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Abstract: Many proteins contain a large number of NXS/T sequences (where X is any amino acid except proline) which are the potential 
sites of asparagine (N) linked glycosylation. However, the patterns of occurrence of these N-glycosylation sequons in related proteins 
or groups of proteins and their underlying causes have largely been unexplored. We computed the actual and probabilistic occurrence 
of NXS/T sequons in ABC protein superfamilies from eight diverse eukaryotic organisms. The ABC proteins contained significantly 
higher NXS/T sequon numbers compared to respective genome-wide average, but the sequon density was significantly lower owing to 
the increase in protein size and decrease in sequon specific amino acids. However, mammalian ABC proteins have significantly higher 
sequon density, and both serine and threonine containing sequons (NXS and NXT) have been positively selected—against the recent 
findings of only threonine specific Darwinian selection of sequons in proteins. The occurrence of sequons was positively correlated 
with the frequency of sequon specific amino acids and negatively correlated with proline and the NPS/T sequences. Further, the NPS/T 
sequences were significantly higher than expected in plant ABC proteins which have the lowest number of NXS/T sequons. Accord-
ingly, compared to overall proteins, N-glycosylation sequons in ABC protein superfamilies have a distinct pattern of occurrence, and 
the results are discussed in an evolutionary perspective.
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Introduction
Proteins are frequently modified by the attachment of 
sugars (glycans)—a process known as glycosylation—
which in turn affects a number of biological pro-
cesses.1–6 Based on the site of attachment, there can be 
two major types, namely, O-linked and N-linked gly-
cosylation. While the former occurs on the hydroxyl 
group of serine (S) or threonine (T) amino acids, which 
are usually present in abundance, N-glycosylation 
occurs only on the amide group of asparagine (N) 
present in the three amino acid motifs NXS/T (where 
X is any amino acid except proline, which is known 
to limit the N-glycosylation due to conformational 
hindrance).1,4,7–10 Although NXS/T sequons occur fre-
quently and not all sequons are N-glycosylated due to 
a variety of reasons including conformational limita-
tions,8–10 the NXS/T sequons are essential, but could 
be limited by probabilistic occurrence.11

For instance, in an ideal protein which contains 
20 types of amino acids in equal proportions, there 
is just a 0.00475 probability of obtaining a NXS/T 
sequon as against a 0.1 probability of observing a 
serine or threonine residue per amino acid. That is, 
it is over 21 times (0.1/0.00475) less likely to find an 
N-glycosylation sequon compared to an O-glycosylation 
site in a protein. This raises interesting questions. 
What is the number of N-glycosylation sequons found 
in a protein or groups of proteins? Do they follow the 
expected probability? Is there any trend in the occur-
rence of sequon numbers among proteins? What fac-
tors direct the evolution of such a pattern?

The prevalence of NXS/T sequons was previ-
ously studied in the sequence entries of Swiss-Prot 
database and based on the results it has been pre-
sumed that over two third of all proteins could be 
potential N-glycoproteins.1 In a recent study, Cui 
et al12 showed that N-glycosylation sequon numbers 
vary over four folds among phylogenetically diverse 
eukaryotes with N-glycan dependent quality con-
trol of the proteins. Further, a Darwinian selection 
for NXT (but not for NXS) sequons was observed 
in secreted proteins of eukaryotes and envelop pro-
teins of viruses. This is due to the fact that there is an 
increased conditional probability that asparagine and 
threonine occur in sequons rather than elsewhere in 
the protein sequence.12,13 However, it is not known, if 
a Darwinian selection may also be expected for NXS 
sequons in some proteins.

Our interest was to see the pattern of occurrence 
of N-glycosylation sequon numbers in closely related 
ATP Binding Cassette (ABC) proteins—which form 
a large group of proteins with important biologi-
cal functions.14 The majority of the members of this 
superfamily are transmembrane proteins and many 
(such as permeable glycoprotein and multidrug resis-
tance protein) are well known N-glycoproteins.15 
Further, many ABC proteins contain an abundance 
of NXS/T sequons. For example, mouse and human 
ABCA13 proteins contain 77 and 80 NXS/T sequons, 
respectively. On the other hand, many ABC proteins 
in plants (for example, Arabidopsis and rice) contain 
no NXS/T sequon at all. It is interesting to see such 
a large difference in the NXS/T sequon numbers in 
closely related proteins. Is this an expected pattern? 
What are the underlying causes for this distinction? 
We answer this question by making a comparative 
analysis of NXS/T sequons in ABC protein super-
families from eight diverse eukaryotic organisms and 
examine the factors which may affect the number of 
sequons in the proteins.

Materials and Methods
sequence acquisition
We used the ABC protein sequences from eight diverse 
eukaryotic organisms for which a near complete ABC 
protein inventory exists and sequences are available 
in the database. This includes two plant species—
Arabidopsis thaliana (Arath) and Oryza sativa (Rice),14 
two invertebrate species—Caenorhabditis elegans 
(Worm) and Drosophila melanogaster (Fly),16 two ver-
tebrate species—Mus musculus (Mouse) and Homo 
sapiens (Human),17 and two unicellular fungal/yeast 
species—Saccharomyces cerevisiae18 and Candida 
albicans,19 for which ABC protein lists can be found 
in the respective references. The mouse ABC protein 
sequences were collected from the database based on the 
human orthologs (http://nutrigene.4t.com/humanabc.
htm). The ABC protein sequences were obtained from 
Uniprot database (http://www.uniprot.org/). Further, 
all available protein entries for the said organisms were 
also retrieved from the database. These entries con-
tained both reviewed and un-reviewed sequences.

Frequency of nXs/T sequons
The number of NXS/T sequons (NXS and NXT, 
where X is any amino acid except proline) and 
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NPS/T sequences were counted programmatically 
in each protein sequence. The number of NXS/T per 
100 amino acids was considered as the density of the 
sequons. The percentage of N, P, S and T amino acids 
in the protein sequences were also enumerated from 
their respective frequency over the total frequency of 
amino acids.

Predicting nXs/T sequon number
By considering the protein sequence as a Markov 
chain,11 the probabilistic occurrence of NXS/T 
sequons may be computed from the transition of 
amino acid frequencies. For example, an ideal pro-
tein with 400 residues containing 20 types of amino 
acids in equal proportions has a total NXS/T prob-
ability of 0.00475 and therefore 1.9 predicted NXS/T 
sequon number. This is the product of two separate 
transitions form N to X and NX to S or T (20/400 * 
380/400 * 40/400). For example, the mouse ABCA1 
protein (P41233) is 2261 amino acids long and 
contains 23 NXS/T sequons (with just one known 
N-glycosylation at position 481). However, following 
the probabilistic calculation (104/2261 * 2151/2261 
* (179 + 114)/2261 * 2261 = 12.82) would give the 
mouse ABCA1 just 13 NXS/T sequons. The number 
of NPS/T sequences were also predicted using the 
above mentioned procedure.

Data analysis
All the sequence analyses and data handling were 
done using programs written in the Python program-
ming language (ver. 2.6, http://www.python.org/). The 

Biopython (http://biopython.org/) tools were also used 
in sequence parsing. Data visualization, graphing and 
statistical analyses were performed on a spreadsheet 
(Excel 2003/2007, Microsoft, USA). A regression 
line was fitted to the scatter plots of mean (±SEM) 
values and Pearson s correlation coefficient (r) was 
computed between two variables. Owing to the large 
sample size, parametric tests were favored and means 
were declared significant at p  0.05. A paired test 
was used to see if the difference between actual and 
predicted mean values were significant. A Z-test for 
two proportions or two sample means was used wher-
ever appropriate.

Results
Pattern of n-glycosylation sequon 
numbers in ABc proteins
The percentage of sequences with at least one NXS/T 
sequon and thus has the potential to be N-glycoprotein 
is significantly higher (Z test for two proportions: 
Z = 2.3 to 5.6, p  0.05) in ABC protein superfamilies 
compared to the proportion in the respective Uniprot 
entries (Table 1). The proportion for Uniprot entries 
varies from ∼59% (in rice) to ∼87% (in Candida) 
with an average of ∼75%. On the other hand, more 
than 95% (except rice, which has ∼84%) of ABC pro-
teins contain at least one NXS/T sequon.

Figure 1A shows the regression lines for scatter 
plots of actual versus predicted number of sequons 
in ABC proteins. Although the actual number of 
sequons in some ABC proteins are much higher or 
lower than the predicted number (above or below the 

Table 1. The number of total proteins and potential n-glycoproteins in ABc protein superfamilies and Uniprot entries.

Organism1 ABc superfamily Uniprot entries
Total proteins n-glycoproteins Total proteins n-glycoproteins

Arath 129 122 (94.6%)** 51598 38443 (74.5%)
rice 126 106 (84.1%)** 142664 84768 (59.4%)
Worm 54 52 (96.3%)** 24642 19589 (79.5%)
Fly 56 56 (100%)** 33204 25481 (76.7%)
Mouse 47 47 (100%)** 67871 49300 (72.6%)
human 49 49 (100%)** 100599 71282 (70.9%)
Saccharomyces 30 30 (100%)** 24025 19888 (82.8%)
Candida 28 28 (100%)* 14529 12580 (86.6%)
1Arabidopsis thaliana (Arath), Oryza sativa (rice), Caenorhabditis elegans (Worm), Drosophila melanogaster (Fly), Mus musculus (Mouse), Homo sapiens 
(human), Saccharomyces cerevisiae and Candida albicans.
**significantly different (Z test for two proportions, p  0.05) compared to Uniprot entries (*one tailed).
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two diagonally parallel lines—a margin of ±2 sequons 
was considered as the rounding error from predicted 
probability to predicted frequency for two separate 
sequons NXS and NXT), for example, as shown 
for rice ABC proteins (Fig. 1B), the overall trend 
line had a slope close to 1. Further, the actual ver-
sus predicted sequon numbers are highly correlated 
(r  0.9). However, many ABC proteins in mouse 

and human contain NXS/T sequons far higher than 
the predicted number (Fig. 1A and 1B) and therefore 
the overall trend line strongly deviates from the nor-
mal slope of 1.

A similar pattern may be observed even when 
NXS and NXT sequons are considered separately, as 
shown, for instance in rice and mouse (Fig. 2A and 
2B). For example, most sequences in rice ABC protein 
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Figure 1. The n-glycosylation sequons in ABc proteins. A) The regression lines for the scatter plots (not shown) of actual versus predicted number of 
nXs/T sequons in most ABc proteins has a slope close to 1. however, most of the ABc proteins in mouse and human have actual sequon numbers far 
greater than predicted number (two outlying points in mouse and human were removed to make the scale smaller). B) The scatter plots for actual versus 
predicted number of sequons in rice and mouse ABc proteins are elaborated.
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Figure 2. The nXs and nXT sequons in rice and mouse ABc proteins. A) The scatter plot of actual verses predicted number of nXs and nXT sequons 
in rice shows many sequences with actual sequons higher or lower than the predicted number (above or below the ±1 diagonally parallel lines), but the 
regression line has a slope close to 1. B) The scatter plot of sequons in mouse reveals that most sequences have actual sequon number much higher than 
the predicted number and therefore, the regression line has a slope far greater than 1. It may be noted that nXs sequons are also positively selected.
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Figure 3. The over-representation of sequons in ABc proteins. The proportion of sequences which have over-representation (actual sequon number is 
more than predicted sequon number plus two) of NXS/T sequons is significantly higher (Z test for two proportions: Z = 2.0 to 7.0, p  0.05) in majority of 
ABc protein superfamilies compared to the respective Uniprot entries (indicated by asterisks).

superfamily have NXS and NXT sequons close to 
prediction (bounded by ±1 diagonally parallel lines) 
with only a few sequences deviating (above or below), 
and therefore the trend line is very close to diagonal 
line (Fig. 2A). However, many ABC proteins in mouse 
have far higher than the predicted number of sequons—
both NXS and NXT (Fig. 2B). In fact, the percentage 
of sequences with NXS/T sequons much higher than 
expected (over-representation) is significantly higher 
in many ABC protein superfamilies compared to the 

respective Uniprot entries (Fig. 3). On the other hand, 
there is no statistical difference in the percentage of 
sequences with sequons under-represented.

The mean number of NXS/T sequons varies form 
∼4.0 (in rice) to ∼9.5 (in human) for ABC proteins 
and from ∼3.0 (in rice) to ∼5.2 (in Candida) for 
Uniprot entries. Further, the mean number of actual 
sequons is higher than the mean of predicted num-
ber of sequons (all points are above diagonal line in 
Fig. 4A). This difference is especially noticeable for 
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Figure 4. The sequon number and density. A) The mean number of NXS/T sequons is significantly higher (paired test, p  0.05) than the predicted number 
in most ABc protein superfamilies. Further, they are much higher than the mean number of sequons in the respective Uniprot entries. The mean number of 
nXs (ser-M) and nXT (Thr-M) sequons are shown only for mouse ABc proteins. B) The mean sequon density in ABc proteins is lower (except for mouse 
and human) compared to the respective Uniprot entries. green lines show the sequon density (0.475) in an ideal protein.
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Figure 5. The ABC sequences are longer and contain less sequon specific amino acids. A) compared to Uniprot entries, ABc proteins are nearly double 
in size (amino acid chain length) but number of sequons is not doubled (except mouse and human ABc proteins). Inclined line shows the number of 
sequons (1.9 per 400 amino acids) in an ideal protein. B) Sequon specific amino acids (N, S and T) and proline in ABC protein superfamilies are lower 
compared to the respective Uniprot entries.

ABC proteins and significant (paired test: t = 3.5 and 3.8, 
p  0.01) for mouse and human ABC proteins. A very 
similar trend can be observed even when NXS and 
NXT sequons are considered separately, for instance, 
as shown in Figure 4A for mouse ABC proteins.

sequon density of ABc proteins
In contrast to high mean sequon number, ABC proteins 
showed lower sequon density (number of sequons 
per 100 amino acids) compared to the respective 
Uniprot entries (Fig. 4B). The mean sequon density 
varied from 0.50 (in rice) to 0.76 (in Saccharomyces) 
for ABC proteins and from 0.60 (in rice) to 1.04 (in 
Candida) for Uniprot entries. Noticeably, mouse 
and human ABC proteins have higher sequon den-
sity (from all sequences concatenated) compared to 
the density in respective Uniprot entries (Fig. 4B). 
It may be noted that an ideal protein with 20 types 
of amino acids in equal proportion has an expected 
NXS/T sequon density of 0.475 (green lines in 
Fig. 4B). On the contrary, we can find more than one 
sequon for every hundred amino acids in a typical 
protein from Candida.

Compared to Uniprot entries which have an 
average protein size of ∼500 amino acids, the ABC 
proteins are nearly double in size (Fig. 5A). However, 
except for mouse and human, the number of sequons 

in ABC proteins is not doubled to keep pace with 
the increase in protein size. Further, the percentage 
of sequon specific amino acids—asparagine, serine 
and threonine, and proline are lower (below diagonal 
line) in most ABC protein superfamilies compared to 
the respective Uniprot entries (Fig. 5B).

sequon density is correlated  
to percentage of amino acids
The density of sequons is correlated with the amount 
of sequon specific amino acids—asparagine, serine 
and threonine. As shown in the Figure 6A, the sequon 
density in ABC proteins is positively correlated 
(r = 0.96) with percentage of asparagine and negatively 
correlated (r = -0.75) with percentage of proline. For 
example, rice ABC protein superfamily which is low 
in sequon density has lower percentage of asparagine 
and higher percentage of proline. This trend is quite 
reverse for Candida which has high sequon density. 
A very similar, but stronger correlation (r = 0.98 for 
asparagine and r = -0.84 for proline) has been found 
for sequons in Uniprot entries (Fig. 6B). It may be 
noted (Fig. 6A) that mouse and human ABC protein 
superfamilies are clear outliers—they have high sequon 
density in spite of low in asparagine and high in pro-
line content.
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role of nPs/T sequences
The mean number of NPS/T sequences in ABC pro-
teins varies from 0.11 (in Candida) to 0.55 (in Arabi-
dopsis) and is positively correlated (r = 0.52) with the 
percentage of proline (Fig. 7A). Further, the number 
of NXS/T sequons is negatively correlated (r = -0.55) 
with the mean number of NPS/T sequences in ABC 
proteins (Fig. 7B). It may be noted that the actual 
number of NPS/T sequences is significantly different 
(paired test, p  0.05) from predicted number in Ara-
bidopsis (0.55 versus 0.18), rice (0.42 versus 0.15) 
and Candida (0.11 versus 0.25) ABC protein super-
families (data not shown). While the actual number 
of NPS/T sequences is significantly higher in Arabi-
dopsis and rice, it is significantly lower in Candida. 
Further, it is the number of NPS sequence, but not 
NPT, which is significantly different (paired test: 
t = 5.1, p  0.05), for example, as shown for rice 
ABC proteins in Fig. 7C. The actual versus predicted 
number of NPS/T sequences are not significantly dif-
ferent in Uniprot entries.

Discussion
The NXS/T sequons (where X is any amino acid 
except proline) have attracted much attention in recent 
years due to their role as potential N-glycosylation 
sites.2,20,21 Several studies have focused on identifying 
the N-glycosylation sites either experimentally or 

by predicting the likelihood of NXS/T sequons to 
be N-glycosylated.10,22–25 However, studies are lim-
ited on the pattern of occurrence of N-glycosylation 
sequons in proteins or groups of proteins and in par-
ticular, the underlying causes responsible for such a 
pattern.12,13,26 In this study, we made a comparative 
analysis of N-glycosylation sequons in ABC protein 
superfamilies and the respective genome-wide pro-
teins from diverse eukaryotic organisms.

The ABC protein superfamilies contain significantly 
higher number of N-glycosylation sequons compared 
to the respective Uniprot entries. Many membrane 
N-glycoproteins and viral coat proteins were found 
to contain a high number of NXS/T sequons,12,13 and 
most ABC sequences have been predicted to contain 
transmembrane domains (sequence annotation results 
in http://www.uniprot.org/) and thus likely to be mem-
brane N-glycoproteins.1,15 On the other hand, the low 
mean number of sequons in Uniprot entries is compa-
rable to the mean sequon numbers found in Swiss-Prot 
entries by a previous study.1 Further, a significantly 
higher proportion (∼95%) of ABC sequences contains 
at least one NXS/T sequons compared to the respective 
Uniprot entries (∼75%). This is expected, as most ABC 
proteins are known transmembrane N-glycoproteins 
as against Uniprot entries which also contain cyto-
solic proteins and unlikely to be N-glycoproteins.1,12 
Overall, plants contain lowest number of sequons and 

Figure 6. The sequon density is correlated to amino acid frequencies. A) The sequon density is positively correlated (r = 0.96) to percentage of asparagine 
and negatively correlated (r = –0.75) to proline in ABc proteins. however, mouse and human ABc protein superfamilies are clear outliers. B) A similar 
correlation (r = 0.98 for asparagine and r = –0.84 for proline) exists for sequon density in Uniprot entries.
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unicellular fungi contain highest number of sequons. 
The observed pattern of sequon numbers could very 
well be correlated with the amount of sequon specific 
amino acids. For instance, unicellular fungi contain 
highest amount of asparagine, serine and threonine 
and so is the number of sequons. In a recent study, the 
AT content of nucleotide sequence has been positively 
correlated with the content of sequon specific asparagine 
residue and thus sequons, as asparagine is encoded 
by AT-rich codons.12 We did not quantify or correlate 
the AT content with asparagine, however, find a clear 
correlation between asparagine and sequon numbers.

In spite of high sequon numbers, ABC proteins 
showed low sequon density. This could be due to 
the fact that ABC proteins have longer chain length 
but the sequon specific amino acids are lower com-
pared to the respective Uniprot entries. However, the 
mouse and human ABC proteins contain high sequon 
numbers compared to the respective genome-wide 
average. Further, a significantly higher sequon number 
and density compared to the expected number clearly 
indicates positive selection for N-glycosylation 
sequons in these organisms. In a recent study,12 it has 
been shown that there is a Darwinian selection for 
NXT sequons in secreted and membrane glycopro-
teins of eukaryotes and viruses. This is due to the fact 
that the conditional probabilities of finding asparagine 

and threonine in NXT sequons are much higher than 
other locations in the protein sequence.12,13 Here, we 
showed that NXS sequons too have experienced a clear 
Darwinian selection, albeit to a slightly lesser extent 
compared to the NXT sequons, at least in mammalian 
ABC proteins. In fact, all ABC protein superfamilies 
contain a large number of sequences with NXT and 
NXS sequons higher than predicted number, indica-
tion a selective advantage of N-glycosylation sequons 
in these proteins or groups of proteins.

The presence of proline in or around NXS/T 
sequences was known to obstruct the N-glycosylation 
due to conformational hindrance.1,9,10 Consequently, 
the NPS/T sequence may be used as one of the partial 
mechanisms to modulate the number of sequons in a 
protein during the evolution. Here, we found a positive 
correlation between NPS/T sequences and proline, 
and a negative correlation between NXS/T sequons 
and NPS/T in ABC proteins. Further, the observed 
number of NPS/T sequences (with a clear bias for 
NPS) is shown to be significantly higher in ABC pro-
tein superfamilies with low sequon numbers.

In conclusion, we showed a distinct pattern in the 
occurrence of N-glycosylation sequon numbers in 
ABC proteins from eight diverse eukaryotic organ-
isms. The high sequon number was correlated with the 
content of sequon specific amino acids. Proline and 

Figure 7. The role of nPs/T sequences. A) The number of nPs/T sequences is positively correlated (r = 0.52) with the percentage of proline. B) The num-
ber of nXs/T sequons is negatively correlated (r = –0.55) with nPs/T sequences. c) The actual number of NPS/T sequences is significantly higher than 
predicted number, for example, in rice which has low sequon number, but not in mouse. Further, this difference is significant (paired test: t = 5.1, p  0.01) 
only for nPs sequence and not for nPT sequence.
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NPS sequence may have a partial mechanistic role in 
modulating sequon numbers. Finally, a clear Darwin-
ian selection for NXS sequons was also observed in 
ABC proteins.
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