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Abstract: Despite the fact that a range of vaccines against COVID-19 have already been created
and are used for mass vaccination, the development of effective, safe, technological, and affordable
vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA
vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike
protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine
(pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD)
that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were
characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the
immunogenicity of the combined vaccine and its components, mice were immunized with the DNA
vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG
and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or
RBD alone was significantly lower. The cellular immune response was detected only in the case of
DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and
RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.

Keywords: SARS-CoV-2; self-assembled particles; RBD protein; DNA vaccine; humoral response;
virus-neutralizing activity; cellular response

1. Introduction

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), requires the development of new effective vaccines [1]. Some
of the first to be licensed were messenger RNA (mRNA) vaccines, vector vaccines, and
inactivated vaccines [2–6]. Vaccines based on other approaches are now emerging, including
DNA vaccines and subunit vaccines [7].

The COVID-19 DNA vaccine, developed by Zydus Cadila (India), is the world’s first
DNA vaccine to be approved for human vaccination [8,9]. Among the advantages of
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DNA vaccines, it should be noted that they, like vector and mRNA vaccines, efficiently
induce T cell immunity, including T helper cells and cytotoxic T lymphocytes [10], while
having a relatively good safety profile [11]. Moreover, it is cost-effective to produce DNA
vaccines, they have the ability to be adapted rapidly to new targets, and they are stable
at room temperature, all features that compare favorably with mRNA vaccines, which
require storage at low temperatures [12–14]. A definite disadvantage of DNA vaccines is
their low immunogenicity when injected as naked plasmid DNA [15,16]. A wide range
of strategies have been tried to increase the immunogenicity of DNA vaccines, including
packaging into liposomes; the use of “vaccine cocktails” containing the DNA vaccine
as well as plasmids encoding adjuvant immunomodulatory proteins; and delivery by a
gene gun, electroporation, or with a needle-free injector device [8,17–19]. These methods
help to solve the problem of immunogenicity, but there are sometimes safety problems,
technological difficulties, and an increase in the cost of the developed vaccine.

Subunit vaccines are another rapidly developing area in the development of COVID-19
prevention tools [20–22]. Currently, a number of subunit vaccines based on the spike (S)
protein or its fragments are undergoing clinical trials [7,23,24]. Protein vaccines induce a
weak cellular response, but they effectively stimulate the humoral B cell response. A recent
review [25] suggests that protein vaccines may induce a longer humoral response against
SARS-CoV-2 than nucleic acid and inactivated vaccines. An important factor affecting the
efficiency of stimulation of the humoral response and neutralizing antibodies is the degree
of multimerization of protein viral antigens. It has been shown that immunogens based
on dimeric and multimeric derivatives of protein receptors (namely the receptor-binding
domain (RBD)) induce a significantly higher titer of neutralizing antibodies [26,27].

A prime-boost strategy using a combination of DNA vaccines and recombinant pro-
teins, which consists of priming the immune response with DNA vaccines and then boosting
with a protein, allows an effective immune response to be achieved while overcoming
the potential drawbacks of both approaches [28–30]. However, the idea of co-delivering
DNA vaccines and proteins seems to be a simpler and more easily controlled method of
immunization compared with the prime-boost regimen [31]. Several studies have shown
that co-administration of DNA and protein in the same anatomical sites play a critical role
in the development of protective immunity [32].

We suggest a novel concept of combining recombinant proteins and DNA vaccine
in the form of artificial self-assembled particles. We have previously used this original
approach to develop the candidate vaccine CombiHIVvac [33]. In this article, we con-
structed a combined vaccine against SARS-CoV-2. The RBD protein is conjugated to
polyglucin:spermidine (PGS) and mixed with plasmid pVAXrbd, which leads to the for-
mation of particles containing the DNA vaccine inside and RBD on the surface. We called
this combined vaccine CCV-RBD. Here, we present the results of the immunogenicity of
CCV-RBD in an animal model.

2. Results
2.1. Verification of RBD Gene Transcription in Transfected HEK293T Cells

The plasmid pVAXrbd construction was carried out as described in Section 4. To verify
the expression of the RBD gene, HEK293T cells were transfected with pVAXrbd or pVAX
(as a negative control).

Using the total RNA isolated from the transfected cells, we confirmed the expression
of the RBD gene by RT-PCR. The presence of a specific 750 base pair (bp) product indicates
the transcription of the transgene in plasmid pVAXrbd (Figure 1(A1)). As shown in
Figure 1(A2), Western blot analysis confirmed the expression of the SARS-CoV-2 RBD
protein at the expected molecular weight in the lysate and in the culture medium of the
transfected cells (lanes 1 and 3). The lysate and culture medium of HEK293T transfected
with plasmid pVAX (the negative control) did not show any other proteins specifically
reactive with the mouse anti-SARS-CoV-2 antibody (Figure 1(A2), lanes 2 and 4).
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Figure 1. Verification of the RBD expression in transfected cells. (A1) HEK293T cells were trans-
fected with pVAXrbd or pVAX (negative control). The target gene expression was confirmed with
corresponding mRNA detection using RT-PCR. Electrophoretic analysis of RT-PCR products in 1%
agarose gel: lanes 1 and 3 are products obtained from total RNA of HEK293T cells transfected with
pVAX and pVAXrbd, respectively; lane 2 is the product obtained by PCR of plasmid pVAXrbd.
(A2) Analysis of the RBD protein production by Western blot in HEK293T cells: lanes 1 and 2 are
lysates of HEK293T transfected with pVAXrbd and pVAX, respectively; lanes 3 and 4 are culture
medium from HEK293T cells transfected with pVAX and pVAXrbd, respectively; lane 5 is purified
recombinant RBD. (B) SDS-PAGE analysis of purified recombinant RBD produced in CHO-K1 cells
transfected with pVEALrbd.

2.2. Preparation and Characterization of the Particles

We generated two types of particles: (1) CCV-RBD, particles that contain plasmid
DNA encapsulated in the RBD protein conjugated with PGS (PGS-RBD) (Figure 2(B1)),
and (2) pVAXrbd-PGS (control), particles that contain plasmid DNA encapsulated in PGS
without protein (Figure 2(A1)).

Before obtaining the particles, we characterized their components apart. The RBD
protein was analyzed by sodium dodecyl sulfate–polyacrylamide electrophoresis (SDS-
PAGE); it was >98% pure (Figure 1B) [34]. The preparation of the PGS-RBD conjugate is
described in Section 4. The presence of protein in PGS-RBD was also demonstrated by
using ultraviolet (UV) spectroscopy (Figure 2B): arrows 2 and 3 indicate the spectra of
RBD and PGS-RBD, respectively, which have an absorption peak at 280 nm, characteristic
of proteins.

Particles were obtained via self-assembly by mixing PGS-RBD (or PGS) with plasmid
pVAXrbd as described in Section 4. The formation of self-assembled particles was assessed
by an electrophoretic mobility shift in the agarose gel: The encapsulated plasmid lost
its mobility in the electric field when coated with either conjugate (PGS or PGS-RBD)
(Figure 2C). Maintenance of the plasmid DNA structure alone and in the CCV-RBD and
pVAXrbd-PGS complexes was confirmed by UV spectroscopy (Figure 2D, arrows 4, 5, and
6, respectively): the spectra of these preparations have a characteristic DNA peak at 260 nm.

Particle formation was also confirmed by gel filtration on Sepharose CL-6B. As shown
in Figure 2E, the peak corresponding to the CCV-RBD fraction emerges in the free volume,
ahead of pVAXrbd-PGS and plasmid DNA. We also examined the resulting particles by
using electron microscopy (Figure 2(A2,B2)).

We evaluated the binding efficiency of anti-RBD neutralizing Ab (nAb) iB14 to
RBD [35] by using the Octet RED96 instrument (ForteBio, Pall Life Sciences) to confirm
that the RBD protein present on the particle surface retained its antigenic properties and
was available for interaction with antibodies (Figure 2F). The binding of nAb iB14 to an
epitope which is partially overlapped with the RBD-ACE2 interface [35] quite effectively
recognized RBD in CCV-RBD, with a dissociation constant of 6.6 × 10−11 compared with
1.47 × 10−10 for the RBD protein alone.
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Figure 2. General scheme for DNA/protein complexation and characterization of their components.
(A1) Schematic representation of the pVAXrbd-PGS particle (control) assembly. (A2) Electron mi-
crograph of pVAXrbd-PGS particles. (B1) Schematic representation of the particle assembly of the
combined CCV-RBD vaccine. (B2) Electron micrograph of CCV-RBD particles. (C) Confirmation
of DNA encapsulation in the shell of PGS and PGS-RBD by electrophoresis in a 1% agarose gel:
1, CCV-RBD; 2, pVAXrbd-PGS; and 3, naked plasmid pVAXrbd. (D) UV spectra of the CCV-RBD and
pVAXrbd-PGS structures and their components. 1, PGS; 2, RBD; 3, PGS-RBD; 4, pVAXrbd plasmid;
5 and 6, CCV-RBD and pVAXrbd-PGS particles, respectively. (E) Gel filtration on a Sepharose CL-6B
column (chromatographic profile). Blue line, CCV-RBD; green line, pVAXrbd-PGS; red line, pVAXrbd
plasmid. (F1) Octet binding of the RBD to iB14, SARS-CoV-2 nAb. (F2) Octet binding of the CCV-RBD
to iB14, SARS-CoV-2 nAb. (G1) Schematic representation of RBD protein and antibody interaction.
(G2) Schematic representation of CCV-RBD particle and antibody interaction.
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2.3. Humoral Immune Response

To assess the immunogenicity of the created vaccine constructs, BALB/c mice were
immunized twice, on days 0 and 21. At the endpoint (day 31, 10 days after the final
immunization), serum samples were collected and tested by enzyme-linked immunosorbent
assay (ELISA) for the presence of antibodies specifically recognizing RBD and S proteins,
as well as the ability of sera to neutralize live virus. Sera from mice immunized with
pVAXrbd-PGS and the RBD protein, as well as sera from intact mice, were used as controls
(Figure 3A).
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Figure 3. Humoral immune response in BALB/c mice. (A) Mice were immunized intramuscularly
with CCV-RBD, pVAXrbd-PGS, or RBD protein twice on days 0 and 21 and serum samples were
collected 10 days after the second immunization (day 31). (B) Titers of specific IgG antibodies to SARS-
CoV-2 RBD (1) and SARS-CoV-2 S (2) were determined by ELISA. (C) The virus-neutralizing activity
of sera from mice immunized with CCV-RBD, pVAXrbd-PGS, and RBD protein was determined by
using the SARS-CoV-2 nCoV/Victoria/1/2020 strain (100 TCID50). In panels (B,C), data are presented
as median reciprocals of titers. Significance was calculated using nonparametric Mann-Whitney
method (* p < 0.01, ** p < 0. 05).
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According to the results of the RBD-specific ELISA at the endpoint of the experiment,
there was a >32-fold increase in the median titer of specific antibodies in animals immunized
with the combined DNA/protein vaccine CCV-RBD compared with the group that was
injected with pVAXrbd-PGS, and there was an 8-fold increase compared with the group
treated with the RBD protein without adjuvants (Figure 3(B1), p < 0.01). The S-specific
ELISA—to detect the S protein—showed a 75-fold increase in the CCV-RBD-immunized
group compared with the group that was injected with pVAXrbd-PGS, and a 13-fold
increase compared with the RBD-immunized group (Figure 3(B2), p < 0.01).

The neutralizing properties of sera were analyzed by using the SARS-CoV-2 nCoV/
Victoria/1/2020 strain in cell culture in vitro. The results of the analysis correlate with
the results of ELISA: the sera of animals immunized with the CCV-RBD showed a higher
activity in inhibiting the cytopathic effect of the virus (Figure 3C, p < 0.05).

Thus, immunization with the combined DNA/protein vaccine CCV-RBD induced
a greater humoral immunity (IgG and neutralizing antibodies) than immunization with
either DNA or the RBD protein alone.

2.4. Cellular Immune Response

To assess the ability of the created vaccine constructs to induce cellular immunity in
mice, spleens were taken at the endpoint of the experiment, homogenized, and examined
by using the ELISpot method. Splenocytes of mice immunized with the PGS-encapsulated
plasmid or RBD protein, as well as intact mice, were used as controls. The response was
assessed by the ability of splenocytes to release interferon (IFN)-γ after specific stimulation,
which was carried out by a pool of peptides that make up the RBD protein (Table 1).

Table 1. Peptides from the RBD protein for stimulation of splenocytes from BALB/c mice in ELISpot
and ICS.

Number Sequence MHC Restriction

1 VYAWNRKRI H2-Kd
2 FERDISTEI H2-Ld
3 CGPKKSTNL H2-Dd
4 KNIDGYFKIYSKHTP H2-IEd
5 RFASVYAWNRKRISN H2-IEd, H2-IAd
6 VGGNYNYLYRLFRKS H2-IEd
7 GGNYNYLYRLFRKSN H2-IEd
8 YNYKLPDDFTGCVIA H2-IEd
9 NATRFASVYAWNRKR H2-IEd, H2-IAd

10 KNKCVNFNFNGLTGT H2-IEd

Using ELISpot, the group immunized with the PGS-coated DNA vaccine showed the
greatest cellular immunity (Figure 4A). In contrast to the humoral response, we did not
observe an increase in cellular immunity in the CCV-RBD group. However, it should be
noted that immunization with the RBD protein alone did not induce a significant cellular
immune response.

To gain a more complete understanding of changes in T cell subpopulations, we
assessed the percentage of IFN-γ-producing lymphocytes among all CD4+ and CD8+ T
cells by intracellular cytokine staining (ICS) using flow cytometry. As shown in Figure 4B,
after stimulation with peptides, CD4+ and CD8+ T lymphocytes responded with greater
IFN-γ release in the groups immunized with the combined and DNA vaccines. The
induction of cellular immunity, characterized by the production of IFN-γ, did not occur for
the group immunized with the RBD protein or the intact group.
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Figure 4. Cellular immune response in BALB/c mice. (A) The number of splenocytes releasing IFN-γ
in response to specific stimulation with peptides from the RBD protein was counted in an ELISpot.
(B) The percentage of SARS-CoV-2-specific IFN-γ-producing CD4+ (2) and CD8+ (3) T cells was
analyzed by ISC and flow cytometry (1). Statistical analysis was performed by using GraphPad
Prism 6.0 software. The significance of differences between samples was determined by using the
nonparametric Mann–Whitney method (* p < 0.01).
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3. Discussion

The worldwide spread of SARS-CoV-2 has necessitated the rapid development of
vaccines. The global community vaccination campaign has provided a unique opportunity
to compare the different strategies and platforms of the developed vaccines. mRNA and
vector vaccines remain the leaders at the moment, but new vaccines are entering the
market—for example, based on the DNA platform [9]. There is also work in which it
is predicted that the next generation of prophylactic COVID-19 vaccines will be protein
vaccines [25]. In this work, to create a candidate vaccine against SARS-CoV-2, we have
combined two platforms—a DNA vaccine and a recombinant protein. The developed
combined vaccine against COVID-19, CCV-RBD, is an artificial particle containing the
pVAXrbd DNA vaccine as a core, which encodes the receptor-binding domain of the S
protein (Figure 1A), and on the surface the RBD protein is conjugated with the polymer
PGS, as a particle envelope (Figure 2(B1)). RBD was chosen as the antigen because this
region of the S protein is the dominant target for a neutralizing response in COVID-19
infection [36–39]. In addition, there are concerns that the full-length S protein may lead to
increased viral infection or pulmonary toxicity [40,41].

To create virus-like particles, we encapsulated DNA vaccines in a PGS and RBD
protein conjugate (Figure 2B). We have previously used the PGS conjugate to deliver
candidate DNA vaccines against HIV-1 and Ebola [33,42,43]. We used the PGS-TBI protein
conjugate to create a vaccine against HIV-1, namely CombiHIVvac, which has successfully
passed the first phase of clinical trials [44]. These studies have demonstrated the safety of
the PGS-TBI protein conjugate complex and a DNA vaccine. It is important to note that
the PGS components are biodegradable and safe for humans; their low cost, safety, and
the possibility of lyophilization with long-term storage provide additional technological
advantages in the production and transportation of the vaccine preparation [45].

The spermidine molecules in the PGS and PGS-RBD conjugates provide a positive
charge to these polymers. When negatively charged plasmid DNA is added to such
conjugates, self-assembly of the complexes occurs: see Figure 2(A1), showing DNA in the
PGS envelope, and Figure 2(B1), PGS-RBD-coated DNA. Particle formation was confirmed
by changing the mobility of DNA in an agarose gel (Figure 2C) as well as by gel filtration
(Figure 2E). Exposure of the RBD protein on the surface of particles was shown when
studying the kinetics of binding to SARS-CoV-2 nAb iB14 [35] using an Octet RED96 device
(Figure 2F). The lower Kd for CCV-RBD with iB14 nAb (6.6 × 10−11) compared with RBD
alone (1.47 × 10−10) indicates a higher degree of binding of the protein in the particle to
the nAb, which is apparently due to its multimeric representation on the surface of the
particles (Figure 2F).

The obtained CCV particles were 100–500 nm, a size comparable to viral particles
(Figure 2(A2,B2)). This was confirmed by electron microscopy and gel filtration. A number
of researchers have shown that nanoparticles of this size are optimal for creating vaccines,
because they accumulate in B cell follicles and cause a strong immune response [46,47].

The study of the immunogenicity of CCV-RBD showed that the combined DNA/protein
vaccine is able to induce a strong humoral response in immunized animals. The antibody
titer in ELISA for the S-protein was 1:500,000 and the titer for RBD was 1:600,000. It is
worth noting a synergistic increase (by one order of magnitude) of the humoral response
to the administration of the combined vaccine compared with the groups that received
the individual components: PGS-coated pVAXrbd and RBD protein (Figure 3B). The
synergistic effect was even more pronounced in the study of the neutralizing activity of
sera, which is the most important criterion for the effectiveness of the vaccine. The sera of
all groups, except for intact mice, demonstrated the ability to neutralize the SARS-CoV-2
nCoV/Victoria/1/2020 strain in an in vitro cell culture in a virus-neutralization reaction
(Figure 3C). However, in the CCV-RBD group, the mean neutralizing titer was 1:500, which
is significantly higher than the titers shown in the pVAXrbd-PGS and RBD groups (1:40
and 1:30). The observed synergistic effect on the humoral response may indicate that
antigen-presenting cells (APC) efficiently capture virus-like particles of CCV, as well as
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the stimulation of the T helper cell response due to the DNA component. The presence of
multiple RBD proteins on the particle surface may also play a role in enhancing the humoral
immune response to CCV-RBD. It should be noted that similar results were obtained
earlier when we studied the immunogenicity of the candidate vaccine CombiHIVvac.
Combining the conjugate PGS with TBI protein and the DNA vaccine, encoding T cell
HIV-1 immunogen, in one construct exerted a synergistic effect on the induction of a B
cell-mediated response [48].

When assessing the cellular response based on the number of splenocytes producing
IFN-γ, determined by using the ELISpot method, the highest level of specific cellular
immunity was found in the group immunized only with the RBD DNA vaccine coated
with PGS (Figure 4A). However, analysis of CD4+ and CD8+ T cell subpopulations showed
an approximately equal percentage of specific T lymphocytes in the groups immunized
with DNA and combined vaccines (Figure 4(B2,B3)). Mice immunized with the CCV-RBD
vaccine candidate showed a lower cellular response, while the response of the group
immunized with protein alone was close to the response of non-immunized animals
(Figure 4).

Taken together, the candidate CCV-RBD combined vaccine has several unique proper-
ties. It combines the RBD protein and the DNA vaccine in one construct and is a virus-like
particle (based on using the conjugate of RBD protein with PGS). This design exhibits the
advantages of a DNA vaccine (the ability to induce a cellular response) and a recombi-
nant protein (capable of inducing a humoral response). Immunization with the combined
construct results in a synergistic effect on the humoral immune response. The level of
antibodies, including neutralizing ones, turns out to be several times higher than when
immunized with the same doses of DNA or protein. This effect appears to be related to the
particle size, the multimeric presentation of the RBD protein on the particle surface, and
the T helper support provided by the DNA vaccine.

In addition, particles that present multiple copies of the antigen are more immunogenic
than monomeric proteins due to the clustering of B cell receptors, the increased avidity
of multimeric proteins, and the augmented retention of nanoparticles above 20 nm in
the lymph nodes. Researchers have used several strategies to generate VLPs carrying
immunogenic domains attached to natural or engineered protein scaffolds, such as the
capsid proteins of viruses (HBcAg, HPV, JCV, bacteriophages, cowpea chlorotic mottle
virus), proteins such as ferritin, encapsulin, lumazine synthase and others [47]. However,
in this case, antibodies are also generated against the scaffold, which may reduce the
effectiveness of subsequent vaccination with the same type of vaccine. The advantage of
our vaccine platform in comparison with other VLP strategies is that we used dextran as
the carrier, which is not immunogenic, and the immune response is generated only against
the target antigen. The inclusion of a plasmid DNA vaccine into the core of the particles
provides an additional adjuvant effect on antibody synthesis.

CCV-RBD is a promising vaccine candidate for use in the prevention of COVID-19,
and the platform used to create combined vaccines will be useful for the design of various
preventive or therapeutic drugs with the ability to induce humoral and cellular responses
for protection.

4. Materials and Methods
4.1. Viruses and Cell Cultures

The HEK293T and Vero E6 cell lines were obtained from the collection of cell cultures of
the SRC VB “Vector”, Koltsovo, Russia. The Vero cells were maintained in Dulbecco’s Mod-
ified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 IU/mL
penicillin, and 100 µg/mL streptomycin at 37 ◦C in the presence of 5% CO2. HEK293T
cells were maintained in DMEM supplemented with GlutaMAX (Thermo Fisher Scientific,
Waltham, MA, USA), 10% FBS, and 50 µg/mL gentamicin at 37 ◦C in the presence of
5% CO2.
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The SARS-CoV-2 nCoV/Victoria/1/2020 strain was used in this work (State Collection
of Causative Agents of Viral Infections and Rickettsioses, SRC VB “Vector,” Rospotrebnad-
zor, Koltsovo, Russian Federation). The virus was accumulated in a Vero E6 cell culture
with a titer of 6.5 lg TCID50/mL in a Biosafety Level 3 (BSL-3) laboratory.

4.2. DNA Vaccine Construction and Protein Production

To construct plasmids, the SARS-CoV-2 S gene sequence was used (GenBank MN908947),
specifically a fragment corresponding to the RBD protein (320V–542N). Optimization of
the codon composition of the sequence was carried out by using the GeneOptimizer pro-
gram (https://www.thermofisher.com/ru/en/home/life-science/cloning/gene-synthesis/
geneart-gene-synthesis/geneoptimizer.html, accessed on 14 February 2022) for the expres-
sion of plasmids in CHO cells. The final nucleotide sequence was synthesized and cloned
into the vector plasmid pVEAL2 as described earlier [34]. A fragment encoding the signal
sequence of tissue plasminogen activator (Tpa) (MDAMKRGLCCVLLLCGAVFVSA) was
added to the N-terminal region of the RBD gene using appropriate primers, and a fragment
encoding a 6×His was added to the C-terminal region. The resulting integrative plasmid
pVEALrbd was used to transfect CHO cells to generate an RBD protein producer.

To obtain a DNA vaccine, the gene sequence encoding the RBD protein was synthe-
sized and cloned into the pVAX vector under the immediate-early promoter of human
cytomegalovirus (CMV). A fragment encoding a sequence that is a hybrid of fibroin and
luciferase signal sequences (MMRTLILAVLLVYFCATVHC) was added to the N-terminus
of the RBD gene. As a result, the pVAXrbd DNA vaccine was obtained.

4.3. In Vitro Investigation of Transgene Expression

Plasmid isolation and purification were carried out as described earlier [43]. Trans-
fection of HEK293T cells with plasmid pVAXrbd was performed by using Lipofectamine
3000 (Invitrogen, Waltham, MA, USA) according to the manufacturer’s instructions. Cells
transfected with plasmid pVAX were used as a negative control. The cells were seeded in
24-well plates at 1 × 107 cells per well and cultured in DMEM supplemented with 10%
FBS. On the day of transfection, the medium was replaced with a maintenance medium
containing 2% fetal calf serum. Two micrograms of plasmid DNA with Lipofectamine 3000
was added to the plate well, and the plate was incubated at 37 ◦C in 5% CO2 atmosphere.

Forty-eight h after transfection, HEK293T cells were harvested and total cell RNA was
isolated by using an RNA isolation kit (OOO Biolabmix, Novosibirsk, Russia) and reverse
transcription and PCR were carried out in a one-tube reaction by using an RT-PCR kit (OOO
Biolabmix, Russia) with RBD gene specific primers SE-F (5′-taatacgactcactataggctagcct-
3′) and SE-R (5′-aaaaaagcggccgctcattagttgaagttcacgcatttgttcttc-3′). Using a Verity 96-Well
Thermal Cycler (Applied Biosystems, Waltham, MA, USA), the samples were subjected to
the following thermal cycling: 30 min at 45 ◦C; 5 min at 95 ◦C; 30 cycles of 15 s at 95 ◦C, 20 s
at 58 ◦C, and 2 min at 72 ◦C; and a final elongation for 5 min at 72 ◦C. The PCR products
were analyzed on a 1% agarose gel.

Transfected HEK293T cells pellet and culture medium were used for Western blot
analysis to investigate RBD protein production. Cells were lysed by using a Soniprep
150 Plus homogenizer (MSE, Nuaillé, France). Ten microliters of cell lysates and the
culture medium in which the transfected cells were grown were loaded into the wells of
12% polyacrylamide gel, followed by electrophoresis and the transfer of proteins onto a
nitrocellulose membrane (Hybond-C Extra, Amersham Bioscience, Buckinghamshire, UK)
on a semi-dry transfer system (Bioclon, Moskow, Russia). The membrane was incubated
with bovine serum albumin for 1 h at 37 ◦C to block nonspecific protein binding. After
washing, the membrane was incubated with anti-SARS-CoV-2 hyperimmune mouse serum
diluted 1:5000. After several washes, the membrane was incubated with rabbit anti-
mouse IgG conjugated to alkaline phosphatase (Sigma, Burlington, MA, USA) for 1 h
at room temperature. The membrane was then incubated with 5-bromo-4-chloro-3′-indolyl
phosphate/nitro blue tetrazolium (BCIP/NBT) to visualize the protein bands.

https://www.thermofisher.com/ru/en/home/life-science/cloning/gene-synthesis/geneart-gene-synthesis/geneoptimizer.html
https://www.thermofisher.com/ru/en/home/life-science/cloning/gene-synthesis/geneart-gene-synthesis/geneoptimizer.html
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4.4. Purification of the Recombinant RBD Protein

To generate an RBD protein-producing cell line, CHO-K1 cells were transfected with
plasmid pVEALrbd by using Lipofectamine 3000 (Thermo Fisher Scientific) as described
earlier [34]. To integrate the vector expression cassette into the cell genome, plasmid pCMV
(CAT) T7-SB100 encoding SB100 transposase was added together with the target plasmid.
After 3 days, the selective antibiotic puromycin (InvivoGen, San Diego, CA, USA) was
added to the culture medium at a final concentration of 10 µg/mL; the pVEAL2 vector
contains the puromycin resistance gene. The selection of resistant clones lasted for 3 days.
The clones that showed the highest productivity were cultivated on roller installations, and
the culture medium was harvested.

Recombinant RBD was isolated from the culture medium of CHO-K1 cells. It was
centrifuged, filtered (0.22 µM), and subjected to two-stage chromatographic purification.
The first stage included metal-chelate chromatography on a Ni-NTA column (Qiagen,
Hilden, Düsseldorf, Germany) according to the manufacturer’s instructions. The next
purification was carried out by ion-exchange chromatography on columns connected in
series with cation-exchange (SP-Sepharose) and anion-exchange (Q-Sepharose) sorbents in
20 mM Tris-HCl (pH 8.2). The resulting protein was dialyzed against phosphate-buffered
saline (PBS) and subjected to sterilizing filtration through 0.22 µm filters. The protein
concentration was determined by using the Lowry method. The RBD protein preparation
was analyzed by denaturing electrophoresis in 15% PAGE.

4.5. Synthesis of PGS and PGS-RBD Conjugates

We obtained two conjugates based on PGS, namely with and without protein (RBD).
These conjugates were synthesized according to the same scheme with some differences. For
the first stage, dextran was activated as follows: 1 mol of dextran 40,000 (MP Biomedicals,
Irvine, CA, USA) was treated with 40 mol of sodium periodate for 60 min, after which time
the remaining oxidizing agent was removed from the activated dextran by gel filtration on
a column with Sephadex G-25 equilibrated with 50 mM carbonate buffer (pH 8.6). Next,
RBD protein was added to the activated dextran solution—1 mol of dextran and 1 mol of
protein—and the mixture was incubated for 2 h. Sodium borohydride was then added to
the mixture at the ratio of 80 mol of borohydride per 1 mol of dextran. A conjugate without
protein was obtained by excluding it from the mixture. After a 2 h incubation, the resulting
conjugates were purified from unreacted components by gel filtration on Sephadex G-25
equilibrated with PBS. The conjugate preparation was sterile filtered through 0.22 µm filters.

4.6. DNA Packaging into PGS and PGS-RBD Conjugates

To form the pVAXrbd-PGS complexes, plasmid pVAXrbd was mixed with the PGS
conjugate in a mass ratio of 1:10 [49]. To form particles of the combined CCV-RBD vaccine,
the plasmid was mixed with the PGS-RBD conjugate at the ratio of 100 µg of DNA for every
100 µg of protein, incubated for 5 min, and then an excess of PGS was added so that the
positive charge from the spermidine molecules was sufficient for electrostatic interaction
with the negatively charged nucleic acid conjugate and to ensure complete wrapping
around the plasmid (incubated for 1 h at 2–8 ◦C). The efficiency of the formation of the
pVAXrbd-PGS and CCV-RBD complexes was assessed by the change in the electrophoretic
mobility of DNA in a 1% agarose gel.

To evaluate the size and shape of the obtained particles, their suspensions were
applied to copper grids for electron microscopy, covered with a carbon-stabilized formvar
film. The preparations were stained with a 2% aqueous solution of phosphotungstic acid
and examined using a JEM-1400 electron microscope (JEOL, Akishima, Tokyo, Japan). A
Veleta digital camera (SIS, Schwentinental, Germany) was used to acquire images, and the
iTEM software package (SIS, Schwentinental, Germany) was used to analyze and process
the images.
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Gel filtration of CCV-RBD, pVAXrbd-PGS, and pVAXrbd was carried out on a 10 mL
Sepharose CL-6B column in PBS (pH 7.4). Samples of the studied preparations were applied
in equimolar amounts to the nucleotide material.

UV absorption spectra of CCV-RBD, pVAXrbd-PGS, and their individual components
(PGS, RBD, PGS-RBD, and plasmid pVAXrbd) were studied by using a Nanodrop One
spectrophotometer in the wavelength range of 220–300 nm (Thermo Fisher Scientific).

4.7. Biolayer Interferometry

The kinetics of vaccine antigen (CCV-RBD), the recombinant fragment of the SARS-
CoV-2 spike protein (RBD) versus the SARS-CoV-2 RBD-specific antibody iB14, was mea-
sured using an Octet RED96 instrument (ForteBio, Pall Life Sciences, NY, USA). All as-
says were performed with agitation set to 1000 rpm in ForteBio 1× kinetic buffer (PBS,
0.05% Tween, 0.05% NaN3). The final volume for all the solutions was 200 mkl per well. As-
says were performed at 30◦C in solid black 96-well plates (Greiner Bio-One, Kremsmünster,
Austria). The ligands’ (CCV-RBD and RBD) 1× kinetic buffer was loaded onto the surface
of Ni-NTA Biosensors (NTA) for 300 s. A 60 s biosensor baseline step was applied before
the analysis of the association of the antigen on the biosensor to the antibody in solution for
600 s. A twofold concentration gradient of iB14 antibody, starting at 144 nM for RBD and
CCV-RBD, was used in a titration series of eight. The dissociation of the interaction was
followed for 900 s. The correction of baseline drift was performed by subtracting the mean
value of shifts recorded for a sensor loaded with antigen, but not incubated with antibody,
and for a sensor without antigen but incubated with antibody. Octet data were processed
by ForteBio’s data acquisition software v.11.1.1.19. Experimental data were fitted with the
binding equations describing a 2:1 interaction (Global fitting, Bivalent Analyte) to achieve
optimal fitting.

4.8. Mouse Immunization

Work with animals was carried out in accordance with the “Guidelines for the Care and
Use of Laboratory Animals”. The protocols were approved by the Institutional Animal Care
and Use Committee (IACUC) at the State Research Center of Virology and Biotechnology
“Vector” (permission number: SRC VB “Vector”, accessed on 9 October 2020).

To assess the immunogenicity of the created constructs, female BALB/c mice weighing
16–18 g were used. The mice were divided into four groups of 8–9 animals each and
immunized as follows: CCV-RBD group, a combined vaccine containing 100 µg of DNA
and 100 µg of protein; pVAXrbd-PGS group, 100 µg of plasmid pVAXrbd encapsulated
in a PGS envelope; RBD group, 100 µg of recombinant RBD protein; intact group, no
immunization. Animals of the first three groups received preparations in a volume of
200 µL injected intramuscularly in the upper part of the hind limbs (100 µL per limb).

Mice were immunized twice with an interval of 3 weeks between immunizations.
Ten days after the second immunization, blood was taken from the animals to analyze the
humoral immune response, and the spleen was collected to analyze the cellular response.

Serum was separated from cellular elements by centrifugation (9000× g, 15 min),
heated for 30 min at 56 ◦C, and examined for the presence of antibodies that specifically
bind to the S and RBD proteins in ELISA. The samples were also analyzed for their neutral-
izing activity.

Spleens were sequentially minced on nylon filters for cells with pore diameters of
70 and 40 µm (BD Falcon, Franklin Lakes, NJ, USA). After lysis of erythrocytes with
lysis buffer (Sigma, Burlington, MA, USA), splenocytes were washed twice in complete
RPMI medium and placed in 1 mL of RPMI medium with 2 mM L-glutamine, 50 µg/mL
gentamicin, and 10% FBS (Thermo Fisher Scientific, USA). Cells were counted by using a
TC20 automatic cell counter (Bio-Rad, Hercules, CA, USA). Among the splenocytes, the
number of IFN-γ-producing cells was determined by using the ELISpot method.
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4.9. ELISA

Endpoint titers of IgG in sera from immunized mice were measured by ELISA. Recom-
binant eukaryotic RBD and S proteins were used as antigens, adsorbed to 96-well plates
(Corning, NY, USA) at a concentration of 1 µg/mL in 2 M urea overnight at 4 ◦C. The plates
were washed three times and incubated for 1.5 h at room temperature with 1% casein in PBS
with 0.05% Tween 20 to block nonspecific protein binding. Then, the plates were incubated
with threefold serial dilutions of mouse sera for 1 h at room temperature, and after washing
with PBS with Tween 20, rabbit anti-mouse IgG conjugated to horseradish peroxidase
(Sigma), diluted 1:3000, was added and incubated for 1 h at room temperature. After the
final wash, the plates were developed using by using the substrate TMB (Amresco, Radnor,
PA, USA). The reaction was stopped with 1 N HCl and analyzed at 450 nm on a Varioskan
LUX multimode microplate reader (Thermo Fisher Scientific, Waltham, MA, USA).

4.10. Virus-Neutralizing Assay

The neutralizing properties of antibodies of blood serum were determined by in-
hibition of the cytopathic effect (CPE) of the virus in cell culture in vitro, as described
previously [43]. Briefly, the SARS-CoV-2 nCoV/Victoria/1/2020 strain (100 TCID50), incu-
bated with serial dilutions of the studied sera, was plated on a 100% confluent monolayer
of Vero E6 cells. The plates were incubated for 4 days at 37 ◦C in the presence of 5%
CO2, and then the cells were stained with 0.2% gentian violet solution. The results were
recorded visually. The neutralizing activity of the sera of immunized animals was assessed
by the titer (dilution) of sera at which the protection of cells from the CPE of the virus was
recorded in 50% of the wells.

4.11. IFN-γ ELISpot

Analysis of the T cell immune response was performed by using the Mouse IFN-
gamma ELISpot Kit (R&D Systems, Minneapolis, MN, USA) according to the manufac-
turer’s instructions. Splenocytes were plated at 5 × 105 cells/well, and RPMI medium
with 10% FBS (the negative control) or a mixture of peptides (each at a concentration of
20 µg/mL) or Concanavalin A (the positive control) was added to them. The cells were
incubated for 20 h at 37 ◦C in the presence of 5% CO2. Subsequently, the plates were
washed and incubated with the primary antibody against IFN-γ. The plates were washed
again and then incubated with a secondary antibody conjugated to alkaline phosphatase.
Finally, the plates were washed again and then incubated with BCIP/NBT. The number of
IFN-γ-producing cells was counted by using an ELISpot reader (Carl Zeiss, Oberkochen,
Germany). The number of spot-forming units (SFU) per million cells was calculated by
subtracting the average value from the negative control wells.

Splenocytes isolated from immunized BALB/c mice were stimulated with a pool of
peptides from the SARS-CoV-2 S protein sequence, restricted by major histocompatibility
complex (MHC) class I (H2-Dd, H-2-Kd, and H-2-Ld) and MHC class II (H2-IAd and H2
-IEd) molecules of BALB/c mice (Table 1). The peptides were selected by using the IEDB
Analysis Resource instruments and synthesized by AtaGenix Laboratories (Wuhan, China);
the purity of the peptides was >80%.

4.12. ICS

ICS was performed on splenocytes isolated from immunized BALB/c mice. For the
assay, 2 × 106 cells were plated into the wells of 24-well culture plates (TPP, Trasadingen,
Switzerland) and stimulated with the peptide mixture indicated above. Each peptide was
added at a concentration of 20 µg/mL per well, and cells were incubated for 4 h at 37 ◦C in
the presence of 5% CO2 and for an additional 16 h with Brefeldin A (5 µg/mL, GolgiPlug
BD Biosciences). The next day, the cells were stained with anti-CD3 conjugated to Alexa
Fluor 700 (BD), anti-CD4 conjugated to BV786 (BD), and anti-CD8 conjugated to FITC
(BD); fixed with 1% paraformaldehyde in PBS; and permeabilized with 0.5% Tween 20 in
PBS according to the manufacture’s instructions. Then, the cells were stained to detect
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intracellular cytokines anti-IFN-γ APC (BD, USA). The samples were analyzed by using a
ZE5 flow cytometer (Bio-Rad) and the Everest software.

4.13. Software and Statistical Analysis

Data were analyzed by using GraphPad Prism 6.0 software. Differences between
groups were determined by using the nonparametric Mann–Whitney method; p < 0.05 was
considered statistically significant.

Images in Figure 2(A1,B1,G) and Figure 3A were created with biorender.com.
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