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Automated Classification of Radiographic
Positioning of Hand X-Rays Using a Deep
Neural Network

La classification automatisée du positionnement de la main lors de la
radiographie au moyen d’un réseau neuronal profond

Tomas J. Saun, MD, MASc1

Abstract
Background: Hand X-rays are ordered in outpatient, inpatient, and emergency settings, the results of which are often initially
interpreted by non-radiology trained health care providers. There may be utility in automating upper extremity X-ray analysis to
aid with rapid initial analysis. Deep neural networks have been effective in several medical imaging analysis applications. The
purpose of this work was to apply a deep learning framework to automatically classify the radiographic positioning of hand X-rays.
Methods: A 152-layer deep neural network was trained using the musculoskeletal radiographs data set. This data set contains
6003 hand X-rays. The data set was filtered to remove pediatric X-rays and atypical views. The X-rays were all labeled as either
posteroanterior (PA), lateral, or oblique views. A subset of images was set aside for model validation and testing. Data set
augmentation was performed, including horizontal and vertical flips, rotations, as well as modifications in image brightness and
contrast. The model was evaluated, and performance was reported as a confusion matrix from which accuracy, precision, sen-
sitivity, and specificity were calculated. Results: The augmented training data set consisted of 80 672 images. Their distribution
was 38% PA, 35% lateral, and 27% oblique projections. When evaluated on the test data set, the model performed with overall
96.0% accuracy, 93.6% precision, 93.6% sensitivity, and 97.1% specificity. Conclusions: Radiographic positioning of hand X-rays
can be effectively classified by a deep neural network. Further work will be performed on localization of abnormalities, automated
assessment of standard radiographic measures and eventually on computer-aided diagnosis and management guidance of skeletal
pathology.

Résumé
Historique : Les cliniciens demandent des radiographies de la main pour des patients ambulatoires, des patients hospitalisés ou
des patients à l’urgence. Souvent, les résultats sont d’abord interprétés par des professionnels de la santé non formés en radio-
graphie. Il pourrait être utile d’automatiser l’analyse radiographique des extrémités supérieures pour accélérer l’analyse initiale.
Les réseaux neuronaux profonds sont efficaces dans plusieurs applications d’analyse d’imagerie médicale. La présente étude visait
à appliquer un cadre d’apprentissage profond pour classer automatiquement le positionnement radiographique de la main.
Méthodologie : Un réseau neuronal profond à 152 couches a été formé au moyen de la base de données radiographies
musculosquelettiques, qui contient 6 003 radiographies de la main. Les chercheurs l’ont filtrée pour en retirer les radiographies
pédiatriques et les vues atypiques. Ils ont classé les radiographies en position postéroantérieure (PA), latérale ou oblique. Ils ont
mis de côté un sous-groupe d’images pour valider et vérifier leur modèle. Ils ont optimisé la base de données, y compris des
renversements horizontaux et verticaux, des rotations et des modifications à la luminosité et au contraste de l’image. Ils ont
ensuite évalué le modèle et rendu compte de son rendement sous forme de matrice de confusion à partir de laquelle ils ont calculé
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l’exactitude, la précision, la sensibilité et la spécificité. Résultats : La base de données de formation optimisée contenait
80 672 images. De ce nombre, 38 % étaient des projections PA, 35 %, des projections latérales, et 27 %, des projections obliques.
Lors des évaluations de la base de données soumise aux tests, le modèle présentait une exactitude de 96,0 %, une précision de
93,6 %, une sensibilité de 93,6 % et une spécificité de 97,1 %. Conclusions : Un réseau neuronal profond peut classer avec
efficacité les radiographies du positionnement de la main. D’autres travaux seront réalisés sur l’emplacement des anomalies, sur
l’évaluation automatisée de mesures radiographiques standards et, un jour, sur les directives diagnostiques et de prise en charge
assistées par ordinateur des pathologies squelettiques.
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Introduction

The electrocardiogram is an example of a diagnostic medical

examination that nowadays can be autonomously interpreted

by computers. This highlights significant evolution from a

paper-based examination that required a ruler, calipers, and

specialist training for interpretation. In the 1950s, the ability

to convert analog electrocardiography (ECG) signals into digi-

tal format permitted the development of computer algorithms

that could interpret ECGs.1 By 1991, an article from the New

England Journal of Medicine estimated that over 50% of the

100 million ECGs recorded annually in the United States were

interpreted by computers.2 Computer-assisted interpretation of

these tracings had a major impact on medical care by reducing

the time physicians spent analyzing these tests. The total num-

ber of diagnostic medical examinations performed worldwide,

however, is rapidly increasing.3 This data require human exper-

tise and judgment for interpretation and appropriate and timely

referral.

The popularization of convolutional neural networks in

medical imaging suggests that this type of machine learning

may be a valuable solution. Convolutional neural network-

based deep neural networks have been shown to have high

performance in numerous medical applications including iden-

tification and localization of thyroid nodules, lung disease, and

retinal pathology.4-6

While identification and localization of pathology in med-

ical images is useful, the real impact on patients will arise

when data scientists and physicians are able to integrate

these Artificial Intelligence (AI) technologies into clinical

practice in the real world setting to improve patient out-

comes.7 Examples of this are already being developed and

include computer-aided diagnosis of acute neurological

events and retinal disease.8,9

Hand X-Rays are commonly ordered in outpatient, inpatient,

and emergency settings, the results of which are often initially

interpreted by non-radiology trained health care providers. Much

like the advent of automated ECG interpretation, there may be

utility in automating aspects of upper extremity X-ray analysis to

aid with rapid initial analysis and reduce false negative inter-

pretations. To design such a workflow, the mental workflow of

how physicians interpret hand X-rays must be deconstructed.

Figure 1 shows an example of this for evaluation of a metacarpal

fracture. First, one must identify which X-ray is the

posteroanterior (PA), lateral, and oblique. Then one must iden-

tify the site of pathology, for example, a bony fracture. Using the

combination of these 3 views, plus the localization of pathology,

one can make the diagnosis of a metacarpal neck fracture. One

can then focus on the lateral view to calculate the angulation of

the fracture. This angulation value is compared to a predefined

threshold which is deemed inappropriate and necessitates closed

reduction and immobilization.

The purpose of this work was to take the initial steps towards

AI-assisted diagnosis and management in hand surgery. To do

this, a deep learning framework was applied to automatically

classify the radiographic positioning of hand X-rays.

Materials and Methods

A convolutional neural network was used to classify hand

X-rays into 1 of 3 standard radiographic positions: PA, oblique,

or lateral.

Data set

A subset of the musculoskeletal radiographs (MURA) data set

was used.10 Musculoskeletal radiographs is one of the largest

radiographic image data sets and was released for public use by

Stanford in 2017. This data set contained 6003 hand X-rays

with a fairly equal distribution of PA, lateral, and oblique

views.

The data set was filtered to remove pediatric X-rays as well

as bilateral and atypical views. This left a total of 5489 hand X-

rays. All of these X-rays were labeled as PA, oblique, or lateral

based on standard radiographic definitions. A test set of

approximately 10% (N ¼ 404) was set aside for final model

evaluation. The remaining hand X-rays were used for model

training.

Augmentation of the training data set was performed by

applying a series of transformations, including horizontal and

vertical flips, rotations, and changes in image brightness and

contrast (Figure 2). The final augmented data set included 87

824 hand X-rays. From the augmented training set, a validation

set of approximately 10% (N ¼ 7152) was set aside for model

validation throughout the training process. The subdivision of

the data set is summarized in Figure 3.
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Model

The model chosen for classification was the 152-layer ResNet

model—which has become a workhorse architecture for image

classification.11 As the computational resources required to

train this model with such a large data set are massive, an

AWS-cloud-based GPU-accelerated elastic computing inter-

face was used, and the model training was completed in

approximately 30 hours.

Model performance was tested using the evaluation data

subset consisting of 404 hand X-rays never before seen by the

model during the training process. This was a classification

problem with N ¼ 3 classes. A 3 � 3 confusion matrix was

constructed from which the true positive (TP), true negative

(TN), false positive (FP), and false negative (FN) values for

each class were calculated. Standard image classification per-

formance metrics were reported overall and for each class

including sensitivity, specificity, accuracy, and precision.

Figure 1. Example workflow of the diagnosis and management of a metacarpal neck fracture as deduced from a standard 3-view hand series.

Figure 2. Data augmentation. Panel A demonstrates the addition of horizontal and vertical flips which increased the data set to 21 956 X-rays.
Panel B demonstrates the addition of rotations (+45�) which increased the data set to 43 912 X-rays. Panel C demonstrates the modifications in
contrast (þ2, �0.05) and brightness (+50) which increased the data set to 80 672 X-rays.
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Sensitivity is the ratio of correctly labeled X-rays of a

specific projection to the actual number of XRAYs of that

specific projection in the test set. For PA X-rays, this answers

the question: Of all the PA X-rays, how many of those did the

algorithm correctly predict? The equation for sensitivity is

TP/(TP þ FN). Specificity is the ratio of X-rays correctly

NOT labeled as a specific projection out of all X-rays that

are not that specific projection. For PA X-rays, this answers

the question: Of all the X-rays that are not PA, how many of

these did we correctly predict? The equation for specificity is

TN/(TN þ FP).

Accuracy is the ratio of correctly labeled X-rays of a spe-

cific projection to the total number of all X-rays in the test set.

Accuracy answers the following question: How many X-rays

did the algorithm correctly label out of all of the X-rays. The

equation for accuracy is (TP þ TN)/(TP þ FP þ FN þ TN).

Precision is the ratio of the correctly labeled X-rays of a spe-

cific projection to all predicted X-rays of that specific projec-

tion. Precision answers the following: How many X-rays

labeled as a specific position are actually that specific position.

The equation for precision is TP/(TP þ FP).

Results

Results were calculated on the previously unseen test set

described in Materials and Methods: Data set section. This test

set was well balanced and consisted of 404 hand X-rays with

152 (37.6%) PA, 141 (34.9%) lateral, and 105 (26.0%) oblique

projections. The algorithm took 13 seconds to process the 404

X-rays when running on an NVIDIA GTX 1060 graphics pro-

cessing unit.

The global accuracy was 96.0%, precision was 93.6%, sen-

sitivity was 93.6%, and specificity was 97.1%.

For the PA projection class, the accuracy was 94.6%, pre-

cision was 92.9%, sensitivity was 92.9%, and specificity was

95.6%. For the lateral projection class, the accuracy was

99.5%, precision was 99.3%, sensitivity was 99.3%, and spe-

cificity was 99.6%. For the oblique projection class, the accu-

racy was 94.1%, precision was 88.7%, sensitivity was 88.7%,

and specificity was 96.0%. The confusion matrix as well as the

class-specific and global performance metrics are detailed in

Figure 4 and Table 1, respectively.

Discussion

The radiographic positioning of hand X-rays can be accurately

and reliably predicted by a deep neural network-based com-

puter algorithm. On standard hand X-rays, the algorithm’s

overall performance accuracy was over 96%. Training data

included both normal and abnormal X-rays including a variety

of different hand pathologies and several variations in position-

ing and exposure making the algorithm robust with high exter-

nal validity.

Other studies used convolutional neural networks to assess

hand X-rays. Spampinato et al developed an algorithm to deter-

mine skeletal bone age from hand X-rays with an accuracy of

79%.12 A more recent study by Tecle et al used a convolutional

neural network for second metacarpal osteoporosis screening

with a full pipeline accuracy of 93.9%.13

There were limitations to this study. The radiographic pro-

jection of each X-ray in the data set was labeled by a single

individual. If there were errors made during the labeling

Figure 3. Overview of data set and model preparation.
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process, this would affect the performance of the final algo-

rithm. Fortunately, the classification of hand X-rays as PA,

lateral, or oblique is a straightforward task and one can expect

that there were minimal errors made. This could be addressed

by having 2 individuals label every X-ray for redundancy or

include radiology-trained labelers to ensure appropriately

labeled data. An additional limitation was the use of transfer

learning on a pre-existing neural network as opposed to devel-

oping and training a custom neural network from scratch.

While a custom neural network may achieve better perfor-

mance because its individual layers could be designed to best

capture the input data presented, the use of transfer learning on

the ResNet152 model permitted quicker model development

with less computational resources.

This pilot project acts as the first step towards an important

pipeline in AI-assisted diagnosis and management in hand sur-

gery. Further work will involve using object detection to loca-

lize areas of pathology as well as the measurement and

calculation of important radiographic parameters such as frac-

ture angulation and bony alignment. Once these algorithms are

combined, the resultant technology will serve a myriad of dif-

ferent uses. For researchers, these algorithms could rapidly

analyze large databases of X-rays to identify specific patholo-

gies of interest and report important objective radiographic

metrics. For quality improvement, these algorithms could pro-

vide feedback to technologists who obtain these X-rays, sur-

geons performing bony procedures or industry partners whose

hardware is captured in these X-rays. Most importantly, how-

ever, for clinical applicability, these algorithms will provide

anywhere and anytime clinical decision support to health care

providers who routinely obtaining these X-rays in their clinical

practice.
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