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Abstract Resistance mutations against one drug can elicit collateral sensitivity against other 
drugs. Multi- drug treatments exploiting such trade- offs can help slow down the evolution of resis-
tance. However, if mutations with diverse collateral effects are available, a treated population may 
evolve either collateral sensitivity or collateral resistance. How to design treatments robust to such 
uncertainty is unclear. We show that many resistance mutations in Escherichia coli against various 
antibiotics indeed have diverse collateral effects. We propose to characterize such diversity with a 
joint distribution of fitness effects (JDFE) and develop a theory for describing and predicting collat-
eral evolution based on simple statistics of the JDFE. We show how to robustly rank drug pairs to 
minimize the risk of collateral resistance and how to estimate JDFEs. In addition to practical applica-
tions, these results have implications for our understanding of evolution in variable environments.

Editor's evaluation
When selecting for one particular trait, it is not uncommon for other traits to change. This is due to 
pleiotropic mutations that affect multiple characters. Ardell and Kryazhimskiy develop a theoretical 
framework to predict adaptive trajectories observed in environments other than the one selection 
is operating in. The effects of adaptation across environments have important implication to anti-
biotic treatments, where resistance evolution to one antibiotic can alter the susceptibility to other 
antibiotics.

Introduction
The spread of resistance against most antibiotics and the difficulties in developing new ones has 
sparked considerable interest in using drug combinations and sequential drug treatments to treat 
bacterial infections, as well as cancers (Pál et al., 2015). Treatments where the drugs are chosen so 
that resistance against one of them causes the pathogen or cancer population to become sensitive to 
the other—a phenomenon known as collateral sensitivity—can eliminate the population before multi- 
drug resistance emerges (Pál et al., 2015; Pluchino et al., 2012).

The success of a multi- drug treatment hinges on knowing which drugs select for collateral sensi-
tivity against which other drugs. This information is obtained empirically by exposing bacterial and 
cancer- cell populations to drugs and observing the evolutionary outcomes (Roemhild et al., 2020; 
Jensen et al., 1997; Imamovic and Sommer, 2013; Lázár et al., 2018; Maltas and Wood, 2019; 
Batra et al., 2021; Sanz- García et al., 2020; Schenk et al., 2015; Lázár et al., 2013; Barbosa et al., 
2019; Hernando- Amado et al., 2020; Kim et al., 2014; Jahn et al., 2021; Kavanaugh et al., 2020; 
Laborda et al., 2021; Oz et al., 2014; Munck et al., 2014). Prior studies have largely focused on 
various empirical questions related to the evolution of collateral sensitivity and resistance, such as 
identifying their genetic basis (Lázár et al., 2014; Roemhild et al., 2020; Maltas and Wood, 2019; 
Hernando- Amado et al., 2020; Kavanaugh et al., 2020; Laborda et al., 2021), understanding how 
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collateral outcomes depend on treatment design (e.g. sequential versus combination) (Lázár et al., 
2014; Munck et al., 2014; Bergstrom et al., 2004; Batra et al., 2021; Sanz- García et al., 2020; 
Schenk et al., 2015; Lázár et al., 2013; Kim et al., 2014; Jahn et al., 2021), or testing whether collat-
eral sensitivity is an evolutionarily stable outcome (Barbosa et al., 2019). However, one important 
feature of these experimental studies has received little attention, namely, the fact that different 
experiments often produce collateral sensitivity profiles that are inconsistent with each other (e.g. 
Imamovic and Sommer, 2013; Oz et al., 2014; Barbosa et al., 2017; Maltas and Wood, 2019). 
Some inconsistencies can be explained by the fact that resistance mutations vary between bacterial 
strains, drug dosages, etc. (Mira et al., 2015; Barbosa et al., 2017; Das et al., 2020; Pinheiro et al., 
2021; Card et al., 2021; Gjini and Wood, 2021). However, wide variation in collateral outcomes is 
observed even between replicate populations (Oz et al., 2014; Barbosa et al., 2017; Maltas and 
Wood, 2019; Nichol et al., 2019). This variation suggests that bacteria and cancers have access to 
multiple resistance mutations with diverse collateral effects and that replicate populations accumulate 
different resistance mutations due to the intrinsic randomness of the evolutionary process (Jerison 
et al., 2020; Nichol et al., 2019). However, the diversity of collateral effects among resistance muta-
tions has rarely if ever been systematically measured. Moreover, few existing approaches for designing 
robust multi- drug treatments have modelled this mutational diversity explicitly within the population 
genetics context (Nichol et al., 2019; Maltas and Wood, 2019). Yet, a theory grounded in population 
genetics could help us understand how the expected collateral outcomes and the uncertainty around 
these expectations depend on evolutionary parameters and how these expectations and uncertainties 
change over time.

Here, we develop such a theory. Collateral sensitivity and resistance are specific examples of the 
more general evolutionary phenomenon, pleiotropy, which refers to any situation when one mutation 
affects multiple phenotypes (Wagner and Zhang, 2011; Paaby and Rockman, 2013). In case of drug 
resistance evolution, the direct effect of resistance mutations is to increase fitness in the presence of 

eLife digest Drugs known as antibiotics are the main treatment for most serious infections caused 
by bacteria. However, many bacteria are acquiring genetic mutations that make them resistant to the 
effects of one or more types of antibiotics, making them harder to eliminate.

One way to tackle drug- resistant bacteria is to develop new types of antibiotics; however, in recent 
years, the rate at which new antibiotics have become available has been dwindling. Using two or more 
existing drugs, one after another, can also be an effective way to eliminate resistant bacteria. The 
success of any such ‘multi- drug’ treatment lies in being able to predict whether mutations that make 
the bacteria resistant to one drug simultaneously make it sensitive to another, a phenomenon known 
as collateral sensitivity.

Different resistance mutations may have different collateral effects: some may increase the bacte-
ria’s sensitivity to the second drug, while others might make the bacteria more resistant. However, it 
is currently unclear how to design robust multi- drug treatments that take this diversity of collateral 
effects into account.

Here, Ardell and Kryazhimskiy used a concept called JDFE (short for the joint distribution of fitness 
effects) to describe the diversity of collateral effects in a population of bacteria exposed to a single 
drug. This information was then used to mathematically model how collateral effects evolved in the 
population over time.

Ardell and Kryazhimskiy showed that this approach can predict how likely a population is to 
become collaterally sensitive or collaterally resistant to a second antibiotic. Drug pairs can then be 
ranked according to the risk of collateral resistance emerging, so long as information on the variety of 
resistance mutations available to the bacteria are included in the model.

Each year, more than 700,000 people die from infections caused by bacteria that are resistant to 
one or more antibiotics. The findings of Ardell and Kryazhimskiy may eventually help clinicians design 
multi- drug treatments that effectively eliminate bacterial infections and help to prevent more bacteria 
from evolving resistance to antibiotics. However, to achieve this goal, more research is needed to fully 
understand the range collateral effects caused by resistance mutations.

https://doi.org/10.7554/eLife.73250
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one drug (the ‘home’ environment). In addition, they may also provide pleiotropic gains or losses in 
fitness in the presence of other drugs (the ‘non- home’ environments) leading to collateral resistance 
or sensitivity, respectively.

Classical theoretical work on pleiotropy has been done in the field of quantitative genetics (Lande 
and Arnold, 1983; Rose, 1982; Barton, 1990; Slatkin and Frank, 1990; Jones et al., 2003; Johnson 
and Barton, 2005). In these models, primarily developed to understand how polygenic traits respond 
to selection in sexual populations, pleiotropy manifests itself as a correlated temporal change in 
multiple traits in a given environment. The question of how new strongly beneficial mutations that 
accumulate in asexual populations evolving in one environment affect its fitness in future environ-
ments is outside of the scope of these models.

The pleiotropic consequences of adaptation have also been explored in various ‘fitness landscape’ 
models (e.g. Connallon and Clark, 2015; Martin and Lenormand, 2015; Harmand et  al., 2017; 
Wang and Dai, 2019; Maltas et al., 2021; Nichol et al., 2019; Tikhonov et al., 2020). In particular, 
Nichol et al., 2019 specifically addressed the problem of diversity of collateral resistance/sensitivity 
outcomes in the context of a combinatorially complete fitness landscapes of four mutations in the 
TEM β-lactamase gene. They found that different in silico populations adapting to the same antibiotic 
often arrive at different fitness peaks which results in different levels of collateral resistance/sensi-
tivity against other drugs. They observed qualitatively similar variability in the collateral outcomes 
among replicate populations of the bacterium Escherichia coli evolving in the presence of cefotaxime 
(CTX), although it is unclear whether different populations indeed arrived at different fitness peaks. 
In general, the fitness landscape approach helps us understand how evolutionary trajectories and 
outcomes depend on the global structure of the underlying fitness landscape. However, applying this 
approach in practice is challenging because the global structure of fitness landscapes is unknown and 
notoriously difficult to estimate, even in controlled laboratory conditions.

Here, we take a different approach which is agnostic with respect to the global structure of the 
fitness landscape. Instead, we assume only the knowledge of the so- called joint distribution of fitness 
effects (JDFE), that is, the probability that a new mutation has a certain pair of fitness effects in the 
home and non- home environments (Jerison et al., 2014; Martin and Lenormand, 2015; Bono et al., 
2017). The JDFE is a natural extension of the DFE, the distribution of fitness effects of new muta-
tions, often used in modeling evolution in a single environment (King, 1972; Ohta, 1987; Orr, 2003; 
Kassen and Bataillon, 2006; Eyre- Walker and Keightley, 2007; Martin and Lenormand, 2008; 
MacLean and Buckling, 2009; Kryazhimskiy et al., 2009; Levy et al., 2015). Like the DFE, the JDFE 
is a local property of the fitness landscape which means that it can be, at least in principle, estimated 
by using a variety of modern high- throughput techniques (e.g. Qian et al., 2012; van Opijnen et al., 
2009; Chevereau et al., 2015; Levy et al., 2015; Blundell et al., 2019; Aggeli et al., 2021). The 
downside of this approach is that the JDFE can change over time as the population traverses the 
fitness landscape (Good et al., 2017; Venkataram et al., 2020; Aggeli et al., 2021). However, in the 
context of collateral drug resistance and sensitivity, we are primarily interested in short time scales 
over which the JDFE can be reasonably expected to stay approximately constant.

The rest of the paper is structured as follows. First, we use previously published data to demon-
strate that E. coli has access to drug resistance mutations with diverse collateral effects. This implies 
that, rather than treating collateral effects as deterministic properties of drug pairs, we should think 
of them probabilistically, in terms of the respective JDFEs. We then show that a naive intuition about 
how the JDFE determines pleiotropic outcomes of evolution can sometimes fail, and a mathematical 
model is therefore required. We develop such a model, which reveals two key ‘pleiotropy statistics’ of 
the JDFE that determine the dynamics of fitness in the non- home condition. Our theory makes quan-
titative predictions in a variety of regimes if the population genetic parameters are known. However, 
we argue that in the case of drug resistance evolution the more important problem is to robustly order 
drug pairs in terms of their collateral sensitivity profiles even if the population genetic parameters are 
unknown. We develop a metric that allows us to do so. Finally, we provide some practical guidance for 
estimating the pleiotropy statistics of empirical JDFEs in the context of ranking drug pairs.

https://doi.org/10.7554/eLife.73250
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Results
Antibiotic resistance mutations in E. coli have diverse collateral effects
We begin by demonstrating that the JDFE is a useful concept for modeling the evolution of collateral 
antibiotic resistance and sensitivity. If all resistance mutations against a given drug had identical pleio-
tropic effects on the fitness of the organism in the presence of another drug, the dynamics of collateral 
resistance/sensitivity could be understood without the JDFE concept. On the other hand, if different 
resistance mutations have different pleiotropic fitness effects, predicting the collateral resistance/
sensitivity dynamics requires specifying the probabilities with which mutations with various home and 
non- home fitness effects arise in the population. The JDFE specifies these probabilities. Therefore, for 
the JDFE concept to be useful in the context of collateral resistance/sensitivity evolution, we need to 
show that resistance mutations against common drugs have diverse collateral effects in the presence 
of other drugs.

To our knowledge, no data sets are currently publicly available that would allow us to systematically 
explore the diversity of collateral effects among all resistance mutations against any one drug in any 
organism. Instead, we examined the fitness effects of 3883 gene knock- out mutations in the bacte-
rium Escherichia coli, measured in the presence of six antibiotics (Chevereau et al., 2015), as well as 
the fitness effects of 4997 point mutations in the TEM- 1 β-lactamase gene measured in the presence 
of two antibiotics (Stiffler et al., 2015).

For four out of six antibiotics used by Chevereau et al., 2015, we find between 12 (0.31 %) and 170 
(4.38%) knock- out mutations that provide some level of resistance against at least one of the antibi-
otics (false discovery rate (FDR) ∼25%; Figure 1, Figure 1—source data 1; see Materials and methods 
for details). Plotting on the  x - axis the fitness effect of each knock- out mutation in the presence of 
the drug assumed to be applied first (i.e. the home environment) against its effect in the presence of 
another drug assumed to be applied later (i.e. the non- home environment,  y - axis), we find mutations 
in all four quadrants of this plane, for all 12 ordered drug pairs (Figure 1, Figure 1—source data 1). 
Similarly, we find diverse collateral effects among mutations within a single gene (Figure 1—figure 
supplement 1; see Materials and methods for details).

Since both data sets represent subsets of all resistance mutations, we conclude that E. coli likely 
have access to resistance mutations with diverse pleiotropic effects, such that a fitness gain in the 
presence of any one drug can come either with a pleiotropic gain or a pleiotropic loss of fitness in 
the presence of other drugs. Therefore, the JDFE framework is suitable for modeling the evolution of 
collateral resistance/sensitivity. In the next section, we formally define a JDFE and probe our intuition 
for how its shape determines the fitness trajectories in the non- home environment.

JDFE determines the pleiotropic outcomes of adaptation
For any genotype  g  that finds itself in one (‘home’) environment and may in the future encounter 
another ‘non- home’ environment, we define the JDFE as the probability density  Φg

(
∆x,∆y

)
  that a 

new mutation that arises in this genotype has the selection coefficient  ∆x  in the home environment 
and the selection coefficient  ∆y  in the non- home environment (Jerison et al., 2014). For concrete-
ness, we define the fitness of a genotype as its Malthusian parameter (Crow and Kimura, 1972). 
So, if the home and non- home fitness of genotype  g  are  x  and  y , respectively, and if this genotype 
acquires a mutation with selection coefficients  ∆x  and  ∆y , its fitness becomes  x + ∆x  and  y + ∆y . This 
definition of the JDFE can, of course, be naturally extended to multiple non- home environments. In 
principle, the JDFE can vary from one genotype to another. However, to develop a basic intuition for 
how the JDFE determines pleiotropic outcomes, we assume that all genotypes have the same JDFE. 
We discuss a possible extension to epistatic JDFEs in Appendix 1.

The JDFE is a complex object. So, we first ask whether some simple and intuitive summary statistics 
of the JDFE may be sufficient to predict the dynamics of the non- home fitness of a population that 
is adapting in the home environment. Intuitively, if there is a trade- off between home and non- home 
fitness, non- home fitness should decline; if the opposite is true, non- home fitness should increase. 
Canonically, a trade- off occurs when any mutation that improves fitness in one environment decreases 
it in the other environment and vice versa (Roff and Fairbairn, 2007). Genotypes that experience 
such ‘hard’ trade- offs are at the Pareto front (Shoval et al., 2012; Li et al., 2019). For genotypes 
that are not at the Pareto front, some mutations that are beneficial in the home environment may be 
beneficial in the non- home environment and others may be deleterious. In this more general case, 

https://doi.org/10.7554/eLife.73250
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trade- offs are commonly quantified by the degree of negative correlation between the effects of 
mutations on fitness in the two environments (Roff and Fairbairn, 2007; Tikhonov et al., 2020). Thus, 
we might expect that evolution on negatively correlated JDFEs would lead to pleiotropic fitness losses 
and evolution on positively correlated JDFEs would lead to pleiotropic fitness gains.

Figure 1. Fitness effects of gene knock- out mutations in E. coli in the presence of four antibiotics. Data are from 
Chevereau et al., 2015. Each diagonal panel shows the distribution of fitness effects (DFE) of knock- out mutations 
in the presence of the corresponding antibiotic (equivalent to Figure 1C in Chevereau et al., 2015). Scale of the 

 y - axis in these panels is indicated inside on the right. The estimated measurement noise distributions are shown 
in red (see Materials and methods for details). Note that some noise distributions are vertically cut- off for visual 
convenience. The number of identified beneficial mutations (i.e. resistance mutations) and the expected number 
of false positives (in parenthesis) are shown in the bottom left corner. The list of identified resistance mutations is 
given in the Figure 1—source data 1. Off- diagonal panels show the fitness effects of knock- out mutations across 
pairs of drug environments. The  x - axis shows the fitness in the environment where selection would happen first 
(i.e., the ‘home’ environment). Each point corresponds to an individual knock- out mutation. Resistance mutations 
identified in the home environment are colored according to their collateral effects, as indicated in the legend. The 
numbers of mutations of each type are shown in the corresponding colors in the bottom left corner of each panel. 
TET: tetracycline; NIT: nitrofurantoin; MEC: mecillinam; CPR: ciprofloxacin.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. JDFEs of single point mutations in TEM- 1 β-lactamase gene in E. coli in the presence of 
cefotaxime and ampicillin.

Source data 1. P- values and calls of collateral effects of beneficial knock- out mutations in the Chevereau et al., 
2015 data (see Materials and methods for details).

Source data 2. Calls of collateral effects of mutations beneficial in CTX in the Stiffler et al., 2015 data (see 
Materials and methods for details).

https://doi.org/10.7554/eLife.73250
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To test this intuition, we generated a family of Gaussian JDFEs that varied, among other things, 
by their correlation structure (Figure 2; Materials and methods). We then simulated the evolution of 
an asexual population on these JDFEs using a standard Wright- Fisher model (Materials and methods) 
and tested whether the trade- off strength, measured by the JDFE’s correlation coefficient, predicts 
the dynamics of non- home fitness. Figure 2 shows that our naive expectation is incorrect. Positively 
correlated JDFEs sometimes lead to pleiotropic fitness losses (Figure 2D,I), and negatively correlated 
JDFEs sometimes lead to pleiotropic fitness gains (Figure 2B,G). Even if we calculate the correla-
tion coefficient only among mutations that are beneficial in the home environment, the pleiotropic 
outcomes still do not always conform to the naive expectation, as the sign of the correlation remains 
the same as for the full JDFEs in all these examples.

There are other properties of the JDFE that we might intuitively expect to be predictive of the 
pleiotropic outcomes of adaptation. For example, among the JDFEs considered in Figure  2, it is 
apparent that those with similar relative probability weights in the first and fourth quadrants produce 
similar pleiotropic outcomes. However, simulations with other JDFE shapes show that even distri-
butions that are similar according to this metric can also result in qualitatively different pleiotropic 
outcomes (Figure 2—figure supplement 1).

Overall, our simulations show that JDFEs with apparently similar shapes can produce qualita-
tively different trajectories of pleiotropic fitness changes (e.g. compare Figure 2A, F and B, G or 
Figure 2D,I and E,J). Conversely, JDFEs with apparently different shapes can result in rather similar 
pleiotropic outcomes (e.g. compare Figure 2B, G and E, J or Figure 2A,F and D,I). Thus, while the 
overall shape of the JDFE clearly determines the trajectory of pleiotropic fitness changes, it is not 
immediately obvious what features of its shape play the most important role, particularly if the JDFE 
is more complex than a multivariate Gaussian. In other words, even if we have perfect knowledge of 
the fitness effects of all mutations in multiple environments, converting this knowledge into a qualita-
tive prediction of the expected direction of pleiotropic fitness change (gain or loss) does not appear 
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Figure 2. Gaussian JDFEs and the resulting fitness trajectories. (A–E) Contour lines for five Gaussian JDFEs. ‘‘x’’ marks the mean. For all distributions, 
the standard deviation is 0.1 in both home- and non- home environments. The correlation coefficient ρ is shown in each panel. (F–J) Home and non- 
home fitness trajectories for the JDFEs shown in the corresponding panels above. Thick lines show the mean, ribbons show ±1 standard deviation 
estimated from 100 replicate simulations. Population size  N = 104 , mutation rate  U = 10−4  ( Ub = 4.6 × 10−5

 ).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. JDFEs with equal probability weights in the first and fourth quadrants and the resulting fitness trajectories.

https://doi.org/10.7554/eLife.73250
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straightforward. Therefore, we next turn to developing a population genetics model that would allow 
us to predict not only the direction of pleiotropic fitness change but also the expected rate of this 
change and the uncertainty around the expectation.

The population genetics of pleiotropy
To systematically investigate which properties of the JDFE determine the pleiotropic fitness changes 
in the non- home environment, we consider a population of size  N   that evolves on a JDFE in the 
‘strong selection weak mutation’ (SSWM) regime, also known as the ‘successional mutation’ regime 
(Orr, 2000; Desai and Fisher, 2007; Kryazhimskiy et al., 2009; Good and Desai, 2015).

We consider an arbitrary JDFE without epistasis, that is a situation when all genotypes have the 
same JDFE  Φ

(
∆x,∆y

)
 . We explore an extension to JDFEs with a simple form of epistasis in Appendix 

1. We assume that mutations arise at rate  U   per individual per generation. In the SSWM limit, a muta-
tion that arises in the population either instantaneously fixes or instantaneously dies out. Therefore, 
the population is essentially monomorphic at all times, such that at any time  t  we can characterize it by 
its current pair of fitness values  

(
Xt, Yt

)
 . If a new mutation with a pair of selection coefficients  

(
∆x,∆y

)
  

arises in the population at time  t , it fixes with probability  π
(
∆x

)
= 1−e−2∆x

1−e−2N∆x  (Kimura, 1962) in which 
case the population’s fitness transitions to a new pair of values  

(
Xt + ∆x, Yt + ∆y

)
 . If the mutation dies 

out, an event that occurs with probability  1 − π
(
∆x

)
 , the population’s fitness does not change. This 

model specifies a continuous- time two- dimensional Markov process.
In general, the dynamics of the probability density  p(x, y, t)  of observing the random vector  

(
Xt, Yt

)
  

at values  (x, y)  are governed by an integro- differential forward Kolmogorov equation, which is difficult 
to solve (Materials and methods). However, if most mutations that contribute to adaptation have small 
effects, these dynamics are well approximated by a diffusion equation which can be solved exactly 
(Materials and methods). Then  p(x, y, t)  is a normal distribution with mean vector

 

m(t)=


 x0

y0


 +


 r1

r2


 NUb t

  
(1)

and variance- covariance matrix

 

σ2(t) =


 D11 D12

D12 D22


NUb t,

  
(2)

where are  r1  and  r2 , given by Equation 7 and Equation 8 in Materials and methods, are the expected 
fitness effects in the home and non- home environments for a mutation fixed in the home environment, 
and  D11, D12 , and  D22 , given by Equation 9–Equation 11 in Materials and methods, are the second 
moments of this distribution. Here,  Ub = U

´∞
−∞ dη

´∞
0 dξΦ(ξ, η)  is the total rate of mutations benefi-

cial in the home environment, and  x0  and  y0  are the initial values of population’s fitness in the home 
and non- home environments.

Equation 1 and Equation 2 show that the distribution of population’s fitness at time  t  in the non- 
home environment is entirely determined by two parameters,  r2  and  D22 , which we call the ‘pleiotropy 
statistics’ of the JDFE. The expected rate of fitness change in the non- home environment depends on 
the pleiotropy statistic  r2 , which we refer to as the expected pleiotropic effect. Thus, evolution on a 
JDFE with a positive  r2  is expected to result in pleiotropic fitness gains and evolution on a JDFE with 
a negative  r2  is expected to result in pleiotropic fitness losses. Equation 2 shows that the variance 
around this expectation is determined by the pleiotropy variance statistic  D22 . Since both the expec-
tation and the variance change linearly with time (provided  r2 ̸= 0 ), the change in the non- home fitness 
in any replicate population will eventually have the same sign as  r2 , but the time scale of such conver-
gence depends on the ‘collateral resistance risk’ statistic  c = r2/

√
D22   (Materials and methods). This 

observation has important practical implications, and we return to it in the Section ‘Robust ranking of 
drug pairs’.

These theoretical results suggest a simple explanation for the somewhat counter- intuitive observa-
tions in Figure 2. We may intuitively believe that evolution on negatively correlated JDFEs should lead 
to fitness losses in the non- home environment because on such JDFEs mutations with largest fitness 
benefits in the home environment typically have negative pleiotropic effects. However, such mutations 

https://doi.org/10.7554/eLife.73250
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may be too rare to drive adaptation. At the same time, the more common mutations that do typically 
drive adaptation may have positive pleiotropic effects, in which case the population would on average 
gain non- home fitness, as in Figure 2B. Our theory shows that to predict the direction of non- home 
fitness change, the frequency of beneficial mutations with various pleiotropic effects and the strength 
of these effects need to be weighted by the likelihood that these mutations fix. The expected pleio-
tropic effect  r2  accomplishes this weighting.

We tested the validity of Equation 1 and Equation 2 by simulating evolution in the SSWM regime 
on 125 Gaussian JDFEs with various parameters (Materials and methods) and found excellent agree-
ment (Figure 3A and B). However, many microbes likely evolve in the ‘concurrent mutation’ regime, 
that is, when multiple beneficial mutations segregate in the population simultaneously (Desai and 
Fisher, 2007; Lang et al., 2013). As expected, our theory fails to quantitatively predict the pleiotropic 
fitness trajectories when  NUb > 1  (Figure 3—figure supplement 1). However, the expected rate of 
change of non- home fitness and its variances remain surprisingly well correlated with the pleiotropy 
statistics  r2  and  D22  across various JDFEs (Figure 3—figure supplement 1). In other words, we can 
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Figure 3. Pleiotropy statistics predict the properties of non- home fitness trajectories in simulations. Each point corresponds to an ensemble of replicate 
simulation runs with the same population genetic parameters on one of 125 Gaussian JDFEs (see Figure 3—source data 1 for the JDFE parameters). 
(A) Expected pleiotropic effect  r2  versus the scaled slope of the mean rate of non- home fitness change observed in SSWM simulations. (B) Pleiotropic 
variance  D22  versus the scaled rate of change in the variance in non- home fitness observed in SSWM simulations. (C, E, G) Expected pleiotropic effect 

 r
∗
2  versus the scaled slope of the mean rate of non- home fitness change observed in Wright- Fisher simulations. (D, F, H) Pleiotropic variance  D

∗
22  

versus the scaled rate of change in the variance in non- home fitness observed in Wright- Fisher simulations. (See Figure 3—figure supplement 1 for 
comparison between simulations and the unadjusted pleiotropy statistics  r2  and  D22 ) 1000 replicate simulations were carried out in the SSWM regime. 
All Wright- Fisher simulations were carried out with  U = 10−4  and variable  N  , 300 replicate simulations per data point (see Materials and methods for 
details). In all panels, the gray dashed line represents the identity (slope 1) line, and the solid line of the same color as the points is the linear regression 
for the displayed points ( R2  value is shown in each panel;  P < 2 × 10−16  for all regressions).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Parameters and summary statistics of simulation results for all Gaussian JDFEs used in Figure 3.

Figure supplement 1. Same as Figure 3C- H, but with  r2  and  D22  shown on the x- axis.
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still use these statistics to correctly predict whether a population would lose or gain fitness in the non- 
home environment and to order the non- home environments according to their expected pleiotropic 
fitness changes and variances. We will exploit the utility of such ranking in the next section.

We next sought to expand our theory to the concurrent mutation regime. A key characteristic of 
adaptation in this regime is that mutations whose fitness benefits in the home environment are below 
a certain ‘effective neutrality’ threshold are usually outcompeted by superior mutations and therefore 
fix with lower probabilities than predicted by Kimura’s formula (Schiffels et al., 2011; Good et al., 
2012). Good et al., 2012 provide an equation for calculating the fixation probability  π

∗(∆x)  for a 
mutation with home fitness benefit  ∆x  in the concurrent mutation regime (Equation (6) in Good et al., 
2012). Thus, by replacing  2ξ  (the approximate fixation probability in the SSWM regime) in Equation 
8 and Equation 11 with  π

∗(ξ) , we obtain the adjusted pleiotropy statistics  r
∗
2  and  D

∗
22  for the concur-

rent mutation regime (see Materials and methods for details). Note that in contrast to  r2  and  D22 , the 
adjusted statistics  r

∗
2  and  D

∗
22  depend on the population genetic parameters  N   and  Ub .

To test how well these statistics predict the dynamics of fitness in the non- home environment, we 
simulated evolution on the same 125 JDFEs using the full Wright- Fisher model with a range of popu-
lation genetic parameters that span the transition from the successional to the concurrent mutation 
regimes for 1,000 generations. We find that  r

∗
2  quantitatively predicts the expected rate of non- home 

fitness change, with a similar accuracy as Good et al., 2012 predict the rate of fitness change in the 
home environment, as long as  NUb > 1  (Figure 3C, E and G; compare with Figure 3—figure supple-
ment 1A,C,E).  D

∗
22  also predicts the empirically observed variance in non- home fitness trajectories 

much better than D22, although this relationship is more noisy than between mean fitness and  r
∗
2  

(Figure 3D, F and H; compare with Figure 3—figure supplement 1B,D,F). Some of this noise can be 
attributed to sampling, as we estimate both the mean and the variance from 300 replicate simulation 
runs, and the variance estimation is more noisy. Even in the absence of sampling noise however, we 
do not expect that  D

∗
22  would predict the non- home fitness variance perfectly because our theory 

does not account for the autocorrelation in the fitness trajectories that arise in the concurrent muta-
tion regime but not in the successive mutation regime (see Appendix D in Desai and Fisher, 2007). 
To our knowledge, a rigorous analytical calculation for ensemble variance in fitness even in the home 
environment is not yet available.

Overall, our theory allows us to quantitatively predict the dynamics of non- home fitness in a range 
of evolutionary regimes if the JDFE and the population genetic parameters  N   and  Ub  are known. 
However, neither the full JDFE nor the population genetic parameters will likely be known in most 
practical situations, such as designing a drug treatment for a cancer patient. In the next section, we 
address the question of how to robustly select drug pairs for a sequential treatment, assuming that 
the pleiotropy statistics  r2  and  D22  are known but the population genetic parameters are not. In the 
Section ‘Measuring JDFEs’, we provide some guidance on how the JDFE can be measured.

Robust ranking of drug pairs
Consider a hypothetical scenario where a drug treatment is being designed for a patient with a tumor 
or a bacterial infection. In selecting a drug, it is desirable to take into account not only the stan-
dard medical considerations, such as drug availability, toxicity, etc., but also the possibility that the 
treatment with this drug will fail due to the evolution of resistance. Therefore, it may be prudent to 
consider a list of drugs pairs (or higher- order combinations), ranked by the propensity of the first drug 
in the pair to elicit collateral resistance against the second drug in the pair. All else being equal, the 
drug deployed first should form a high- ranking pair with at least one other secondary drug. Then, if 
the treatment with the first drug fails, a second one can be deployed with a minimal risk of collateral 
resistance. Thus, we set out to develop a metric for ranking drug pairs according to this risk.

Clearly, any drug pair with a negative  r2  is preferable over any drug pair with a positive  r2 , since the 
evolution in the presence of the first drug in a pair with  r2 < 0  is expected to elicit collateral sensitivity 
against the second drug in the pair but the opposite is true for drug pairs with  r2 > 0 . It is also clear 
that among two drug pairs with negative  r2 , a pair with a more negative  r2  and lower  D22  is preferable 
over a pair with a less negative  r2  and higher  D22  because evolution in the presence of the first drug in 
the former pair will more reliably lead to stronger collateral sensitivity against the second drug in the 
pair. The difficulty is in how to compare and rank two drug pairs where one pair has a more negative  r2  
but higher  D22 . Our theory shows that the chance of emergence of collateral resistance monotonically 

https://doi.org/10.7554/eLife.73250
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increases with the collateral risk statistic  c = r2/
√

D22   (see Materials and methods). Thus, we propose 
to rank drug pairs by  c  from lowest (most negative and therefore most preferred) to highest (least 
negative or most positive and therefore least preferred).

To demonstrate the utility of such ranking, consider four hypothetical drug pairs with JDFEs shown 
in Figure 4A. The similarity between their shapes makes it difficult to predict a priori which one would 
have the lowest and highest probabilities of collateral resistance. Thus, we rank these JDFEs by their 
 c  statistic. To test whether this ranking is accurate with respect to the risk of collateral resistance, we 
simulate the evolution of a Wright- Fisher population in the presence of the first drug in each pair for 
600 generations and estimate the probability that the evolved population has a positive fitness in the 
presence of the second drug, that is, the probability that it becomes collaterally resistant (Figure 4B). 
We find that our a priori ranking corresponds perfectly to the ranking according to this probability, 
evidenced by the consistently higher collateral resistance risk for JDFEs with higher  c  (Figure 4B). 
Interestingly, the top ranked JDFE does not have the lowest expected pleiotropic effect  r2 . Neverthe-
less, the fact that the pleiotropic variance statistic  D22  for this JDFE is small ensures that the risk of 
collateral resistance evolution is the lowest. This 1–1 rank correlation holds more broadly, for all 125 
Gaussian JDFEs and all population genetic parameters considered in the previous section (Figure 4C) 
as well as for the empirical TEM β-lactamase JDFEs (Figure 4—figure supplement 1). Overall, we 
find that we can use the collateral risk statistic  c  to robustly rank drug pairs according to the risk of 
collateral resistance evolution, irrespective of the population genetic parameters.

Measuring JDFEs
So far, we assumed that the parameters of the JDFE on which the population evolves are known. In 
reality, they have to be estimated from data, which opens up at least two practically important ques-
tions. The first question is experimental. From what types of data can JDFEs be in principle estimated 
and how good are different types of data for this purpose? We can imagine, for example, that some 
properties of JDFEs can be estimated from genome sequencing data (Jerison et al., 2020) or from 
temporally resolved fitness trajectories (Bakerlee et al., 2021). Here, we focus on the most direct way 
of estimating JDFE parameters, from the measurements of the home and non- home fitness effects of 
individual mutations. The experimental challenge with this approach is to sample those mutations that 
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Figure 4. Robust ranking of drug pairs. (A) Four hypothetical JDFEs, ranked by their  c  statistic. For all four JDFEs, the mean and the standard deviation 
in the home environment are  −1 × 10−3  and  0.01 , respectively. The mean and the standard deviation in the non- home environment are  1 × 10−4  and 
 5.1 × 10−3  (rank 1),  2.6 × 10−3  and  7.5 × 10−3  (rank 2),  5.1 × 10−3  and  7.5 × 10−3  (rank 3),  7.5 × 10−3  and  0.01  (rank 4). Correlation coefficient 
for all four JDFEs is  −0.9 . (B) Collateral resistance risk over time, measured as the fraction of populations with positive mean fitness in the non- 
home environment. These fractions are estimated from 1000 replicate Wright- Fisher simulation runs with  N = 104 ,  U = 10−4  ( NUb = 0.46 ). Colors 
correspond to the JDFEs in panel A. Numbers indicate the -rank of each JDFE. (C) A priori  c - rank ( x - axis) versus the a posteriori rank ( y - axis) based on 
the risk of collateral resistance observed in simulations, for all 125 Gaussian JDFEs and all  NUb  values shown in Figure 3. Gray dashed line is the identity 
line.  R2  values are  0.94, 0.81  and  0.82  for  NUb = 0.46, 4.6  and  46 , respectively.  P < 10−15  for all regressions.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Ranking of AMP concentrations according to their risk of collateral resistance, based on Stiffler et al., 2015 data.
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will most likely contribute to adaptation in the home environment (see ‘Discussion’ for an extended 
discussion of this problem). Below, we propose two potential strategies for such sampling: the Luria- 
Delbrück (LD) method and the barcode lineage tracking (BLT) method. The second question is statis-
tical: how many mutants need to be sampled to reliably rank drug pairs according to the risk of 
collateral resistance? We evaluate both proposed methods with respect to this property.

The idea behind the LD method is to expose the population to a given drug at a concentration 
above the minimum inhibitory concentration (MIC), so that only resistant mutants survive (Pinheiro 
et al., 2021). This selection is usually done on agar plates, so that individual resistant mutants form 
colonies and can be isolated. The LD method is relatively easy to implement experimentally, but it is 
expected to work only if the drug concentration is high enough to kill almost all non- resistant cells. 
In reality, resistant mutants may be selected at concentrations much lower than MIC (Andersson and 
Hughes, 2014). Furthermore, mutants selected at different drug concentrations may be genetically 
and functionally distinct (Lindsey et al., 2013; Pinheiro et al., 2021) and therefore may have statisti-
cally different pleiotropic profiles. As a result, mutants sampled with the LD method may not be most 
relevant for predicting collateral evolution at low drug concentrations, and other sampling methods 
may be required for isolating weakly beneficial mutations.

Isolating individual weakly beneficial mutations is more difficult because by the time a mutant 
reaches a detectable frequency in the population it has accumulated multiple additional driver and 
passenger mutations (Lang et al., 2013; Nguyen Ba et al., 2019), all of which can potentially have 
collateral effects. One way to isolate many single beneficial mutations from experimental popula-
tions is by using the recently developed barcode lineage tracking (BLT) method (Levy et al., 2015; 
Venkataram et al., 2016). In a BLT experiment, each cell is initially tagged with a unique DNA barcode. 
As long as there is no recombination or other DNA exchange, any new mutation is permanently linked 
to one barcode. A new adaptive mutation causes the frequency of the linked barcode to grow, which 
can be detected by sequencing. By sampling many random mutants and genotyping them at the 
barcode locus, one can identify mutants from adapted lineages even if they are rare (Venkataram 
et al., 2016). As a result, BLT allows one to sample mutants soon after they acquire their first driver 
mutation, before acquiring secondary mutations.
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Figure 5. Sampling effects on the ranking of drug pairs. Both panels show correlations between the a priori 
estimated  c - rank ( x - axis) of the 125 Gaussian JDFEs and their a posteriori rank ( y - axis) based on the risk of 
collateral resistance observed in simulations (same data as the  y - axis in Figure 4C for  NUb = 0.46 ). (A) The  c  
statistic is estimated using the Luria- Delbrück method (see text for details). Cutoff for sampling mutations is  0.5σ , 
where σ is the standard deviation of the JDFE in the home environment. See Figure 5—figure supplement 1 for 
other cutoff values. (B) The  c  statistic is estimated using the barcode lineage tracking method with  N = 106  and 
 U = 10−4  (see text and Materials and methods for details).  P < 10−6  for all regressions.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Same as Figure 5A, but with different thresholds for sampling.
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To evaluate the quality of sampling based on the LD and BLT methods, we consider the following 
hypothetical experimental setup.  K   beneficial mutants are sampled from each home environment 
(with either one of the methods), and their home and non- home fitness  (Xi, Yi)  are measured for each 
mutant  i = 1, . . . , K  . Since we are ultimately interested in ranking drug pairs by their risk of collateral 
resistance, we estimate the collateral risk statistic  ̂c  from these fitness data for each drug pair and 
use  ̂c  to rank them (see Materials and methods for details). We compare such a priori ranking of 125 
hypothetical drug pairs with Gaussian JDFEs used in previous sections with their a posteriori ranking 
based on the risk of collateral resistance observed in simulations.

To model the LD sampling method on a given JDFE, we randomly sample  K   mutants whose home 
fitness exceeds a certain cutoff. To model a BLT experiment, we simulate evolution in the home envi-
ronment and randomly sample  K   beneficial mutants segregating at generation 250 (see Materials and 
methods for details). We find that the  ̂c - ranking estimated with either LD or BLT methods captures the 
a posteriori ranking surprisingly well, even when the number of sampled mutants is as low as 10 per 
drug pair (Figure 5). Given that the JDFEs with adjacent ranks differ in  c  by a median of only 0.65%, the 
strong correlations shown in Figure 5 suggest that even very similar JDFEs can be differentiated with 
moderate sample sizes. As expected, this correlation is further improved upon increased sampling, 
and it is insensitive to the specific home fitness threshold that we use in the LD method (Figure 5—
figure supplement 1). We conclude that estimating JDFE parameters is in principle feasible with a 
modest experimental effort, at least for the purpose of ranking drug pairs.

Discussion
We have shown that many resistance mutations against multiple drugs in E. coli exhibit a diversity of 
collateral effects. If this is true more generally, it implies that there is an unavoidable uncertainty in 
whether any given population would evolve collateral resistance or sensitivity, which could at least 
in part explain previously observed inconsistencies among experiments. We quantified the diversity 
of pleiotropic effects of mutations with a joint distribution of fitness effects (JDFE) and developed 
a population genetic theory for predicting the expected collateral outcomes of evolution and the 
uncertainty around these expectations. In the successional mutations regime, our theory shows that 
the average rate at which fitness in the non- home environment is gained or lost during adaptation to 
the home environment is determined by the pleiotropy statistic  r2  given by Equation 8. How strongly 
the non- home fitness in any individual population deviates from this ensemble average is determined 
by the pleiotropy variance statistic  D22  given by Equation 11. Importantly,  r2  and  D22  are properties 
of the JDFE alone, that is, they do not depend on the parameters of any specific population. In the 
concurrent mutations regime, the expected rate of non- home fitness gain or loss and the associated 
variance are reasonably well predicted by the adjusted pleiotropy statistics  r

∗
2  and  D

∗
22 . Unlike  r2  and 

 D22 , the adjusted statistics depend on the population size  N   and the rate of beneficial mutations  Ub .
To quantitatively predict the probability of evolution of collateral drug resistance in practice would 

require the knowledge of both the JDFE for the focal bacterial or cancer- cell population in the pres-
ence of the specific pair of drugs and its in vivo population genetic parameters. Since estimating the 
latter parameters is very difficult, it appears unlikely that we would be able to quantitatively predict 
the dynamics of collateral effects, even if JDFEs were known. A more realistic application of our theory 
is that it allows us to rank drug pairs according to the risk of collateral resistance even when the popu-
lation genetic parameters are unknown. Such robust ranking can be computed based on the collateral 
risk statistic  c = r2/

√
D22  , a property of the JDFE but not of the evolving population. Drug pairs with 

positive values of  c  have a higher chance of eliciting collateral resistance than collateral sensitivity and 
should be avoided; drug pairs with more negative values of  c  have a lower risk of collateral resistance 
evolution than those with less negative values.

We have validated our theory in silico, but how well it would work in vivo (in the clinic) or even in 
vitro (in the lab) is as of yet unclear. A direct way to validate the theory empirically would be to estimate 
JDFEs for a model organism, such as E. coli, in a number of drug pairs, rank these pairs according to 
our collateral rank statistic and then test this ranking by evolving replicate populations and measuring 
the empirical distributions of collateral resistance/sensitivity outcomes. To the best of our knowledge, 
the antibiotic resistance JDFEs among genome- wide mutations have not yet been measured. One 
could in principle use existing gene knock- out data, such as those obtained by Chevereau et al., 2015 
(Figure 1), or the data from deep mutational scanning experiments, such as those obtained by Stiffler 
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et al., 2015 (Figure 1—figure supplement 1), to estimate JDFEs. However, these experiments esti-
mate fitness only for certain subsets of mutations (gene knock- outs or point mutations within a single 
gene, respectively). Since resistance may arise via other types of mutations (Nichol et al., 2019), these 
data would give us at best an incomplete picture of actual JDFEs. Our results suggest that JDFEs can 
be reasonably well estimated by sampling resistance mutants at drug concentrations above MIC or by 
employing the barcode lineage tracking method.

Another obstacle is that, even though many researchers have experimentally evolved various 
microbes in the presence of drugs, most experiments have maintained too few replicate populations 
to accurately measure the variation in collateral outcomes of evolution. The study by Nichol et al., 
2019, with 60 replicates, is a notable exception. In short, a rigorous test of our theory requires new 
data on the shapes of whole- genome JDFEs as well as higher throughput evolution experiments.

What the most effective ways of measuring JDFEs are and whether it will be possible to measure 
JDFE in vivo are open questions. We speculate that the answers will depend on the shapes of the 
empirical JDFEs because some shapes may be more difficult to estimate than others. For example, if 
empirical JDFEs resemble multivariate Gaussian distributions, then we can learn all relevant param-
eters of such JDFE by sampling a handful of random mutants and measuring their fitness in relevant 
environments. One can also imagine more complex JDFEs where mutations beneficial in the home 
environment have a dramatically different distribution of non- home fitness effects than mutations 
that are deleterious or neutral in the home environment. In this case, very large samples of random 
mutations would be necessary to correctly predict the pleiotropic outcomes of evolution, so that 
methods that preferentially sample beneficial mutations may be required. We have considered two 
such methods, which are experimentally feasible. We have shown that both of them perform extremely 
well on Gaussian JDFEs in the sense that as few as 10 mutants per drug pair are sufficient to produce 
largely correct ranking of hypothetical drug pairs. However, it may be difficult to apply these methods 
in vivo, in which case JDFEs may have to be estimated in the lab, with selection pressures reproducing 
those in vivo as accurately as possible.

Our model relies on two important simplifications. It describes the evolution of an asexual popu-
lation where all resistance alleles arise from de novo mutations. In reality, some resistance alleles 
in bacteria may be transferred horizontally (Sun et  al., 2019). Understanding collateral resistance 
evolution in the presence of horizontal gene transfer events would require incorporating JDFE into 
other models of evolutionary dynamics (e.g. Neher et al., 2010). Another major simplification is in 
the assumption that the JDFE stays constant as the population adapts. In reality the JDFE will change 
over time because of the depletion of the pool of adaptive mutations and because of epistasis (Good 
et al., 2017; Venkataram et al., 2020). How JDFEs vary among genetic backgrounds is currently 
unknown. In Appendix 1, we have shown that our main results hold at least in the presence of a simple 
form of ‘global’ epistasis. Empirically measuring how JDFEs vary across genotypes and theoretically 
understanding how such variation affects the evolution of pleiotropic outcomes are important open 
questions.

While we were primarily motivated by the problem of evolution of collateral drug resistance 
and sensitivity, our theory is applicable more broadly. The shape of JDFE must play a crucial role in 
determining whether the population evolves toward a generalist or diversifies into multiple specialist 
ecotypes. Previous literature has viewed this question primarily through the lense of two alternative 
hypotheses: antagonistic pleiotropy and mutation accumulation (Visher and Boots, 2020). Antago-
nistic pleiotropy in its strictest sense means that the population is at the Pareto front with respect to 
the home and non- home fitness, such that any mutation beneficial in the home environment reduces 
the fitness in the non- home environment (Li et al., 2019). The shape of the Pareto front then deter-
mines whether selection would favor specialists or generalists (Levins, 1968; Visher and Boots, 
2020). Alternatively, a population can evolve to become a home- environment specialist even in the 
absence of trade- offs, simply by accumulating mutations that are neutral in the home environment 
but deleterious in the non- home environment (Kawecki, 1994). More recently, it has been recog-
nized that antagonistic pleiotropy and mutation accumulation are not discrete alternatives but rather 
extremes of a continuum of models (Bono et al., 2020; Jerison et al., 2014; Jerison et al., 2020). 
The JDFE provides a mathematical way to describe this continuum. For example, strict antagonistic 
pleiotropy can be modeled with a JDFE with zero probability weight in the first quadrant and a 
bulk of probability in the fourth quadrant. A mutation accumulation scenario can be modeled with 
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a ‘+’-like JDFE where all mutations beneficial in the home environment are neutral in the non- home 
environment (i.e. concentrated on the  x - axis) and all or most mutations neutral in the home environ-
ment (i.e. those on the  y - axis) are deleterious in the non- home environment. Our theory shows that 
in fact all JDFEs with negative r2 lead to loss of fitness in the non- home environment and therefore 
can potentially promote specialization. While our theory provides this insight, further work is needed 
to understand how JDFEs govern adaptation to variable environments. This future theoretical work, 
together with empirical inquiries into the shapes of JDFEs, will not only advance our ability to predict 
evolution in practical situations, such as drug resistance, but it will also help us better understand the 
origins of ecological diversity.

Materials and methods
Analysis of knock-out and deep mutational scanning data
Knock-out data
Chevereau et al., 2015 provide growth rate estimates for 3883 gene knock- out mutants of E. coli in 
the presence of six antibiotics. Our goal is to identify those knock- out mutations that provide resis-
tance against one drug and are also collaterally resistant or collaterally sensitive to another drug. 
However, it is unclear from these original data alone which mutations have statistically significant 
beneficial and deleterious effects because no measurement noise estimates are provided. To address 
this problem, we obtained replicate wild- type growth rate measurements in the presence of antibi-
otics from Guillaume Chevereau and Tobias Bollenbach (available at https://github.com/ardellsarah/ 
JDFE-project; copy archived at swh:1:rev:e91f2940681269511c6bb9fd4560ccd4a7c4d641, Ardell, 
2022). In this additional data set, the wild- type E. coli strain is measured on average 476 times in the 
presence of each drug. We estimate the wild- type growth rate  rWT  as the mean of these measure-
ments, and we obtain the selection coefficient for all knock- out mutants as  si = ri − rWT . We also 
obtain the noise distribution  Pnoise(s)  from the replicate wildtype measurements (shown in red in the 
diagonal panels in Figure 1). Modeling  Pnoise(s)  as normal distributions, we obtain the P- values for 
each mutation in the presence of each antibiotic.

We then call any knock- out mutant as resistant against a given drug if its selection coefficient in the 
presence of that drug exceeds a critical value  s+

α > 0 . We choose  s+
α  using the Benjamini- Hochberg 

procedure (Benjamini and Hochberg, 1995) so that the false discovery rate (FDR) among the iden-
tified resistant mutants is  α ≈ 0.25 . We could not find an  s+

α  for  α ≲ 0.25  for trimethoprim (TMP) and 
chloramphenicol (CHL), that is, there were not enough knock- out mutations with positive selection 
coefficients to reliably distinguish them from measurement errors.

We apply the same procedure to identify mutations that are collaterally resistant and collaterally 
sensitive against a second drug among all mutations that are resistant against the first drug, except 
we aim for FDR  ≲ 0.10 .

Deep mutational scanning data
Stiffler et al., 2015 provide estimates of relative fitness for 4997 point mutations in the TEM- 1 β-lac-
tamase gene in the presence of cefotaxime (CTX) and four concentrations of ampicillin (AMP). We 
estimate the selection coefficients from the reported relative fitness values by changing the logarithm 
from log10 to natural and dividing it by six, the estimated number of generations that occurred during 
the 2- hr experiment. The latter is based on the fact that Stiffler et al., 2015 chose AMP concentra-
tions which did not significantly alter the E. coli doubling time, which we assumed to be 20 minutes. 
We used the same number of generations for CTX.

Stiffler et al., 2015 report two replicate measurements per mutant in each concentration of AMP 
and one measurement per mutant in the presence of CTX. We consider CTX as the home environment 
and call all mutations with positive measured fitness effects as resistant against CTX. For each such 
mutation, we use two replicate measurements in each concentration of AMP to estimate its mean 
fitness effect and the 90% confidence interval around the mean, based on the normal distribution. We 
call any CTX resistant mutation with the entire confidence interval above (below) zero as collaterally 
resistant (sensitive) against AMP at that concentration. All remaining CTX resistant mutations are 
called collaterally neutral.

https://doi.org/10.7554/eLife.73250
https://github.com/ardellsarah/JDFE-project
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Theory
Successional mutations regime
We assume that an asexual population evolves according the Wright- Fisher model in the strong selec-
tion weak mutation (SSWM) limit (Orr, 2000; Kryazhimskiy et al., 2009; Good and Desai, 2015), also 
known as the ‘successional mutations’ regime (Desai and Fisher, 2007). In this regime, the population 
remains monomorphic until the arrival of a new mutation that is destined to fix. The waiting time for 
such new mutation is assumed to be much longer than the time it takes for the mutation to fix, that is, 
fixation happens almost instantaneously on this time scale, after which point the population is again 
monomorphic. If the per genome per generation rate of beneficial mutations is  Ub , their typical effect 
is  s  and the population size is  N  , the SSWM approximation holds when  NUb ≪ 1/ ln

(
Ns

)
  (Desai and 

Fisher, 2007).
We describe our population by a two- dimensional vector of random variables  (Xt, Yt) , where  Xt  and 

 Yt  are the population’s fitness (growth rate or the Malthusian parameter) in the home and non- home 
environments at generation  t , respectively. We assume that the fitness vector of the population at 
the initial time point is known and is  (x0, y0) . We are interested in characterizing the joint probability 
density  p(x, y, t) dx dy = Pr

{
Xt ∈ (x, x + dx), Yt ∈ (y, y + dy)

}
 .

We assume that all genotypes have the same JDFE  Φ
(
∆x,∆y

)
 , that is, there is no epistasis. In 

the exponential growth model, the selection coefficient of a mutation is the difference between the 
mutant and the ancestor growth rates in the home environment, that is,  ∆x . The probability of fixation 
of the mutant is given by Kimura’s formula, which we approximate by  2∆x  for  ∆x > 0  and zero other-
wise (Crow and Kimura, 1972).

If the total rate of mutations (per genome per generation) is  U  , the rate of mutations beneficial in 
the home environment is given by  Ub = Ufb  where  fb =

´∞
−∞ dη

´∞
0 dξ Φ(ξ, η)  is the fraction of muta-

tions beneficial in the home environment. Once such a mutation arises, its selection coefficients in 
the home and non- home environments are drawn from the JDFE of mutations beneficial in the home 
environment  Φb(∆x,∆y) = Φ(∆x,∆y)/fb . Then, in the SSWM limit, our population is described by a 
two- dimensional continuous- time continuous- space Markov chain with the transition rate from state 

 (x, y)  to state  (x′, y′)  given by

 

2NUb Q(x′, y′|x, y) =




2NUb (x′ − x)Φb
(
x′ − x, y′ − y

)
if x′ > x,

0 otherwise.  
(3)

The probability distribution  p(x, y, t)  satisfies the integro- differential forward Kolmogorov equation 
(Van Kampen, 1992)

 

1
NUb

∂p
∂t

(x, y, t) = 2
ˆ ∞

−∞
dη
ˆ ∞

−∞
dξ
(

p(ξ, η, t) Q(x, y|ξ, η) − p(x, y, t) Q(ξ, η|x, y)
)
  

(4)

with the initial condition

 p(x, y, 0) = δ(x − x0) δ(y − y0).  (5)

When beneficial mutations with large effects are sufficiently rare, Equation 4 can be approximated 
by the Fokker- Planck equation (Van Kampen, 1992)

 
1

NUb

∂p
∂t = −r1

∂p
∂x − r2

∂p
∂y + D11

2
∂2p
∂x2 + D12

∂2p
∂x∂y + D22

2
∂2p
∂y2 ,  (6)

where

 
r1 = 2

ˆ ∞

−∞
dη
ˆ ∞

0
dξ ξ2 Φb(ξ, η),

  
(7)

 
r2 = 2

ˆ ∞

−∞
dη
ˆ ∞

0
dξ η ξΦb(ξ, η)

  
(8)

are the expected fitness effects in the home and non- home environments for a mutation fixed in the 
home environment, and

https://doi.org/10.7554/eLife.73250
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D11 = 2

ˆ ∞

−∞
dη
ˆ ∞

0
dξ ξ3 Φb(ξ, η),

  
(9)

 
D12 = 2

ˆ ∞

−∞
dη
ˆ ∞

0
dξ η ξ2 Φb(ξ, η),

  
(10)

 
D22 = 2

ˆ ∞

−∞
dη
ˆ ∞

0
dξ η2 ξΦb(ξ, η)

  
(11)

are the second moments of the distribution of the fitness effects of mutations fixed in the home envi-
ronment. The solution to Equation 6 with the initial condition given by Equation 5 is a multi- variate 
normal distribution with the mean vector  m(t)  and the variance- covariance matrix  σ

2(t)  given by Equa-
tion 1 and Equation 2.

Concurrent mutations regime
The theory we developed so far for the successional mutations regime breaks down in the concurrent 
mutations regime, that is, when multiple adaptive mutations segregate in the population simulta-
neously (Desai and Fisher, 2007). The main effect of competition between segregating adaptive 
lineages is that many new beneficial mutations arise in relatively low- fitness genetic backgrounds and 
have almost no chance of surviving competition (Desai and Fisher, 2007; Schiffels et al., 2011; Good 
et al., 2012). As a result, the fixation probability of a beneficial mutation with selective effect  ∆x  in 
the home environment is no longer  2∆x . Instead, beneficial mutations that provide fitness benefits 
below a certain threshold  xc  behave as if they are effectively neutral (i.e. their fixation probability is 
close to zero), and most adaptation is driven by mutations with benefits above  xc , where  xc  depends 
on the population genetic parameters  N   and  Ub  as well as the shape of the distribution of fitness 
effects of beneficial mutations. Good et al., 2012 derived equations that allow us to calculate the 
effective fixation probability  π

∗(∆x; N, Ub)  of a beneficial mutation with the fitness benefit  ∆x  in the 
home environment in the concurrent mutation regime. Thus, to predict the average rate of non- home 
fitness change, we replace the SSWM fixation probability  2ξ  in Equation 8 with  π

∗(ξ; N, Ub)  and obtain 
the adjusted expected pleiotropic effect. We similarly obtain the adjusted pleiotropic variance statistic

 D∗
22(N, Ub) =

´∞
−∞ dη

´∞
0 dξ η2 π∗(ξ; N, Ub)Φb(ξ, η),  (13)

although as discussed in Section ‘The population genetics of pleiotropy’, we do not expect  D
∗
22  to 

capture all of the variation in non- home fitness trajectories.
To calculate  π

∗(∆x; N, Ub)  for the Gaussian JDFEs shown in Figure 2, we first substitute Equation 
(20) in Good et al., 2012 with  β = 2  into Equation 18, 19 in Good et al., 2012 and then numerically 
solve these equations for  xc  and  v  using the FindRoot numerical method in Mathematica. Note that 
all our Gaussian JDFEs share the same mean and variance in the home environment, so we need to 
solve these equations only once for each pair of  N   and  Ub  values. We then substitute the obtained 
values of  xc  and  v  into Equation (4) (9) in Good et al., 2012 and calculate  π∗  by a numerical integration 
of Equation (6) in Good et al., 2012 in R (available at https://github.com/ardellsarah/JDFE-project).

Ranking of drug pairs
According to Equation 1 and Equation 2, both the expected non- home fitness and its variance 
change linearly with time, so that at time  t  the mean is  Z = c

√
NUb t  standard deviations above  y0  (if 

 r2 > 0 ) or below  y0  (if  r2 < 0 ), where  c = r2/
√

D22  . In other words, if  r2 > 0 , the bulk of the non- home 
fitness distribution eventually shifts above  y0 , and if  r2 < 0 , it shifts below  y0 . All else being equal, a 
larger value of  |c|  implies faster rate of this shift.

The interpretation of these observations in terms of collateral resistance/sensitivity is that adap-
tation in the presence of the first drug will eventually lead to collateral resistance against the second 
drug if  r2 > 0  and to collateral sensitivity if  r2 < 0 . Furthermore, all else being equal, collateral sensi-
tivity evolves faster and the chance of evolving collateral resistance is smaller for drug pairs with more 
negative  c  (i.e. larger  |c| ). Thus, we use  c  to order drug pairs from the most preferred (those with the 
most negative values of  c ) to least preferred (those with least negative or positive values of  c ).

https://doi.org/10.7554/eLife.73250
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Generation of JDFEs
Gaussian JDFEs
The JDFEs in Figure 2 have the following parameters. Mean in the home environment: -0.05. Stan-
dard deviation in both home and non- home environments: 0.1. Means in the non- home environment: 
0.08, 0.145, 0, -0.145, -0.08 in panels A through E, respectively.

The JDFEs in Figure 3 have the following parameters. Mean and standard deviation in the home 
environment: -0.001 and 0.001, respectively. The non- home mean varies between 0.0001 and 0.01. 
The non- home standard deviation varies between 0.0001 and 0.01. The correlation between home 
and non- home fitness varies between -0.9 and 0.9, for a total of 125 JDFEs. All parameter values and 
the resulting pleiotropy statistics for these JDFEs are given in the Figure 3—source data 1.

JDFEs with equal probabilities of pleiotropically beneficial and deleterious 
mutations
All JDFEs in Figure  2—figure supplement 1 are mixtures of two two- dimensional uncorrelated 
Gaussian distributions, which have the following parameters. Mean in the home environment: 0.4. 
Standard deviation in both home and non- home environments: 0.1. Means in the non- home environ-
ment: 0.1 and -0.1 in panel A, 0.5 and -0.5 in panel B, 0.17 and -0.5 in panel C, and 0.5 and -0.17 in 
panel D.

Simulations
We carried out two types of simulations, SSWM model simulations and full Wright- Fisher model 
simulations.

Strong selection weak mutation
The SSWM simulations were carried out using the Gillespie algorithm (Gillespie, 1976), as follows. We 
initiate the populations with home and non- home fitness values  x0 = 0  and  y0 = 0 . At each iteration, 
we draw the waiting time until the appearance of the next beneficial mutation from the exponential 
distribution with the rate parameter  NUb  and advance the time by this amount. Then, we draw the 
selection coefficients  ∆x  and  ∆y  of this mutation in the home- and non- home environment, respec-
tively, from the JDFE (a multivariate normal distribution). With probability  2∆x , the mutation fixes in 
the population. If it does, the fitness of the population is updated accordingly.

Wright-Fisher model
We simulate evolution in the home environment according to the Wright- Fisher model with popula-
tion size  N   as follows. We initiate the whole population with a single genotype with fitness  x0 = 0  and 

 y0 = 0  in the home and non- home environments. Suppose that at generation  t , there are  K(t)  geno-
types, such that genotype    has home- and non- home fitness  Xi  and  Yi , respectively, and it is present 
at frequency  fi(t) > 0  in the population. We generate the genotype frequencies at generation  t + 1  in 
three steps. In the reproduction step, we draw random numbers  B

′
i(t + 1) ,  i = 1, ..., K(t)  from the multi-

nomial distribution with the number of trials  N   and success probabilities  pi(t) = fi(t) + fi(t)
(
Xi(t) − X(t)

)
,  

where  X(t) =
∑K(t)

i=1 Xi(t)fi(t)  is the mean fitness of the population in the home environment at gener-
ation  t . In the mutation step, we draw a random number  M   of new mutants from the Poisson distri-
bution with parameter  NU  , where  U   is the total per individual per generation mutation rate. We 
randomly determine the ‘parent’ genotypes in which each mutation occurs and turn the appropriate 
numbers of parent individuals into new mutants. We assume that each new mutation creates a new 
genotype and has fitness effects  ∆x  and  ∆y  in the home and non- home environments.  ∆x  and  ∆y  
are drawn randomly from the JDFE  Φ(∆x,∆y) . We obtain each mutants fitness by adding these values 
to the parent genotype’s home and non- home fitness values. In the final step, all genotypes that are 
represented by zero individuals are removed and we are left with  K(t + 1)  genotypes with  Bi(t + 1) > 0  
individuals,  i = 1, . . . , K(t + 1) . Then we set  fi(t + 1) = Bi(t + 1)/N  .

https://doi.org/10.7554/eLife.73250
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Sampling beneficial mutants from JDFEs and estimating the collateral 
risk statistic
We model the LD sampling method by randomly drawing mutants from the JDFE until the desired 
number  K   of mutants whose home fitness exceeds the focal threshold are sampled. We estimate the 
 c  statistic from the pairs of home and non- home fitness effects  Xi  and  Yi  of these  i = 1, . . . , K   sampled 
mutants. To do so, we first estimate  r2  and  D22  as  ̂r2 = 1/K

∑K
i=1 Xi Yi  and  D̂22 = 1/K

∑K
i=1 Xi Y2

i  . We 
then calculate  ̂c = r̂2/

√
D̂22  .

For the BLT sampling method, we simulate the Wright- Fisher model as described above for  N = 106  
and  U = 10−4  for 250 generations. At generation 250, we randomly sample existing beneficial mutants 
proportional to their frequency in the population without replacement (i.e. the same beneficial muta-
tion is sampled at most once). Sampling more than  ∼ 50  distinct beneficial mutants from a single 
population becomes difficult because there may simply be not enough such mutants or some of them 
may be at very low frequencies. Therefore, if the desired number of mutants to sample exceeds 50, 
we run multiple replicate simulations and sample a maximum of 100 distinct beneficial mutants per 
replicate until the desired number of mutants is reached. We then estimate the  c  statistics as with the 
LD method.
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Appendix 1

JDFE with global epistasis
Results in the main text were derived under the assumption that all genotypes have the same 
JDFE, i.e., in the absence of epistasis. In reality, JDFEs probably vary from one genotype to 
another, but how they vary is not yet well characterized. Recent studies have found that the fitness 
effects of many mutations available to a genotype in a given environment depend primarily on 
the fitness of that genotype in that environment (Khan et al., 2011; Chou et al., 2011; Wiser 
et al., 2013; Kryazhimskiy et al., 2014; Johnson et al., 2019; Wang et al., 2016; Aggeli et al., 
2021; Lukačišinová et al., 2020). This dependence is sometimes referred to as global or fitness- 
dependent epistasis (Kryazhimskiy et al., 2009; Kryazhimskiy et al., 2014; Reddy and Desai, 
2021; Husain and Murugan, 2020). Here, we ask whether our main results would hold if the 
pathogen population evolves on a JDFE with global epistasis.

Global epistasis can be modeled in our framework by assuming that the JDFE  Φg  of genotype  g  
depends only the fitness of this genotype in the home and non- home environments,  x(g) ,  y(g) , i.e. 

 Φg
(
∆x,∆y

)
= Φx(g),y(g)

(
∆x,∆y

)
 , which is a two- dimensional extension of the model considered by 

Kryazhimskiy et al., 2009. Thus, in the SSWM regime, the population can still be fully described 
by its current pair of fitness values in the home and non- home environments  (Xt, Yt) . The dynamics 
of the probability density  p(x, y, t)  are governed by the same Kolmogorov equation as in the non- 
epistatic case, which can still be approximated by a diffusion equation (Equation 6). However, 
while in the non- epistatic case the drift and diffusion coefficients of this equation, r1, r2, D11, D12 and 
D22 are constants, in the presence of global epistasis, they become functions of  x  and  y . Although 
this equation cannot be solved analytically in the general case, it can be solved numerically, 
provided that the functions  r1(x, y) ,  r2(x, y) ,  D11(x, y) ,  D12(x, y)  and  D22(x, y)  are known. Thus, in 
principle, our theory can predict the trajectories of non- home fitness in the presence of global 
epistasis.

To explore the implications of global epistasis for collateral drug resistance evolution, we 
consider the simplest scenario where the functional form of global epistasis (i.e., how  Φx,y  depends 
on  x  and  y ) is the same across different drugs. In this case, we would expect that the ranking of 
drug pairs according to the risk of collateral resistance would be the same for all genotypes. In 
particular, the drug pair whose risk of collateral resistance risk is the lowest for the wildtype should 
also be the pair with the lowest risk for the evolved genotypes.

To test this prediction, we model resistance evolution on Gaussian JDFEs whose mean 
vector and the correlation coefficient are fixed while the standard deviations and in the home 
and non- home environments decrease linearly with the fitness in the respective environment, 

 σh(x) = max{0,σh,0 − γhx}  and  σnh(y) = max{0,σnh,0 − γnhy} .
Appendix 1—figure 1A shows how one such JDFE changes along the expected evolutionary 

trajectory. The corresponding expected home and non- home fitness trajectories and their variance 
are shown in Appendix 1—figure 1B. Appendix 1—figure 1C shows how the probability (risk) 
of collateral resistance changes over time on four different JDFEs with global epistasis. For the 
ancestral strain (whose fitness we set by convention to  x = y = 0 ), these four JDFEs are identical 
to those shown in Figure 4A; as the populations evolve, JDFEs change as specified above with 

 γh = γnh = 0.5 . As expected, the ranking of these epistatic JDFEs according to the risk of collateral 
resistance stays constant over time and can be predicted from estimates of the  c  parameters for 
the ancestral strain.

To test this prediction, we model resistance evolution on Gaussian JDFEs whose mean 
vector and the correlation coefficient are fixed while the standard deviations and in the 
home and non- home environments decrease linearly with the fitness in the respective 
environment,  σh(x) = max{0,σh,0 − γhx}  and  σnh(y) = max{0,σnh,0 − γnhy} .Appendix 1—figure 
1A shows how one such JDFE changes along the expected evolutionary trajectory. The 
corresponding expected home and non- home fitness trajectories and their variance are 
shown in Appendix 1—figure 1B. Appendix 1—figure 1C shows how the probability (risk) of 
collateral resistance changes over time on four different JDFEs with global epistasis. For the 
ancestral strain (whose fitness we set by convention to  x = y = 0 ), these four JDFEs are identical 
to those shown in Figure 4A; as the populations evolve, JDFEs change as specified above 
with  γh = γnh = 0.5 . As expected, the ranking of these epistatic JDFEs according to the risk of 
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collateral resistance stays constant over time and can be predicted from estimates of the  c  
parameters for the ancestral strain.

To test this prediction, we model resistance evolution on Gaussian JDFEs whose mean 
vector and the correlation coefficient are fixed while the standard deviations and in the home 
and non- home environments decrease linearly with the fitness in the respective environment, 

 σh(x) = max{0,σh,0 − γhx}  and  σnh(y) = max{0,σnh,0 − γnhy} .Appendix 1—figure 1A shows how 
one such JDFE changes along the expected evolutionary trajectory. The corresponding expected 
home and non- home fitness trajectories and their variance are shown in Appendix 1—figure 1B. 
Appendix 1—figure 1C shows how the probability (risk) of collateral resistance changes over 
time on four different JDFEs with global epistasis. For the ancestral strain (whose fitness we set 
by convention to  x = y = 0 ), these four JDFEs are identical to those shown in Figure 4A; as the 
populations evolve, JDFEs change as specified above with  γh = γnh = 0.5 . As expected, the ranking 
of these epistatic JDFEs according to the risk of collateral resistance stays constant over time and 
can be predicted from estimates of the  c  parameters for the ancestral strain.
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Appendix 1—figure 1. Evolutionon JDFEs with global epistasis and the risk of collateral resistance. 
(A) Gaussian JDFE with global epistasis as it changes along the expected evolutionary trajectory 
shown in panel B. Parameters of the initial JDFE at  x = y = 0  are the same as for the ank 1 JDFE 
in Figure 4A;  γh = γnh = 0.5 . (B) Home and non- home fitness trajectories for the JDFE with global 
epistasis shown in panel A. Thick lines show the mean, ribbons show ±1 standard deviation estimated 
from 500 replicate simulations. Population size  N = 104 , mutation rate  U = 10−4 . Dashed vertical lines 
indicate the time points at which the JDFE snapshots in panel A are shown. (C) Probability of collateral 
resistance over time for four Gaussian JDFE with global epistasis. Parameters of the initial JDFEs at 

 x = y = 0  are the same as for the four JDFE in Figure 4A, and  γh = γnh = 0.5  for all of them.  N = 104 , 
mutation rate  U = 10−4 , 1500 replicate simulation runs per JDFE. Colored numbers indicate the 
predicted -rank of the initial JDFEs (same as in Figure 4A).
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