO, USA). The MCF10A human mammary epithelial cell line

was obtained from the American Type Culture Collection

(ATCC). Cells were grown in a 1:1 (v/v) mixture of Ham’s F12

and Dulbecco’s modified Eagle medium (DMEM) containing

2.5 mM L-glutamine and supplemented with 5% horse serum,

10 ug/mL insulin, 0.5 ug/mL hydrocortisone, 20 ng/mL epider-

mal growth factor, 100 ng/mL cholera toxin (Calbiochem

Novabiochem, San Diego, CA, USA), 100 U/mL penicillin, and

100 ug/mL streptomycin (Life Technologies, Inc., Carlsbad, CA,

USA). The human breast cancer cell lines MDA-MB-231, MDA-

MB-468, HCC1954, SKBR3, BT474, MDA435, and T47D were

obtained from the ATCC (Manassas, VA) and were maintained in

Iscove’s Modified Eagle media supplemented with 10% fetal

bovine serum (FBS) from HyClone Laboratories (Logan, UT,

USA), 10 mg/ml bovine insulin, 100 U/ml penicillin, and 100 mg/

ml streptomycin (Life Technologies, Inc.). Cos-7 cells were a gift

from Dr Steve Hann, Vanderbilt University and were maintained

in DMEM plus 10% FBS (HyClone Laboratories, Logan, UT,

USA). The phoenix-ampho packaging cell line was obtained from

the ATCC with the permission of GP Nolan (Stanford University,

Figure 4. Sumoylated C/EBPbeta1 does not induce senescence. A. Equal cell numbers of the indicated cell lines were plated in 60 mm dishes
and stained for senescence associated beta-galactosidase as per manufacturer’s instructions (Cell Signaling Technology). Representative
photomicrographs imaged with a light microscope are shown. B. Quantitative comparison of senescence associated beta-galactosidase positive
cells. The experiment was repeated four times with equal cell numbers of the indicated cell lines ranging from 50,000–250,000 cells/60 mm dish. The
density of plating did not affect the outcome. For each experiment the average number of beta-galactosidase positive (blue) cells in 10 fields was
computed. Error bars indicated standard deviation of the mean. C. Whole cell extracts were prepared from the indicated WI-38hTert cells and
analyzed by immunoblotting (bottom panel) or immunoprecipitated with T7 antibody beads (Novagen, upper panel) followed by immunoblotting.
Immunoblot analysis was performed with N-terminal C/EBPbeta antibody developed in our lab and described in [7].
doi:10.1371/journal.pone.0025205.g004
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Palo Alto, CA, USA) and has been previously described [39]. The

packaging cells were maintained in DMEM supplemented with

10% heat-inactivated FBS (HyClone Laboratories, Inc., Logan,

UT, USA), 1 mM sodium pyruvate, 2 mM L-glutamine, 100 U/

mL penicillin, and 100 ug/mL streptomycin (Life Technologies,

Inc., Carlsbad, CA, USA). WI-38 normal human diploid

fibroblasts (a gift from the Dr. Hal Moses, Vanderbilt University)

were maintained in Eagle’s minimal essential medium (EMEM)

containing 2.5 mM L-glutamine (Life Technologies, Inc., Carls-

bad, CA), 10% fetal bovine serum (Hyclone Laboratories, Logan,

UT), 100 U/mL penicillin, and 100 ug/mL streptomycin (Life

Technologies, Inc., Carlsbad, CA). To generate WI-38-hTERT

cells, pBABE-hygro-hTERT was purchased from Addgene (Cam-

bridge, MA) and amphotropic retrovirus produced as described in

[15]. WI38 cells were infected once and selected with 300 ug/ml

hygromycin B. All cells were grown at 37 degrees Celsius in a

humidified atmosphere containing 5% carbon dioxide.

Cloning of recombinant constructs and virus preparation
T7-C/EBPbeta1-pcDNA3.1-His A was generated as described

in [7]. C/EBPbeta1 is the only transactivator isoform produced

from this construct due to mutation of the second in-frame ATG.

Additionally, a perfect Kozak sequence was made centered around

the first ATG. Generation of LZRS-T7-C/EBPbeta1-IRES-eGFP

and T7-C/EBPbeta1T235A-pcDNA3.1-His A was as previously

described [22]. Recombinant amphotropic retroviral stock gener-

ation and retroviral infection were performed as described in [15].

The hemagglutinin (HA)-tagged SUMO-2 expression vector was a

kind gift of Dr. Ron Hay (University of St Andrews, St Andrews,

UK). To create a C/EBPbeta1-SUMO2 fusion protein it was

necessary to create a unique cloning site after the c-terminal amino

acid (Cys) of C/EBPbeta before the stop codon. This had been

previously achieved in our lab using a pRset-C/EBPbeta construct

(pRset-LAP) [15] that was digested at a unique NruI site occurring

24 amino acids from the terminus of C/EBPbeta. A synthetic

82 bp oligonucleotide of the following sequence:

59CGA GAG CTC AGC ACG CTG CGG ACC TTG TTC

AAG CAG CTG CCC GAG CCG CTG CTG GCC TCG GCG

GGT CAC TGC CAG GCC TTA G39 was inserted at the NruI

site to generate a unique StuI site (AGGCCT) immediately

following the C-terminal Cys (TGC) codon. However, LAP begins

at the second in frame ATG, and since a C/EBPbeta1 construct

was desired, a Pst-HindIII C-terminal fragment of pRset-LAP(Stu)

was cloned into pRset-C/EBPbeta1, replacing the cognate Pst-

HindIII fragment. In order to perform the swap, it was necessary

to eliminate a Pst site in the multiple cloning site of each of the

pRset vectors. This was achieved by digesting either pRset-

LAP(Stu) with XhoI and EcoRI or pRset-C/EBPbeta1 with Xho

and Acc651, filling in the ends by treatment with Klenow, and

reigating to drop out the Pst site.

At this point cloning was continued in BL21 cells that are dam/

dcm methylase negative, because StuI is sensitive to methylation.

pcDNA3-HA-SUMO2 was digested with EcoRI and BamHI and

after filling in the ends with Klenow, the EcoRI-BamHI fragment

encoding HA-SUMO2 was ligated to pRset-C/EBPbeta2(Stu)

digested with StuI. The resultant pRset-C/EBPbeta1-SUMO2

construct was sequenced to verify the fusion protein sequence. Due

to the cloning strategy used, 3 amino acids (QGS) are present

between the C-terminal cysteine of C/EBPbeta1 and the N-

terminal methionine of SUMO2 in the fusion protein.

The remaining cloning steps were performed in DH5alpha.

pRset-C/EBPbeta1-SUMO2 was digested with EcoRI and partially

digested with BamHI and the BamHI-EcoRI fragment encoding

C/EBPbeta1-SUMO was transferred to pcDNA3.1hisC digested

with BamHI and EcoRI. The resulting clone also contained 2 copies

of a small BamHI-EcoRI fragment from the multiple clone site of

pcDNA3.1 in a BamHI-EcoRI-BamHI orientation at the 59 end of

the BamHI-EcoRI fragment encoding C/EBPbeta1-SUMO2

which caused the C/EBPbeta1-SUMO2 fusion protein to be out

of frame with respect to the T7-his epitope tag that was to be

acquired upon transfer to pcDNA3.1. To correct this problem, an

EcoRI fragment encoding C/EBPbeta1-SUMO2 was transferred to

the EcoRI site of pcDNA3.1hisA. Finally, pcDNA3.1hisAC/

EBPbeta1-SUMO2 was digested with HindIII, and after filling in

the ends, digested with Not1 and transferred to the LZRS retroviral

vector pBMN-GFP (Orbigen) that had been digested with EcoRI,

and after filling in the ends, digested with Not1. The correct clone

was verified by DNA sequencing.

Transient transfections
Cos-7 cells were plated 18–24 hours prior to transfection so that

the cells were 80–90% confluent at the time of transfection. Serum-

free DMEM replaced complete media on cells 1 hour before

transfection. 8 ug of total DNA was transfected into cells via 24 uL

GenJet (SignaGen Laboratories, Gaithersburg, MD, USA) in serum-

free media. After 5 hours, the media was changed to complete media.

The cells were harvested two days post-transfection.

Preparation of immunoprecipitations, cell lysates and
immunoblot analysis

Confluent plates of cells were treated with 50 uM MG132 for

8 hours and 5 mM N-ethylmaleimide for 30 minutes for the

immunoprecipitations. Immunoprecipitations were performed as

described previously (Eaton and Sealy, 2003) with the following

exceptions: the immunoprecipitations were for 15 minutes and

50 uM MG132 and 5 mM N-ethylmaleimide were included in the

immunoprecipitation buffer. Cell lysates were prepared from

100 mm dishes of 90% confluent cells as described previously [7].

Relative protein concentrations were determined using the Protein

Assay Reagent (BioRad Laboratories, Hercules, CA, USA) as per

the manufacturer’s instructions. Equal amounts of protein were

loaded onto 10% SDS-PAGE and separated by electrophoresis.

The proteins were transferred to an Immobilon P or Immobilon

FL filter and the blots were processed as described previously [17].

After the nonspecific binding sites were blocked, the blots were

inclubated with primary antibody (C-terminal C/EBPbeta at a

1:5 000 dilution; T7 at 1:10 000, N-terminal C/EBPbeta at

1:2 000) in TBS-T (100 mM Tris pH 7.5, 150 mM NaCl, and

0.05% Tween-20) containing 0.5% nonfat dried milk (NFDM) for

1 hour at room temperature. The blots were washed with three

successive changes of TBS-T containing 0.5% NFDM at room

temperature for 20 minutes and incubated with a HRP-conjugat-

ed goat anti-rabbit (1:5 000 or 1:2 000 dilution) or a HRP-

conjugated goat anti-mouse antibody (1:10 000 dilution) as

described above for an additional hour. The blots were then

washed with three successive changes of TBS-T solution for

15 minutes and the signal was detected by chemiluminescence

using SuperSignal West Pico reagent (Pierce, Rockford, IL, USA)

and autoradiography with Kodak X-OMAT film (Rochester, NY,

USA). Alternatively, the LI-COR ODYSSEY infrared imaging

system (Lincoln, Nebraska) was used for immunoblot analysis.

Quantitation was performed as per manufacturer’s instruction.

Cross-linking of C/EBPbeta1-specific antibody to protein
A beads

The serum from the rabbit polyclonal C/EBPbeta1-specific

antibody raised to a 16 amino acid peptide corresponding to the
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first 16 amino acids in human C/EBPbeta1 described in [17], was

used in the cross-linking. We began by ammonium sulfate

precipitating the antibody out of the serum. Serum containing

approximately 4 mg antibody was first clarified. An equal volume

of saturated ammonium sulfate pH 7.5–8.0 was slowly added

dropwise into the clarified serum at 4 degrees Celsius. The serum/

ammonium sulfate solution was mixed frequently during the

addition of ammonium sulfate. The serum/ammonium sulfate

solution was rotated at 4 degrees Celsius overnight. The next day

the serum/ammonium sulfate solution was spun in an HB-4

swinging bucket rotor at 30006g for 30 minutes at 4 degrees

Celsius. The supernatant was removed and the pellet containing

the antibody was resuspended in 16 PBS. The PBS/antibody

solution was then transferred to dialysis tubing and dialyzed in 16
PBS overnight at 4 degrees Celsius. The solution in the dialysis

tubing was clarified the following day. To cross-link the antibody

to the protein A agarose, 2 mL of protein A agarose slurry

(Invitrogen) was washed in 16 PBS and collected. 4 mg of the

ammonium precipitated antibody was mixed with the beads for

1 hour at room temperature. The beads were then washed with

sodium borate and the antibody was cross-linked to the beads with

20 uM dimethylpimelimidate in sodium borate rocking for

30 minutes at room temperature. The cross-linking was quenched

by rocking the beads in 0.2 M ethanolamine pH 8.0 for 2 hours at

room temperature. Finally, the beads were washed in 16PBS and

stored at 4 degrees Celsius.

In vitro phosphorylation and sumoylation
5 ug of purified rat C/EBPbeta1 (Lap1) protein was incubated

with 100 uM ATP, 10 mM magnesium chloride, and protease

and phosphotase inhibitors (10 uM sodium vanadate,10 mM

sodium molybdate, 10 mM beta-glycerophosphate, 1 ug/mL

aprotinin, 1 ug/mL leupeptin, 1 ug/mL pepstatin, and 1 mM

phenylmethylsulfonyl fluoride). One half of this original sample

was incubated with 0.5 ug active, purified Erk-2 (Upstate/

Millipore) for 1 hour at 30 degrees Celsius. The other half of

the sample was not incubated with Erk-2. Half of the sample

incubated with Erk-2 (so one quarter of the original) and half of

the sample not incubated with Erk-2 were then incubated with the

sumoylation machinery for 1 hour at 37 degrees Celsius. The

purified sumoylation machinery included 0.05 ug/uL human E2

conjugating enzyme (Ubc9), 0.05 ug/uL human SUMO-3

peptide, and 0.0075 ug/uL E1 activating enzyme (SAE I/II)

(LAE Biotechnology Co.). Sumoylation was performed in the

presence of 0.1 mM ATP, the protease and phoshotase inhibitors

(10 uM sodium vanadate,10 mM sodium molybdate, 10 mM

beta-glycerophosphate, 1 ug/mL aprotinin, 1 ug/mL leupeptin,

1 ug/mL pepstatin, and 1 mM phenylmethylsulfonyl fluoride),

and 16 SUMO Buffer (LAE Biotechnology Co.). After sumoyla-

tion, 26 SDS sample buffer was added to the four different

samples. The samples were boiled for 5 minutes and stored at 270

degrees Celsius until subjected to SDS-PAGE.

Senescence associated beta-galactosidase assay
50% confluent WI-38 cells in 60 mm plates were fixed and

stained with the senescence beta-galactosidase staining kit per the

manufacturers instructions (Cell Signaling Technology, Beverly,

MA).
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