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Abstract

One of the most prominent immunological changes during human aging is the alter-

ation in CD8 T‐cell subset distribution, predominated by a loss of naïve CD8 T cells.

The molecular mechanisms that contribute to the loss of naïve CD8 T‐cells during

aging remain unclear. Considering that many CD8 T‐cell functions are influenced by

microRNAs (miRNAs), we explored miRNA expression profiling to identify novel dys-

functions that contribute to naïve CD8 T‐cell loss during aging. Here, we describe

age‐dependent miRNA expression changes in naïve, central memory, and effector

memory CD8 T‐cell subsets. Changes in old naïve CD8 T‐cells partially resembled

those driven by an underlying shift in cellular differentiation toward a young central

memory phenotype. Pathways enriched for targets of age‐dependent miRNAs

included FOXO1, NF‐κB, and PI3K‐AKT signaling. Transcriptome analysis of old

naïve CD8 T‐cells yielded corresponding patterns that correlated to those seen with

reduced FOXO1 or altered NF‐κB activities. Of particular interest, IL‐7R expression,

controlled by FOXO1 signaling, declines on naïve CD8 T cells with age and directly

correlates with the frequencies of naïve CD8 T cells. Thus, age‐associated changes

in miRNA networks may ultimately contribute to the failure in CD8 T‐cell homeosta-

sis exemplified by the loss in naïve cells.
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1 | INTRODUCTION

Human aging is commonly characterized by increased susceptibility

to infections (e.g., influenza, Streptococcus pneumonia), which account

for 2.6% of deaths in adults 65 years or older in the U.S. This age‐
related susceptibility to infections has been linked with the reduced

ability of the aging immune system to mount effective adaptive

immune responses, which includes impaired T‐cell responses to viral

pathogens and vaccination (Goronzy & Weyand, 2017; Nikolich‐

Zugich, 2018). The CD8 T‐cell compartment is particularly affected

by age, with a striking and highly reproducible decline in the number

of naïve CD8 T cells (Czesnikiewicz‐Guzik et al., 2008; Wertheimer

et al., 2014). The naïve CD8 T‐cell compartment from older individu-

als not only decreases in numbers but also undergoes significant

repertoire contraction (Qi et al., 2014) and both transcriptionally and

epigenetically displays more memory‐like characteristics than that of

young adults (Moskowitz et al., 2017; Ucar et al., 2017).
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Previous studies have identified miRNAs as important regulators

of effector CD8 T‐cell responses and of memory differentiation (Wu

et al., 2012; Zhang & Bevan, 2010). Indeed, global knockouts of miR-

NAs caused by deletions in the miRNA‐processing pathway affect

both effector function and proliferative capacity of CD8 T‐cells after

activation (Trifari et al., 2013; Zhang & Bevan, 2010). Targeted

approaches have also linked specific miRNAs with CD8 T‐cell transi-
tion from effector to memory phenotype (Khan, Penny, Yuzefpolskiy,

Sarkar, & Kalia, 2013; Smith, Wissink, Grimson, & Rudd, 2015), with

the ability of CD8 T cells to clear viral infections (Wang et al., 2013),

with the accumulation of terminally differentiated effector memory

CD8 T cells (Brunner et al., 2012) and with dysfunctional T‐cell
receptor signaling in the elderly (Li et al., 2012). During early devel-

opment, miRNA expression changes in neonatal CD8 T‐cells associ-

ate with inability of neonatal mice to develop memory T cells

(Wissink, Smith, Spektor, Rudd, & Grimson, 2015). Moreover, multi-

ple age‐associated miRNA differences have been found in terminally

differentiated effector CD8 T‐cells from humans (Hackl et al., 2010;

Teteloshvili et al., 2015). However, whether naïve CD8 T‐cell subsets
display altered miRNA expression during human aging and whether

age‐associated miRNAs influence the functionality of these CD8 T

cells has not been investigated.

In this study, we examined the age‐associated heterogeneity of

miRNA expression in highly purified naïve, central memory, and

effector memory CD8 T‐cell subsets and the functional outcomes of

these changes in the naïve CD8 T‐cell compartment. We identified

multiple subset‐specific miRNA expression changes with age. Nota-

bly, age‐dependent miRNA alterations in the naïve CD8 T‐cell com-

partment partially reflected that of cellular differentiation toward a

central memory phenotype. Moreover, global network analysis of

these age‐dependent miRNA changes in naïve CD8 T‐cells implicated

a potential role for the FOXO1 signaling pathway in defective naïve

CD8 T‐cell homeostasis during human aging.

2 | RESULTS

2.1 | Age‐dependent alterations in miRNA
expression across CD8 T‐cell subsets

We initially addressed whether aging caused miRNA changes in

naïve and memory CD8 T‐cell subsets in a cohort of young

(<30 years, n = 15) and older (≥65 years, n = 9) adults. The median

age of the young cohort was 21 years (range: 16–28). The median

age of the older cohort was 70 years (range: 65–82). There was no

statistical difference in the distribution of gender (p = 0.403)

between the two cohorts (gender: 33% female in young and 56%

female in older). As expected, there was a trend for higher CMV

positivity in the older cohort (p = 0.09; 27% CMV positive in young

vs. 67% in old).

As miRNA studies on highly purified aged CD8 T‐cell subsets are

limited, we sorted naïve, central memory, and effector memory sub-

sets from peripheral blood of these healthy adults (Figure 1a). Con-

sistent with previous studies, we found reduced frequencies of naïve

CD8 T cells and increased frequencies of the memory CD8 popula-

tions in older individuals (Figure 1b). Equal numbers of naïve and

memory cells were simultaneously screened for expression of 34

preselected, immune‐related miRNAs by multiplex microfluidic qPCR.

We then compared miRNA expression levels between the three cell

subsets in young and older individuals. miRNA expression levels rela-

tive to RNU48 are listed in Supporting Information Table S1. We

found age‐dependent miRNA differences in all three subsets (Fig-

ure 1c). Notably, most of the miRNA differences were unique to the

individual subset, with a majority of these age‐dependent miRNA

changes found within the naïve compartment (Figure 1d). One out

of the 12 age‐dependent changes was found in all three subsets; this

change being a reduction of miR‐181a in older individuals. miRNAs

specific to naïve CD8 T‐cells included miR‐146a, miR‐155, miR‐142,
and miR‐7. miR‐146a (increased) and let‐7f (decreased) were the

most significantly altered miRNAs in the naïve population (Figure 1e).

miR‐155 and miR‐7 were both expressed close to the level of detec-

tion and were not detected in some individuals giving the appear-

ance of a bimodal distribution. Naïve and CM CD8 compartments

shared a significant decrease in let‐7f expression with age. CM and

EM compartments shared increased miR‐125a expression. Naïve and

EM compartments shared no unique age‐related miRNA changes.

Thus, we identified multiple miRNA expression changes in CD8 T

cells that are subset‐ and age‐dependent.

2.2 | CMV status does not affect miRNA
expression in CD8 T‐cell subsets

Many molecular and cellular changes in CD8 T cells during aging

have been linked with CMV infection. In our cohort, 26.7% (4 out of

15) of young donors and 66.7% (6 out of 9) of old donors had a pos-

itive CMV serology. Therefore, we investigated whether underlying

CMV infection influenced miRNA expression in CD8 T‐cell subsets
and contributed to age‐dependent miRNA changes. However, no sig-

nificant differences in miRNA expression were found between CMV‐
negative and CMV‐positive individuals in the naïve and effector

memory compartments (Figure 2a). The central memory compart-

ment showed slightly decreased miR‐16 expression in CMV‐positive
individuals, but this miRNA did not overlap with differences

observed in aging (Figure 2b). When further separated by age and

CMV status, we again find no differences in miRNA expression,

including miR‐146a, let‐7f, and miR‐181a in naïve CD8 T cells (Fig-

ure 2c). Effector memory cells also showed little miRNA differences

with CMV and age separation, including miR‐125a and miR‐93 that

significantly change with age in EM populations (Figure 2d).

Although these analyses have small sample numbers, power was suf-

ficient to detect differences of about two standard deviations (SD).

Specifically, for comparing 4 young CMV+ with 10 young CMV−,

we have 80% power for detecting a difference of 1.86 SD based on

two‐sided t test. Similarly, for comparing three old CMV− with six

old CMV+, we have 80% power for detecting a difference of 2.38

SD. One young donor was removed from the analysis, as there was

no CMV status available. Overall, these data suggest that CMV
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infection does not significantly influence age‐dependent miRNA

changes in naïve, central memory, or effector memory CD8 T‐cell
subsets.

2.3 | Detection of differentiation‐dependent miRNA
signature in CD8 T‐cells

One possible driver of age‐dependent changes is cellular differentia-

tion. To determine differentiation‐driven miRNA changes, we first

analyzed miRNA differences between naïve and memory populations

in young adults. Analysis of our select panel of miRNAs identified

multiple miRNA expression changes with differentiation (13 miRNAs,

32.5%), with a majority of miRNAs having increased expression in

the memory populations (Figure 3a). Central and effector memory

populations displayed no distinct miRNA expression differences.

Comparing the expression differences between naïve and memory

populations in young adults, we identified a group of nine miRNAs

commonly changed during differentiation to central as well as effec-

tor memory cells; we termed these miRNAs as core memory miRNAs

(Figure 3b). Core memory miRNAs included miR‐120a, miR‐92a, and

miR‐146b, which are down‐regulated with differentiation, and miR‐
16, miR‐21, miR‐29b, miR‐146a, miR‐155, and miR‐301, which are

up‐regulated with differentiation, albeit at different levels of expres-

sion (Figure 3c). Previous studies on miRNA profiles during CD8

T‐cell differentiation also identified that miR‐21, miR‐146a, and miR‐
155 increased in the memory population with a coinciding decrease

in miR‐92 and miR‐146b in humans (Salaun et al., 2011), suggesting

these miRNAs are highly robust markers of human naïve vs. memory

CD8 T cells.

2.4 | Partial differentiation of aged naïve CD8
T‐cells influences miRNA expression

We next investigated the relationship between the six age‐depen-
dent miRNAs in naïve CD8 T cells (miR‐146a, miR‐155, miR‐181a,
miR‐142, miR‐7, and let‐7f) and their expression during cellular dif-

ferentiation, utilizing principal component analysis (PCA; Figure 4a).

We found that PC1 (32.9% of variation in dataset) was driven by

age‐dependent changes, seen by differences in expression between

young and old (Young Na vs. Old Na [p = 0.007]; Young CM vs. Old
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F IGURE 1 Age‐dependent miRNA
expression changes in CD8 T‐cell subsets.
(a) Cell sorting strategy for naïve (Na),
central memory (CM), and effector memory
(EM) subsets pregated on single
lymphocytes by forward and side scatter.
(b) Frequencies of naïve, CM, and EM
subsets within the CD8 compartment of
young (n = 12) and older (n = 6) cohort. (c)
Volcano plots of miRNA expression
differences between young (Y, <30 years,
n = 15) and old (O, ≥65 years, n = 9) CD8
T‐cell subsets. Upper right quadrant
indicates miRNAs that are increased in
older individuals. (d) Overlap between age‐
dependent miRNA changes from each CD8
T‐cell subset. (e) Expression of age‐
dependent miRNA changes in naïve, CM,
and EM CD8 T‐cell subsets by age. p‐
Values were determined using Mann–
Whitney test (*p < 0.05, **p < 0.01)
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CM [p = 0.03]) but not between cell subsets (i.e., Na vs. CM; Fig-

ure 4b). PC2 (25.5% of the variation) showed differences between

young and old cells as well as between cell subsets, suggesting a role

for differentiation in this secondary variation. No age difference was

observed between young and old effector memory populations, con-

sistent with these cells being closer to end differentiation than naïve

and central memory T cells.

To understand how the individual miRNAs are driving the distri-

bution across PC1 and PC2, we overlaid their corresponding vectors

onto the PCA plot. We found that PC1 variation was driven mostly

by miR‐7, miR‐142, miR‐181a and let‐7f, whereas PC2 was driven by

miR‐146a and miR‐155 (Figure 4c). Individual expression plots of

these miRNAs confirmed strong relationships with age for miR‐181a
and let‐7f whereas miR‐146a and miR‐155 were influenced by cellu-

lar subset (Figure 4d). Notably, expression of miR‐146a showed a

stepwise increase from young naïve to old naïve to young central

memory.

It is possible that the increase of miR‐146a in aged naïve CD8 T

cells could be caused by stem‐like memory cells or contamination

with other memory cells that are phenotypically difficult to
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distinguish from naïve T cells (Akondy et al., 2017; Fuertes Marraco

et al., 2015; Gattinoni et al., 2011). Thus, we next interrogated single

cell expression of miR‐146a in young and old naïve CD8 T‐cells uti-

lizing flow cytometry in combination with in situ hybridization for

miRNA detection. We found that expression of miR‐146a followed a

unimodal distribution with the entire population of aged naïve CD8

cells shifted toward higher miR‐146a (Figure 4e), demonstrating that

increased miR‐146a expression in aged naïve CD8 T cells was not

driven solely by a naïve‐like memory subpopulation. We also find an

overall decrease in miR‐181a in aged naïve CD8 cells using the same

detection method (Figure 4f). Therefore, the expression pattern of

these six miRNAs in naïve CD8 T cells is unique to aging and not

driven by contamination of “virtual” naïve cells, such as stem cell‐like
memory. These data also reveal that differentiation of the naïve

compartment partially, but not solely, accounts for the miRNA

expression profile in old naïve CD8 T cells.

2.5 | Age‐dependent miRNAs in naïve CD8 T‐cells
predict FOXO1 signaling defect

miRNAs primarily function as posttranscriptional regulators, by bind-

ing the mRNA and inducing mRNA degradation or preventing protein

translation. However, miRNAs have hundreds of different mRNA tar-

gets and determining the function of multiple miRNA changes at a

cellular level is extremely challenging. As a result, studies are often

limited to one‐on‐one miRNA and mRNA interactions. Here, we uti-

lized a computational tool (i.e., DIANA mirPATH; see Section 4) that

provides a global picture of cellular function based on miRNA
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expression levels for 500 naive CD8 T cells per individual. Histogram and dot plot are representative of three independent experiments. p‐
Values were determined by Mann–Whitney test
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profiles, by integrating all known targets of input miRNAs and pro-

viding an enrichment score for a pathway based on the number of

miRNA targets genes present. From this analysis, we found multiple

signaling pathways enriched in experimentally validated targets for

age‐dependent miRNAs in naïve CD8 T cells (Figure 5a). Top KEGG

pathways included protein processing in the endoplasmic reticulum

(p = 2.15E‐8 with 93 targets), lysine degradation (p = 1.48E‐7 with

26 gene targets), neurotrophin signaling (p = 8.36E‐7 with 70 tar-

gets), FOXO signaling (p = 3.06E‐6 with 74 targets), and pluripotency

of stem cells (p = 2.26E‐5 with 71 target genes). The PI3K‐AKT sig-

naling pathway (p = 0.001 with 148 targets) demonstrated the high-

est number of genes targeted by age‐dependent miRNAs.

Interestingly, TNFα signaling (p = 0.0009 with 58 gene targets) has

been previously identified as a signaling defect in aging naïve T cells

(Gupta & Gollapudi, 2006).

KEGG pathways usually integrate multiple upstream and down-

stream signaling molecules; thus, there is often a high level of redun-

dancy in pathway assignments. Therefore, we investigated the

functional overlap between three select pathways: FOXO, pluripo-

tency in stem cells, and TNFα signaling. These pathways demon-

strated multiple mRNA targets for all six age‐related miRNAs with

robust targeting of multiple genes within each pathway (Supporting

Information Figure S1). Moreover, we found a high overlap between

individual signaling pathways contained within these three pathways

(Figure 5b). For example, all three pathways contained MAPK and

PI3K‐AKT signaling pathway components, which are also significant

pathways targeted by age‐related miRNAs (MAPK p = 0.018 with

107 gene targets; Figure 5a).

To determine whether miRNA prediction of pathway dysfunction

can be validated at the transcriptome level, we compared transcrip-

tome differences in young and old naïve CD8 T cells from humans

with functionally informative “hallmark” mRNA expression datasets

via gene set enrichment analysis (GSEA). Details on these datasets

are available in Section 4. Similar to DIANA miRPATH analysis, we

found significant enrichment in gene profiles for TNFα signaling via

NF‐κB and FOXO1 signaling (Figure 5b). Of note, three out of five

pathways with differential gene expression in old naïve CD8 T cells

were linked with FOXO1. These pathways included NF‐κB, JAK‐
STAT, and TGF‐β signaling. All three of these pathways demon-

strated gene expression profiles consistent with altered signaling in

old naïve CD8 T cells (Figure 5d–f). We also found that old naïve

CD8 T‐cells displayed a similar gene expression profile as that of

mouse FOXO1 knockout cells (Figure 5g), indicating that old naïve

CD8 T cells have reduced FOXO1 signaling. The decrease in FOXO1

signaling in old naïve CD8 T cells was not due to altered FOXO1

protein expression in old naïve CD8 T cells (Supporting Information

Figure S2a).

2.6 | FOXO1 signaling is reduced in old naïve CD8
T‐cells

To establish the functional activity of FOXO1 in naïve CD8 T cells,

we compared gene expression of select FOXO1 target genes (IL7R,

CCR7, SELL, TCF7) in a follow‐up cohort of young and older individ-

uals by qPCR. IL7R and CCR7 mRNA expression were significantly

decreased in old naïve CD8 T cells (Figure 6a). SELL trended lower

in older individuals. TCF7 did not have altered expression between

young and old, consistent with a recently published study showing

that FOXO1 induces TCF7 expression in memory, but not in naïve,

CD8 T cells (Delpoux, Lai, Hedrick, & Doedens, 2017). Consistent

with significantly decreased IL7R mRNA expression, IL‐7R surface

protein expression on old naïve CD8 T cells was lower than that of

young (Figure 6b). To demonstrate a direct link between FOXO1

activity and IL‐7R expression, we inhibited FOXO1 activity in naïve

CD8 T‐cells in vitro. Inhibition of FOXO1 function in young naïve

CD8 T‐cells decreased IL‐7R expression (Figure 6c), demonstrating

that FOXO1 function can directly affect IL‐7R expression levels in

human naïve CD8 T cells. Moreover, high dose FOXO1 inhibition

reduced IL‐7R expression on young naïve CD8 T cells to levels simi-

lar to that of old naïve CD8 T‐cells (Figure 6d). CCR7 was not

affected by FOXO1 inhibition nor did naïve CD8 T cells from older

individuals display decreased surface expression of this receptor

(Supporting Information Figure S2b,c), indicating that CCR7 may not

be a direct transcriptional target of FOXO1 in human naïve CD8 T

cells.

At a functional level, IL‐7R expression by naïve CD8 T cells is

important for cell survival and homeostatic proliferation. Aging is

associated with decreased frequencies of naïve CD8 T cells (Fig-

ure 1b); thus, this decrease in frequency may be connected with the

loss of IL‐7R. Consistently, we found that the basal level of IL‐7R
expression on naïve CD8 T‐cells positively correlated with frequency

of peripheral naïve CD8 T cells (Figure 6e). Conversely, no correla-

tion with CCR7 expression was observed (Supporting Information

Figure S2d). Together, these data suggest that the FOXO1‐IL7R axis

may play a role in the loss of naïve CD8 T‐cells during aging.

3 | DISCUSSION

Human immune aging is characterized by a significant and dispropor-

tional loss in the naïve CD8 compartment. Mounting evidence sug-

gests that the loss of naïve CD8 T‐cells is driven by cell‐intrinsic
changes. Here, we show that the expression of multiple miRNAs is

altered within peripheral CD8 T‐cell subsets from older individuals,

with changes found in naïve CD8 T‐cells partially driven by cellular

differentiation but not by underlying CMV infection or stem cell

memory expansion. Moreover, we demonstrate that miRNA network

analysis can be used to predict and identify functional changes in

immune cell subsets during aging. Indeed, we identified the FOXO1

pathway as a potential target of the age‐dependent miRNA network

in naïve CD8 T cells and propose that reduced FOXO1 activity may

contribute to declining naïve CD8 T‐cell homeostasis observed dur-

ing aging. As miRNAs are important, posttranscriptional regulators of

protein expression, these findings reveal a new layer of cell‐intrinsic
dysfunction in T‐cell aging that cannot be detected by transcriptional

or epigenetic profiling alone. These data also suggest that miRNAs,

or their functional targets, could be promising avenues to pursue in
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order to improve long‐term CD8 T‐cell homeostasis and boost

response to pathogenic infection during aging.

During human aging, the thymus, which generates new T cells,

involutes. Thus, naïve CD8 T cells are maintained in older individuals

by homeostatic mechanisms. In this context, age‐related miRNA

changes may be driven by factors mediating long‐term homeostatic

maintenance. The two main factors that mediate T‐cell homeostasis

are (a) low‐affinity TCR interactions (with a self‐antigen) and (b) cyto-

kine signaling via IL‐7 and IL‐15. Notably, IL‐15 can induce miR‐146a
expression by naïve CD8 T cells (Sheppard et al., 2014). This expres-

sion of miR‐146a is alternatively inhibited by IL‐7, suggesting that

age‐related increases in miR‐146a (Figure 1a) could be, at least par-

tially, mediated by altered signaling via homeostatic cytokines. High‐
affinity TCR engagement also induces expression of many miRNAs

including miR‐146a and miR‐155 (Teteloshvili et al., 2015); however,

the effects of low‐affinity TCR stimulation and the interplay between

cytokines and TCR signaling in regulating miRNA expression are cur-

rently unknown.

Our study presented here revealed that old naïve CD8 T‐cells
also exhibit miRNA expression patterns partially related to cell differ-

entiation. The idea that naïve T‐cells undergo partial differentiation

during aging is a relatively new idea and somewhat controversial,

because, as we age, there is an increase in a naïve‐like memory pop-

ulation (Eberlein et al., 2016; Pulko et al., 2016) that expresses basic

phenotypic surface receptors highly similar to that of naïve CD8 T

cells (e.g., CCR7, CD45RA, CD62L; Fuertes Marraco et al., 2015;

Gattinoni et al., 2011). This memory population therefore could be

contributing to the differentiation‐related changes in miRNAs (and

other molecular changes) found within the aging naive compartment.

However, we demonstrate this is an unlikely sole explanation

because the shift in miRNA expression, in particular miR‐146a, was a

global phenomenon across the entire aged naïve CD8 T‐cell com-

partment (Figure 4). Moreover, we find little overlap between age‐
dependent and differentiation‐dependent miRNAs in CD8 T‐cells,
suggesting that although differentiation may contribute to some

aspects of aging within the global T‐cell compartment, it does not

account for all changes.

Interestingly, a population of “virtual memory” cells has recently

been found in mice and shown to increase with age (Nikolich‐Zugich,
2014). Unlike stem‐like memory cells, which are antigen‐experienced
memory cells that look like naïve cells, virtual memory cells are anti-

gen‐inexperienced cells that display features of memory cells (i.e.,

naïve cells that look like memory cells without ever having encoun-

tered their cognate antigen; Chiu, Martin, Stolberg, & Chensue,

2013). These cells differentiate by cytokine‐dependent interactions

(i.e., IL‐15, IL‐4; White et al., 2016) and can potentially develop from

lymphopenia‐induced homeostatic proliferation (Goldrath, Bogatzki,

& Bevan, 2000). Thus, the alterations in miRNA expression in old
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naïve CD8 cells may be potential indicators of a transition into a

“virtual‐memory”‐like state. Further investigation into virtual memory

cells in humans as well as the effect of homeostatic cytokines and

TCR stimulation on miRNA expression in the naïve CD8 populations

would provide further insight.

Similar to the miRNA findings presented here, our group has

recently shown that naïve CD8 T‐cells epigenetically and transcrip-

tionally shift toward a more differentiated state during aging

(Moskowitz et al., 2017). These different processes are likely to be

highly interdependent and do not follow hierarchical models. miRNA

inhibition of transcription factor activity, such as FOXO1 activity,

could lead to chromatin closing as well as reduced transcription of tar-

get genes. Indeed, Ucar et. al. found chromatin closing at the IL7R

locus in memory CD8 T cells from older individuals (Ucar et al., 2017).

There also appears to be modest, although not significant, closing in

old naïve CD8 T‐cells. This chromatin closing coincides with reduced

IL‐7R transcript and protein expression in old memory CD8 T‐cells
compared with young (Ucar et al., 2017; our unpublished observation).

Conversely, altered chromatin accessibility at loci of miRNA precursor

transcripts could affect expression of the miRNAs. Indeed, we recently

found the expression of miR‐181a was driven by the transcription fac-

tor YY1, which is reduced in expression during aging and YY1 motifs

are highly enriched at chromatin sites less accessible in old naïve CD8

T cells (Ye et al., 2018). Thus, miRNA expression changes may be both

up‐ and downstream of epigenetic changes.

Functionally, the altered miRNA network in aged naïve CD8

T‐cells predicted changes in multiple signaling pathways during aging,

including those for TNFα, FOXO, and pluripotency of stem cells.

Indeed, we found that old naïve CD8 T cells had transcriptional pro-

files similar to FOXO1 knockout cells and display features of

reduced FOXO1 activity. In the field of aging, FOXO transcription

factors are important regulators of longevity and stem cell home-

ostasis (Boehm et al., 2012; Qin & Hubbard, 2015), sharing multiple

conserved targets in humans, mice, C. elegans, and drosophila (Webb,

Kundaje, & Brunet, 2016). Likewise, FOXO1 is required for T‐cell
homeostasis and T‐cell maintenance within tissues—partially via the

induction of IL‐7R and other homing markers (Kerdiles et al., 2009;

Ouyang, Beckett, Flavell, & Li, 2009). As we found reduced expres-

sion of IL‐7R in old naïve CD8 T‐cells correlated with lower naïve

CD8 frequencies (Figure 6), it is possible that these cells have

reduced homeostatic potential via FOXO1 pathway defects. This

would also be consistent with a recent study characterizing human

T‐cell distribution throughout tissue compartments that found signifi-

cant reductions in naïve CD8 T cells in blood, lymph nodes, and

spleen with age (Thome et al., 2016). Within other tissues, such as

the intestinal tract, memory T‐cells predominate with very few naïve

CD8 T‐cells present. As our study was limited to the investigation of

peripheral CD8 T cells, it may also be of interest to investigate miR-

NAs and FOXO1‐related changes in these tissue‐specific naïve and

memory T‐cell subsets.
Along with tissue homing and homeostasis, FOXO1 signaling also

plays a vital role in the induction and maintenance of CD8 T‐cell
memory in mice, with FOXO1 knockout naïve CD8 T‐cells able to

generate normal antigen‐specific effector responses but unable to

develop into long‐lived memory T cells (Hess Michelini, Doedens,

Goldrath, & Hedrick, 2013). Knocking out FOXO1 also causes

reduced viability in CD8 T cells (Delpoux et al., 2018). These cellular

changes are, in turn, linked with reduced protection against sec-

ondary antigen exposure. Interestingly, older humans display normal

effector responses against the zoster vaccine but have much more

rapid contraction of vaccine‐specific memory cells—likely accounting

for the poor efficacy of this zoster vaccine (Qi et al., 2016). In

response to yellow fever vaccination, aged naïve CD8 T‐cells also

demonstrate reduced effector functions (Schulz et al., 2015). Thus,

FOXO1 signaling may contribute both to alterations in homeostatic

proliferation and memory maintenance in human CD8 T cells during

aging. Further studies on the specific role of age‐dependent miRNAs

in modulating FOXO1 activity in CD8 T‐cells would provide insight

into the direct relationship between miRNAs, FOXO1, and CD8

T‐cell aging.

4 | MATERIALS AND METHODS

4.1 | Study participants

Peripheral blood samples were obtained from individuals between

16 and 82 years of age, with no history of cancer, autoimmune dis-

ease, or diabetes mellitus, recruited in the Palo Alto area. Additional

samples were purchased from Stanford Blood Center (Palo Alto, CA,

USA). The study was in accordance with the Declaration of Helsinki,

approved by Stanford Institutional Review Board, and all participants

gave written informed consent.

4.2 | Cell collection and subset purification

Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll

centrifugation. PBMCs were stained with LIVE/DEAD Fixable Aqua

Dye (Thermo Fisher Scientific, Scotts Valley, CA, USA) and CD3‐
Pacific Blue, CD8‐PerCpCy5.5, CD45RA‐PE‐Cy7, CD45RO‐APC,
CD62L‐PE, CD127(IL‐7R)‐PE, and CCR7‐BV421 antibodies, and

DUMP‐FITC (includes CD4‐FITC, CD19‐FITC, CD14‐FITC, CD56‐
FITC antibodies). All antibodies were from BD Bioscience (San Jose,

CA, USA) or Biolegend (San Diego, CA, USA). Live cells are sorted

into naïve (DUMP−CD3+CD8+CD45RA+CD45RO−CD62L+), central

memory (DUMP−CD3+CD8+CD45RA−CD45RO+CD62L+), and effec-

tor memory (DUMP−CD3+CD8+CD45RA−CD45RO+CD62L−) popu-

lations using the FACSAria (BD Bioscience) as outlined in Figure 1a.

4.3 | miRNA profiling

miRNA was detected using Taqman Gene expression Cells‐to‐Ct Kit

(Thermo Fisher Scientific) using 5,000 cells per subset as input. For

multiplexing, Taqman primer/probes sets were pooled together prior

to reverse transcription (RT). Following RT, pre‐amplification was

performed using Taqman PreAmp Master Mix Kit (Thermo Fisher

Scientific), with pooled Taqman primer/probe sets. Preamplified
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products were then ran on the Biomark HD (Fluidigm, San Francisco,

CA, USA) for miRNA quantification. A list of miRNA Taqman primer/

probes sets (Thermo Fisher Scientific) used in these studies is pro-

vided in Supporting Information Table S2. miRNA expression is rela-

tive to RNU48 expression.

4.4 | miRNA detection by FACS

miRNA was detected by FACS using PrimeFlow RNA Assay Kit

(Thermo Fisher Scientific) using PrimeFlow microRNA pretreatment

buffer and type 1 microRNA probe sets for detection.

4.5 | miRNA and mRNA pathway analyses

For the DIANA miRPATH (version 3) analysis, the six age‐dependent
miRNAs from naïve CD8 T cells (hsa‐miR‐146a‐5p, hsa‐miR‐155‐5p,
hsa‐miR‐181a‐5p, hsa‐miR‐7‐5p, hsa‐miR‐142‐3p, and hsa‐let‐7f‐5p)
were used as input. Tarbase database (version 7), which is from

experimentally validated miRNA‐mRNA interactions, was used for

miRNA target selection. Gene union function was used to find

enriched pathways. Pathways were selected based on the following

criteria: (a) included mRNA targets for all six miRNAs; (b) a p‐value >

0.05; and (c) exclusion of KEGG pathways directly related to cancer,

disease, or infectious pathogens. For mRNA analysis, GSEA was per-

formed (Subramanian et al., 2005). The datasets used for the analy-

ses described in this manuscript were obtained from dbGaP through

dbGaP study accession number phs001187.v1.p1 (Moskowitz et al.,

2017). Gene sets used were the hallmark gene datasets (Liberzon

et al., 2015) and GSE21678 and GSE15037 for FOXO pathway anal-

ysis (Ouyang et al., 2009, 2010 ).

4.6 | Quantitative PCR

Naïve CD8 T cells were purified from PBMCs using EasySep naïve

CD8 T‐cell enrichment kit (Stem Cell Technology, Vancouver, B.C.,

Canada). Total RNA was extracted using RNeasy Plus Micro kit (Qia-

gen, Hilden, Germany) and reversed transcribed using Invitrogen

Superscript VILO RT‐PCR Master Mix (Thermo Fisher Scientific).

Real‐time quantitative PCR was performed with ABI Prism 7900HT

Detection System (Applied Biosystems, Foster City, CA, USA) using

Taqman Universal Master Mix II, no UNG (Thermo Fisher Scientific)

and Taqman probe sets. Probe sets used are as follows: IL7R

(Hs00902334_m1), CCR7 (Hs01013469_m1), SELL

(Hs00174151_m1), TCF7 (Hs01556515_m1), and RPLP0

(Hs99999902_m1). All data are presented as relative expression nor-

malized to RPLP0 expression, as this control gene is found to be

expressed the most consistently between young and old naïve CD8

T cells.

4.7 | Simple Western

Sorted naïve CD8 T cells were lysed with RIPA buffer (Santa Cruz

Biotechnology, Santa Cruz, CA, USA) and sonicated for complete cell

lysis. Lysates were centrifuged at 4°C for 10 min at 21,130 rcf, and

the supernatant was collected. Protein concentration was measured

using Bradford Dye (BioRad, Hercules, CA, USA) at an absorbance of

595 nm. Simple Western was performed following manufacturer's

instructions at 0.2 µg/µl per sample with FOXO1 and β‐actin anti-

bodies (Cell Signaling Technologies, Danvers, MA, USA) and ran on

the Peggy Sue instrument (ProteinSimple Inc., San Jose, CA, USA).

4.8 | In vitro inhibition assay

Cells were cultured in RPMI 1640 (Thermo Fisher Scientific) supple-

mented with 10% FBS (Gemini Bio Products, Sacramento, CA, USA)

and penicillin‐streptomycin (Thermo Fisher Scientific) for 24 hr with

FOXO1 inhibitor AS1842856 (Selleckchem, Houston, TX, USA), at

indicated concentrations, or DMSO as a control. After 24 hr, expres-

sion of IL‐7R and CCR7 on naïve CD8 T cells was determined by

FACS.

4.9 | Statistical analysis

Data were analyzed using Mann–Whitney test, paired t test, one‐
way ANOVA, or Pearson correlation as appropriate and as indicated

in the specific Figure Legends. PCA was performed in R using

prcomp. Statistical tests were performed using GRAPHPAD PRISM version

6. p‐Values <0.05 are considered statistically significant.
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