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Abstract: Marine algae have received great attention as natural photoprotective agents due to
their unique and exclusive bioactive substances which have been acquired as an adaptation to the
extreme marine environment combine with a range of physical parameters. These photoprotective
substances include mycosporine-like amino acids (MAAs), sulfated polysaccharides, carotenoids, and
polyphenols. Marine algal photoprotective substances exhibit a wide range of biological activities
such as ultraviolet (UV) absorbing, antioxidant, matrix-metalloproteinase inhibitors, anti-aging, and
immunomodulatory activities. Hence, such unique bioactive substances derived from marine algae
have been regarded as having potential for use in skin care, cosmetics, and pharmaceutical products.
In this context, this contribution aims at revealing bioactive substances found in marine algae, outlines
their photoprotective potential, and provides an overview of developments of blue biotechnology to
obtain photoprotective substances and their prospective applications.
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1. Introduction

The ocean covers more than 70% of the Earth’s surface and represents an enormous resource
of biodiversity. Marine organisms have adapted excellently to extreme environmental conditions
with a range of physical parameters, such as pH, high salt concentration, low or high temperature,
high-pressure, low nutrient availability, and low or high sun exposure [1]. The wide diversity in the
biochemical composition of marine organisms provides an excellent reservoir to explore functional
materials, many of which are rare or absent in other taxonomic groups. Large numbers of studies have
demonstrated health-benefit effects of marine-derived functional materials [2,3].

Marine algae are one of the most extensively studied marine organisms. These marine organisms
have attracted special interest because they are good sources of nutrients and functional materials.
Many studies have reported biological activities, including antioxidant, anti-cancer, anti-hypertension,
hepatoprotective, immunomodulatory, and neuroprotective activity. Marine algae are already used in
a wide range of foods, supplements, pharmaceuticals, and cosmetics and are often claimed to have
beneficial effects on human health. One particular interesting feature in marine algae is their richness
in photoprotective substances. Marine algae found in intertidal shores to a depth of 150 m are highly
exposed to ultraviolet (UV) radiation. Therefore, to counteract and minimize photodamage induced
by high UV radiation, photoprotective substances such as mycosporine-like amino acids (MAAs),
sulfated polysaccharides, carotenoids, and polyphenols were synthesized [4]. These substances can be
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used for photoprotection to provide the skin with adequate protection against ultraviolet B (UVB) and
ultraviolet A (UVA)-induced photodamage (Figure 1) [5].
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Present approaches on the isolation and recovery of photoprotective substances from marine algae
have been rapidly developing. Not only limited to organic solvent extraction, novel environmental
friendly extraction and separation techniques, such as enzyme-assisted extraction (EAE), ultrasound
assisted extraction (UAE), microwave assisted extraction (MAE), supercritical carbon dioxide
(SC–CO2) and subcritical water extraction (SWE), have recently been applied to the development
of photoprotective substances derived from marine algae. The recovery yield of photoprotective
substances from marine algae depends on the technology applied and the marine algae species.
In addition, the isolation process applied also affects photoprotective activity. Hence, this contribution
focuses on photoprotective substances reported in marine algae. The most relevant studies on the
photoprotective substances found in marine algae as well as their biological roles and photoprotective
activity are discussed. Additionally, an overview of the developments of blue biotechnology and
potential applications is also provided.

2. Photoprotective Substances Derived from Marine Algae

2.1. Sulfated Polysaccharides

Marine algae are considered as the most important source of non-animal sulfated polysaccharides,
and chemical structures of these polymers differ according to class and species of algae [6,7].
Carrageenan and fucoidan are the major sulfated polysaccharides found in red and brown algae,
respectively. Carrageenans are widely used in food, pharmacy, dairy, and cosmetic products due to
the unique physical functional properties, such as thickening, gelling, emulsifying, and stabilizing
properties [8]. These sulfated polysaccharides have been considered as safe additives for many
commercial products in many countries. In addition to their unique physical functions, carrageenan
composition in cosmetic and skin care products has often been found with antioxidant, tonifying,
cleaning, hydrating, and revitalizing bioactivities. Recently, photoprotective effects of carrageenan
(kappa, iota and lambda) in UVB-induced human keratinocytes (HaCaT) cells have been reported [9].
Carrageenan has shown significant protection against the detrimental effects of UVB-induced apoptosis
in HaCaT cells and has decreased the release of reactive oxygen species (ROS). The accumulation
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of excess ROS has been related to skin diseases including skin aging and cancers. Therefore,
antioxidants are usually viewed as preventive agents against UV-related skin diseases. We assumed
that the photoprotective activity of carrageenan may also correlate to their immunomodulatory
properties. Carrageenan has been known as an immunomodulator, which induces the expression
of cyclooxygenase-2 (COX-2) and the release of prostaglandin-E2 (PGE2) [10]. Based on an in vivo
experiment in SKH-1 hairless mice, Tripp et al. (2003) suggested that COX-2 expression is an important
factor for keratinocyte survival and proliferation after acute UV irradiation. Inhibition of COX-2
expression has been demonstrated to reduce epidermal keratinocytes proliferation [11]. Taken together,
it may be hypothesized that immunomulatory activities and ROS scavenging activities of carrageenan
might play an important role in their photoprotective mechanisms. The addition of carrageenan
to a broad spectrum of skin care and cosmetic products might decrease UV-induced photodamage
compared with sunscreen alone.

Fucoidan is the most commonly sulfated polysaccharide isolated from brown algae. In general,
these linier polysaccharides have a backbone of α-linked L-fucose residues with various substitutions.
Fucoidan structures and bioactivities are different among brown algae species [12]. Recent findings
have reported the photoprotective activity of fucoidan isolated from brown algae including Ecklonia
cava, Undaria pinnatifida, Costaria costata, and Fucus evanescens [13–19]. The photoprotective activity of
fucoidan has been determined in UVB-irradiated human dermal fibroblast and mice models. Most
studies report that the photoprotective activity of fucoidan is mediated through the suppression of
matrix metalloproteinase-1 (MMP-1) activity. MMP-1 is a major enzyme implicated in the collagen
damage and photoaging of UV-irradiated human skin. More precisely, these sulfated polysaccharides
downregulate the expressions of NF-κB, which, in turn, diminish MMP-1 expression. Recently, it was
reported that topical applications of low-molecular-weight fucoidan have stronger photoprotective
activity than high-molecular-weight fucoidan [14]. The rationale for this is that low-molecular-weight
fucoidan is mostly absorbed before irradiation. This low-molecular-weight fucoidan seems to be
involved in photoprotective effects rather than UV filtering effects.

Photoprotective activity in orally administered fucoidan, in addition to topical applications, has
been reported. This information on the bioavailability of fucoidan might have stimulated further
research on the relationship between the oral administration of fucoidan and their bioavailability,
mode of action, and potency in skin care and cosmetic products.

2.2. Carotenoids

Carotenoids are natural pigments found in all photosynthetic organisms (including plants,
algae, and cyanobacteria) and some non-photosynthetic archaea, bacteria, fungi, and animals [20].
These photosynthetic pigments consist of two classes of molecules: carotenes and xanthophylls.
Carotenoids play an important role in photosynthetic light-harvesting complexes; they absorb the
solar spectrum in the blue-green region and transfer the energy to chlorophylls [21]. Furthermore,
carotenoids also act as a photoprotector in photosynthetic organisms. Many studies have reported a
strong correlation between increased UVB irradiation and carotenoid accumulation in terrestrial and
marine plants [22,23]. As an example, Hupel et al. (2011) demonstrated that UVB irradiation increased
the carotenoid contents in brown algae Pelvetia canaliculata.

Photoprotective effects of fucoxanthin (Figure 2) derived from marine brown algae against
UVB-induced photoaging have been reported [24]. Photoprotective activity of fucoxanthin has been
determined by various in vitro and in vivo methods such as comet assay, human dermal fibroblast, and
hairless mice irradiation. ROS scavenging activity is mainly considered to be a mechanism of action
underlying the photoprotective activity of fucoxanthin [25–27]. Carotenoids, including fucoxanthin,
are known as a singlet oxygen quencher. These photosynthetic pigments mitigate the harmful effects
associated with UV irradiation by dissipating the excess energy as heat and returns to the initial
ground state. Recently, fucoxanthin has been demonstrated to stimulate filaggrin promoter activity in
UV-induced sunburn [28]. Filaggrin is a UV-sensitive gene that reflects the state of the skin damage.
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This stimulation of a UV-sensitive gen promotor by fucoxanthin suggested that other protective
mechanisms of fucoxanthin might be exerted by the promotion of skin barrier formation through the
induction of UV-sensitive gene expression.
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Photoprotection mechanisms of fucoxanthin might also be achieved by oral administration. It has
been shown that photodamage on the skin or eyes can be protected by biological compounds in
tissues, which come from nutritional sources via the bloodstream. Stahl and Sies (2012) reported the
concentration of carotenoids in human skin and demonstrated that there are considerable differences
in the patterns in each skin layer. As an example, high concentrations of carotenoids are found in
the skin of the forehead, the palm of the hand, and dorsal skin. Meanwhile, lower concentrations are
found in the skin of the arm and the back of the hand of the human body [29]. In the human body,
fucoxanthin absorption strongly depends on a number of factors, including the amount and type of
dietary lipids consumed, the stability of the matrix to which the carotenoid is bound, and additional
dietary factors such as dietary fiber. The esterified fucoxanthin is likely to be incorporated into the
lipid core in chylomicron and carried into a variety of tissues, including the skin [30].

Recently, it has been reported that skimmed milk is an excellent food matrix for fucoxanthin
application in terms of stability and bioavailability [31]. An in vivo pharmacokinetic study with a
single oral administration of fucoxanrhin fortified in skimmed milk showed the highest absorption
of fucoxanthinol and amarouciaxanthin A (two prime metabolites of fucoxanthin). Considering the
potency of fucoxanthin as a photoprotective substance, further research studies are needed in order
to verify photoprotective mechanisms of fucoxanthin oral consumption and the bioavailability of
fucoxanthin (and its derivatives) in human skin.

2.3. Mycosporine Like Amino Acids

Mycosporine-like amino acids (MAAs) are low-molecular-weight, water-soluble molecules with
maximum absorption bands in the UV spectrum between 310 and 360 nm. These molecules can be
found in cyanobacteria, phytoplankton, lichens, gorgonians, cnidarians, sponges, shrimp, sea urchins,
starfish, clams, ascidians, and marine algae. Most of the MAA-producing marine algae are red algae,
followed by brown and green algae, respectively [32]. The type and accumulation of MAAs in marine
algae varied based on season, climate, depth, and environmental variables (i.e., salinity, temperature,
and nutrient availability) [33]. Unlike photosynthetic pigments, MAAs were invoked to function as
passive shielding substances by dissipating the absorbed radiation energy in the form of harmless heat
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without generating photochemical reactions. In the organisms, MAAs not only function as “nature’s
sunscreen compounds” but also serve as antioxidant molecules scavenging toxic oxygen radicals [34].
Up to now, more than 30 different chemical structures of MAAs have been elucidated. Table 1 present
major MAAs identified from marine red algae.

Table 1. Mycosporines-like amino acids (MAAs) identified in marine algae.

Mycosporine-Like Amino Acids Marine Algae Reference

Shinorine
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MAAs have been reported as the strongest UVA-absorbing compounds in nature [42]. These low-
molecular-weight molecules have gained considerable attention as highly active photoprotective
candidates. Among other MAAs, porphyra-334 has been extensively studied. Daniel et al. (2004)
reported that cream with 0.005% MAAs containing porphyra-334 can neutralize photodamage of
UVA as efficiently as a cream with 1% synthetic UVA filters and 4% UVB filters [42]. In addition,
porphyra-334 has been demonstrated to suppress ROS formation and downregulate the expression
of MMP-1 and -13 on human dermal fibroblast following UVA irradiation. No adverse side effects
have been reported from the treatment of porphyra-334 at concentration ≤200 µM on human skin
fibroblasts. The formulation of porphyra-334 has been reported to increase photoprotective activity of
sunscreen formula [41]. MAAs protect the skin cell due to their ability to disperse the harmful UV into
heat that dissipates into the surroundings without forming reactive photoproducts. In addition, MAAs
have also been reported as strong antioxidant molecules [40]. Hence, MAAs derived from marine
algae can be recommended as photoprotective materials for skin care products.
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2.4. Polyphenolic Compounds

Polyphenolic compounds are a class of secondary metabolites with diverse biological functions.
These bioactive substances are divided into several classes according to the number of phenol rings and
structural elements that bind these rings to one another [43]. The three main groups of polyphenols
are phenolic acids, flavonoids, and tannins. Marine algae-derived polyphenols have been investigated
for their photoprotective activities. Dieckol, phloroglucinol, fucofuroeckol-A, and triphlorethol-A
(Figure 3) isolated from marine brown algae exhibited prominent protective effect against photodamage
induced by UVB radiation, as demonstrated in many studies [44–48]. In order to understand the cellular
and molecular photoprotective mechanisms of phloroglucinol, Piao and his colleagues developed it
in UVB-irradiated mice and a HaCaT cell model. Phloroglucinol (10 µM) scavenged free radical and
protects macromolecules damage in UVB-irradiated HaCaT cells [49]. In addition, phloroglucinol
treatment significantly inhibited the UVB-induced upregulation of MMP-1 and phosphorylation of
mitogen-activated protein kinases (MAPK) and activator protein-1 (AP-1) binding to the MMP-1
promoter [50]. Phloroglucinol has been demonstrated to be safe and effective when applied in the
mouse skin irradiated with UVB [51]. Photoprotective activity of phloroglucinol is shown in Figure 4.
The findings confirm the effectiveness of phloroglucinol as potential cosmeceutical leads for the
formulations of sun-protective lotions and creams.
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Polyphenols are bioactive substances characterized by the presence of more than one phenolic
group (a hydroxyl group bound to an aromatic ring). Based on several reports, we assumed that their
photoprotection activity is strongly correlated with their radical scavenging activity. The hydroxyl
(–OH) group bound to the aromatic ring acts as an electron donor, giving it to a free radical
or other reactive species. This underlies the inhibition of ROS and ROS-mediated damage on
macromolecules, which in turn inhibit the activation of the signal transduction pathways such as the
MAPK signaling pathway.

As mentioned in the many scientific reports, polyphenolic compounds represent an interesting
class of active substance in the protection of UV-light-induced skin damage. Up to a certain
concentration, marine algal-polyphenol did not exert any toxic effect, anticipating its potential use as a
safe photoprotector that can be utilized in skin care products.
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2.5. Marine Algae Extracts and Fractions

Extraction of active components from plant materials is the first and most important step in
the development of photoprotective substances. Marine algae have been extracted with various
solvents and investigated for their photoprotective effects (Table 2). Guinea et al. (2012) investigated
the photoprotective potential of 21 commercial marine red and brown algae originated from Chile,
Spain, South Africa, Argentina, Ireland, and Tonga. Compared to other extracts, two marine red algae
Macrocystis pyrifera and Porphyra columbina exhibited the highest photoprotective activity [52]. Many
studies have reported that certain species of marine algae can protect the skin against UVB-induced
photoaging and damage due to antioxidant properties and their UV absorbing capacity. In addition, the
photoprotection of marine algae extract has been correlated with MAAs and polyphenol constituents.
As an example, Porphyra yezoensis extract showed photoprotective activity on the UVB-exposed
HaCaT cells and human keratinocytes. The Porphyra yezoensis extract showed absorbance spectrum
characteristics of MAAs in red algae and contained high phenolic compounds [53]. Polyphenolic
compounds are generally more soluble in polar organic solvents, so organic solvents such as ethanol
and methanol can be considered as effective extractants of polyphenolic components from marine
algae. Supporting this hypothesis, aqueous extract of marine green algae (Halimeda incrassate) and red
algae (Bryothamnion triquetrum) showed no photoprotective activity in UVC-irradiated plasmids [54].

Synthetic UV filters are used in skin care products to prevent photodamage and skin cancer.
However, UV filters still have to be complemented by other compounds to make sun protection skin
care more efficient to photodamage and skin photoaging. The combination of Porphyra umbilicalis
extracts and Ginkgo biloba has been demonstrated to improve the photoprotective performance
of sunscreens, which then prevent UV-induced photodamage [55]. Thus, marine algae can be
considered potent materials for an effective photoprotective formulation with anti-aging properties.
Photoprotective activity of marine red and brown algae have been characterized in many studies;
however, up to now very little attention has been given to unraveling photoprotective substances from
marine green algae.
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Table 2. Summary of photoprotective effects of marine algae extracts.

Class Species Origin Extract/Fraction Activity Reference

Red algae

Solieria chordalis France MeOH extract/CPC fractionation
n-heptane/EtOAc//MeOH/dW (19/1//19/1; v/v) UVB absorption & free radical scavenging activity [56]

Porphyra umbilicalis France Cosmetic formula (5% extract) Protect UV-radiated skin from erythema [55]
Porphyra yezoensis Korea EtOH extract (80%)/chloroform/MeOH/dW (2/1/0.9) Modulate viability of UVB-exposed HaCaT [53]
Gelidium amansii Korea MeOH extract and fermentation Protect skin photoaging in Hairless Mice induced by UVB [57]
Polyopes affinis Korea EtOH extract Inhibit UVB-induced ROS in HaCaT [58]

Solieria chordalis France EtOAc extract Protect synthetic chlorophyll solution from UVB [59]
Polysiphonia morrowii Korea EtOH extract (80%) Protect HaCaT from UVB-induced cell damage [60]

Chondracanthus tenellus Korea EtOH extract (80%) Protect HaCaT from UVB-induced cell damage [61]

Bonnemaisonia hamifera Korea EtOH extract (80%) Protect HaCaT from UVB-induced cell damage and
inhibit ROS [62]

Lomentaria hakodatensis Korea EtOH extract (80%) Protect HaCaT from UVB-induced cell damage [63]
Macrocystis pyrifera Argentina Ace extract UVB protection on zebrafish embryo [52]
Porphyra columbina Argentina Ace extract UVB protection on zebrafish embryo [52]

Brown
algae

Sargassum muticum Korea EtOAc fraction Inhibits wrinkle formation in UVB-induced mice (in vivo) [64]
Sargassum muticum Korea EtOAc fraction UVB irradiated human keratinocytes (in vitro) [65]

Undaria crenata Korea EtOH extract (80%) Protect HaCaT from UVB-induced cell damage [15]
Lessonia vadosa Argentina Ace extract UVB protection on zebrafish embryo [52]

Lessonia nigrescens Chile Ace extract UVB protection on zebrafish embryo [52]
Ecklonia maxima South Africa Ace extract UVB protection on zebrafish embryo [52]

Durvillaea antarctica Chile Ace extract UVB protection on zebrafish embryo [52]
Fucus vesiculosus Spain Ace extract UVB protection on zebrafish embryo [52]

Saccharina latissima Spain Ace extract UVB protection on zebrafish embryo [52]
Ascophyllum nodosum Ireland Ace extract UVB protection on zebrafish embryo [52]
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3. The Development of Photoprotective Compounds-Derived from Marine Algae

Organic solvent extraction is the most common technique to isolate photoprotective substances
from marine algae. Extraction conditions, such as temperature, sample-to-solvent ratios, and extraction
time, must then be adjusted in order to optimize the extraction process. Organic solvent such as ethanol,
methanol, acetone, and ethyl acetate can be used for the extraction of photoprotective substances [15].
However, in the last few decades, the volume of solvents used in the chemical process is extremely
concerning. Organic solvents are a major contributor to the overall toxicity potential associated with
many industrial processes and to the waste generation of chemical industries. The disposal of excessive
solvent to the environment significantly contributes to the release of greenhouse gases and other
emissions [66]. Both academic and industrial researchers have therefore focused on minimizing solvent
consumption through the development of solvent-free processes. Environmentally friendly “blue
biotechnologies” such as EAE, UAE, MAE, SC–CO2, and SWE have been demonstrated as potential
technologies to obtain photoprotective compounds from marine algae. Table 3 shows advantages and
disadvantages of blue biotechnologies to obtain photoprotective substances from marine algae.

Table 3. Technologies for the recovery of photoprotective substances from marine algae.

Techniques Advantage Disadvantage Target Photoprotective
Substances

Organic solvent Easy to operate
Environmental waste

Cost of organic solvent
Clean up step needed

Carotenoids, Phenolics,
MAAs, Sulfated

Polysaccharides, Extracts

EAE
No harmful solvents

High yield
Mild process

Extracted substances required
further process

Cost of the enzymes
Optimization of enzymatic

process
Clean up step needed

Extracts, Sulfated
Polysaccharides

UAE & MAE Reduce extraction time
Low solvent

High power consumption
Scaling up is difficult
Clean up step needed

Sulfated Polysaccharides

SC–CO2

Reduce extraction time
Simple process

Environmental friendly
Low operating temperatures

(40–60 ◦C)
Clean final product

Low solvent

Cost of the installations
Required special manpower

Optimization process

Carotenoids (i.e.,
fucoxanthin);

SWE

Reduce extraction time
Simple process

Environmental friendly
High yield

Low solvent

Cost of the installations
Clean up step needed
Elevated temperatures

Sulfated polysaccharides
(i.e., carrageenan;

fucoidan); polyphenols

3.1. Enzyme-Assisted Extraction

The EAE technique has been widely used to improve the extraction efficiency of bioactive
substances from terrestrial plants. On the contrary, the application of the EAE method to extract
photoprotective substances from marine algae has rarely been reported. The EAE allows preparation
of bioactive substances from marine green, brown, and red algae [67]; however, physico-chemical
conditions of the reaction media, such as temperature, pH of the protein solution, and enzyme ratios,
must then be adjusted in order to optimize the activity of the enzyme. Proteolytic enzymes from
different sources such as microbes, plants, and animals can be used for the hydrolysis process of marine
algae [68]. Crude polysaccharide from the brown algae Ecklonia cava has been recovered by using
EAE. Lyophilized E. cava was ground and sieved to obtain a smaller particle size, and this produced
higher extraction yields. Hence, in addition to physic-chemical conditions of reaction media, surface
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areas of the sample is another important factor in the EAE process [69]. Recently, it was reported
that the EAE process increases antioxidant activity of fucoidan from marine brown algae Cystoseira
trinodis [70]. Alternative extraction conditions such as EAE can be successfully employed in order to
degrade marine algae tissues on the basis of the recovery of bioactive compounds with a considerably
high yield.

3.2. Ultrasound Assisted Extraction and Microwave Assisted Extraction

The established extraction technology that can be used to isolate photoprotective substances from
marine algae is MAE and UAE. Both are energy input-assisted extraction methods and have been
used to isolate bioactive substance from terrestrial plant material for many years [71]. MAE involves
the heating process of a solution in contact with a sample using microwave energy. Different from
classical heating, microwaves heat the sample simultaneously without heating the vessel. Therefore,
the solution reaches its boiling point very rapidly, leading to very short extraction times [72]. The high
recovery of fucoidans derived from Ascophyllum nodosum by MAE has been reported [73]. The MAE
of fucoidan from Ascophyllum nodosum at 90 ◦C has a similar composition, molecular weight, and
reducing power than native fucoidan extracted by the conventional method. It is assumed that the
sulfate contents were only affected to the extraction temperature of fucoidan. In addition to MAE,
UAE has also been reported to improve the yield of fucoidan with antioxidant activities from marine
brown algae, Sargassum muticum [74]. The UAE principle is based on the waves migrating through a
medium inducing pressure variations. Notably, considering that the energy input of MAE and UAE
can exceed the energy level required for the cleavage of the sulfate esters, it is recommended that the
necessary energy input be temporarily exerted during the extraction process to avoid any structural
alterations to the sulfated polysaccharide [72].

3.3. Supercritical Carbon Dioxide

Recently, scientists and industrialists have paid a great deal of attention to the application of
SC–CO2 fluid (Figure 5), a hydrophobic and environmentally friendly medium, as an alternative
to conventional organic solvent extraction [75]. SC–CO2 is a promising method for the recovery
of photoprotective substances from marine algae, which can be carried out under mild operating
conditions. The SC–CO2 process offers new opportunities for the solution of separation problems
as it is a nontoxic, nonflammable, inexpensive, and clean solvent [76]. The higher carotenoids yield
from Saccharina japonica and Sargassum horneri obtained by SC–CO2 as compared to the conventional
extraction has been reported [77]. The solvating capacity of SC–CO2 fluid can be controlled by
manipulating pressure and temperature to give suitable selectivity. Therefore, the temperature and
pressure applied greatly affected the carotenoids solvating power of SC–CO2 and hence the yield
of carotenoids. Co-solvent has also been demonstrated to increase the yield of bioactive substances
from marine algae [78,79]. As an example, Roh et al. (2008) and Conde et al. (2014) reported that the
use of ethanol as co-solvent in the SC–CO2 process increases phenolic and fucoxanthin yield from
marine brown algae, Undaria pinnatifida, and Sargassum muticum, respectively. More recently, sunflower
oil has been shown to improve the extraction yield of carotenoids and fucoxanthin from Saccharina
japonica [80].
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3.4. Subcritical Water Extraction

The SWE process is an environmentally clean technique that can be used to recover
photoprotective substances from marine algae. During SWE, water is maintained in the subcritical
state, between its boiling point (100 ◦C and 0.10 MPa) and critical point (374 ◦C and 22 MPa), where it
remains as a liquid due to the high pressure [81]. High yield of fucoidan and carrageenan extracted
by SWE has been demonstrated [82,83]. Generally, the SWE process increases the yield of bioactive
substances and their biological activities. However, lower physical properties such as gelling and
viscosity were also observed; these might be due to the degradation of polysaccharidea in higher
temperature. The SWE process can be used, in addition to recovering photoprotective substances, to
modify the structure of those substances. Meillisa et al. (2015) demonstrated structure modification
of alginate from Saccharina japonica by SWE. Considering the blue extraction technique, SCE exhibits
a number of advantages over conventional organic solvent extraction. The important advantages of
this method include its simplicity, reduced extraction time, lower cost of the extracting agent, and its
environmental friendliness.

4. Conclusions and Future Prospects of Photoprotective Substances from Marine Algae

Marine algae are the subject of increasing interest for their potential as a source of bioactive
substances in cosmetics industries for several reasons. First, these marine organisms are considered
as the fastest growing organisms on Earth. Extensively available marine areas are potential areas for
marine algae aquaculture. Moreover, marine algae aquaculture techniques of commercial species (i.e.,
Eucheuma cottonii, Laminaria japonica, Ecklonia cava, Gracilaria sp.) have developed rapidly in the last
decades. Marine algae can be found from tropical, cold-temperate areas to polar areas. This great
number of biodiversity can be seen as a potential field for the blue exploration of marine algae.
In addition, marine algae have exhibited unique chemical structures unlike those found in terrestrial
counterparts. These organisms are viewed as “natural and healthy” by many people, and this promotes
a positive response for consumers, who often regard natural and nontoxic entities. Many species of
marine algae have been used as extracts in cosmetics, and there is no restriction for cosmetic use. Hence,
marine algae may be considered a consumer-friendly source of skin care and cosmetic products that
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may be used for photoprotection. However, the health claims of photoprotective substances derived
from marine algae that have been reported by many studies are mostly acquired only through in vitro
and in vivo studies, so comprehensive studies on the mode of photoprotective action, biological
consequences, and possible side effects have to be conducted in order to use those functional materials
as skin care and cosmetic products. Photoprotective activity of orally administered bioactive substances
from marine algae has also been reported. These findings reveal the potential of the development of
photoprotective supplements and/or pharmaceuticals derived from marine algae.

The use of blue biotechnologies to recover photoprotective substances is becoming very important
since the volume of solvents used in the chemical process is extremely concerning. Further, advances
in molecular biology and aquaculture technologies such as Integrated Multi Trophic Aquaculture
(IMTA) and Recirculating Aquaculture systems (RAS) are important to bridge the gap between the
challenges pertaining to the exploitation of marine algae. Particularly, the aquaculture techniques of
many brown algae species still remains a challenge and are necessary for the sustainable use of marine
algal metabolites and for reduced production cost. Collectively, we predict that extensive application
of marine algae in skin care, cosmetics, and pharmaceuticals with advanced photoprotective benefits is
not a distant prospect.
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