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Abstract: In this article, it was observed that the noise in some real-world applications, such as wind
power forecasting and direction of the arrival estimation problem, does not satisfy the single noise
distribution, including Gaussian distribution and Laplace distribution, but the mixed distribution.
Therefore, combining the twin hyperplanes with the fast speed of Least Squares Support Vector
Regression (LS-SVR), and then introducing the Gauss–Laplace mixed noise feature, a new regressor,
called Gauss-Laplace Twin Least Squares Support Vector Regression (GL-TLSSVR), for the complex
noise. Subsequently, we apply the augmented Lagrangian multiplier method to solve the proposed
model. Finally, we apply the short-term wind speed data-set to the proposed model. The results of
this experiment confirm the effectiveness of our proposed model.

Keywords: Gauss-Laplace mixed noise; least squares support vector regression; twin hyperplanes;
wind speed prediction

1. Introduction

In recent years, the support vector machine (SVM) [1–4] have received widespread attention as
a powerful method, because support vector machines have better generalization performance than
other machine learning techniques. Thanks to good generalization capabilities, SVM technology is
applied to various fields. For example, SVM has been applied to face detection [5], feature selection [6],
function approximation [7], financial forecasting [8], and wind turbine system [9–15]. As for the
support vector regression (SVR) model [16], it uses support vector machine technology to solve
the regression estimation, there are many important methods, such as ε-support vector regression
(ε-SVR) [17], ν-support vector regression (ν-SVR) [18] etc. In addition, based on some advantages of
SVR, SVR has been successfully applied to Biology, medicine, environmental protection, information
technology, engineering technology, and other fields [19–24].

In these SVR models, when solving regression problems, the noise of the training data is
considered to be the single distribution. According to the Bayesian principle, first, the Gaussian
noise with square loss is the best, secondly, the Beta noise with Beta loss is the best, finally,
the Laplace noise with Laplace loss is the best [25,26]. However, in some practical applications,
if data are collected in a multi-source environment, then the noise distribution is complex and
unknown. Therefore, a single distribution cannot clearly describe the real noise [27,28]. In general,
the mixed distribution has a good approximation ability for any continuous distribution. For some
actual noises, prior knowledge is difficult to obtain. At this time, mixed noise can be well adapted
to unknown or complex noise. In 2017, the research and application of a new wind speed hybrid
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forecasting system that is based on multi-objective optimization is proposed [27,29], the proposed
hybrid model is integrated with three components, singular spectrum analysis, the firefly algorithm,
and the BP neural network [30]; as compared with a single BP, the prediction effect of the hybrid
prediction method is better, which shows that the prediction ability of the hybrid method is stronger.
In addition, accurate prediction of wind speed is a key task for the development and utilization of wind
energy, when compared with other related methods, the proposed hybrid method has satisfactory
performance in terms of accuracy and stability [31]. In this literature [32], two new nonlinear regression
models for single-task and multi-task problems are developed, in which the noise is composed of
Gaussian mixture. When compared to some other models, the proposed model becomes a robust
nonlinear regression model with strong adaptation.

However, the main disadvantage of SVR is the high cost of learning. In order to improve
the calculation speed of SVR, based on twin support vector machine (TSVM) [33], Peng [34–36]
proposed twin support vector regression (TSVR). Unlike SVR, TSVR generates two non-parallel
upper and lower bound functions by solving a pair of smaller quadratic programming problems
(QPPs). In theory, TSVR reduces the computational cost compared to standard SVR. Zhao et al. [37]
extended the concept of twin hyperplanes, and combined the advantages of least squares support
vector regression (LSSVR) to generate the estimated regressor, called Twin Least Squares Support
Vector Regression (TLSSVR). By observing the model of Peng [34], Khemchandani et al. [38] believed
that only the principle of empirical risk minimization was considered in TSVR. To overcome these
difficulties, Shao et al. [39] proposed another twin regression model, called ε-TSVR, which considers
the principle of structural risk minimization. Later, Rastogi et al. [40] extended ε-TSVR and proposed
ν-TSVR, which can automatically optimize parameters ε1 and ε2 based on sample data. By using the
pinball loss function, Xu et al. [41] further developed an asymmetric ν-twin support vector regression,
called Asy-ν-TSVR, which can effectively reduce noise interference and improve the generalization
performance. Therefore, extensive research has been conducted on the twin-type SVR. In all of
these twin-type SVR models, the distribution of training data is not considered in solving regression
problems. This means that, regardless of whether the samples are important or not, all of the samples
play the same role in the constraint function, so it will cause regression performance to decline.
Depending on the importance of the data, given different samples, the penalty is more reasonable.
For this reason, various methods [42–46] have been developed in order to study this shortcoming.
For example, Xu et al. [44] proposed using the local information present on the sample based on
K-nearest neighbor weighted twin support vector regression to improve the prediction accuracy.
By clustering based on the similarity of training data, Parastalooi et al. [45] proposed an improved twin
support vector regression. Ye [46] proposed an effective weighted Lagrangian ε-twin support vector
regression (WL-ε-TSVR) with quadratic loss function, in which the weight matrix D was introduced
in order to reduce the outlier pair to a certain extent Regression of the influence of variables, so as to
impose different penalties on samples.

Traditionally, the upper and lower regression of the twin SVR is obtained by approximate dual
solutions. However, Chapelle [47] observed that, by comparing the approximate efficiency of SVR
in the primal space and the dual space, the approximate dual solution may not produce a good
primal approximate solution. Some related work is directly solved in the primal space [48–51].
For example, inspired by the twin SVR and Newton methods, Balasundaram et al. [49] proposed a new
unconstrained Lagrangian TSVR (ULTSVR) to solve a pair of unconstrained minimization problems,
thereby increasing the calculation speed. Gupta [50] and Balasundaram [51] use the generalized
derivative method to obtain QPPs. Although their work is efficient and fast, they only consider
empirical risk minimization and do not consider structural risks.

Inspired by the above research, we try to study the characteristics of the complex or unknown
noise distribution of the Gauss–Laplace mixed noise twin least squares support vector regression
(GL-TLSSVR) model. In this article, for the solution to the regression task, the augmented Lagrange
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multiplier method (ALM) algorithm is used in our experiments, it can help us better to find the
optimal solution.

This work mainly provides four contributions, we describe the whole methodology in the
flowchart, as shown in Figure 1.

Figure 1. The whole methodology process of this article.

2. Related Work

In this section, the data-set is represented by DN = {(Ai, yi)}, i = 1, 2, . . . , N, where Ai ∈ Rn,
yi ∈ R(i = 1, 2, . . . , N) is the training samples.

According to the Bayesian principle, we can derive the optimal empirical risk loss of the mixed
noise characteristics [52]. The best empirical risk loss for this mixed noise distribution is shown below

l(ζ) = λ1 · l1(ζ) + λ2 · l2(ζ). (1)

where l1(ζ) > 0, l2(ζ) > 0 are the convex empirical risk loss of the above two noise characteristics.
λ1, λ2 ≥ 0 are weight factors, and λ1 + λ2 = 1.

Figure 2 shows the G-L empirical risk loss for different parameters.
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Figure 2. G-L empirical risk loss for different parameters.

3. TLSSVR Model of G-L Mixed Noise Characteristics

For the linear model, we want to find a linear regression function f (A) = vT · A + b.
When dealing with some nonlinear problems, some specific methods are given ([53]): the input
vector Ai ∈ Rn is mapped by a non-linear mapping Φ: Rn → H (take a prior distribution) to the
high dimensional feature space H (H is Hilbert space), induced by the nonlinear kernel function
K(Ai, Aj) = (Φ(Ai) ·Φ(Aj)) (i, j = 1, 2, . . . , N), (Φ(Ai) ·Φ(Aj)) is the inner product in H.

The twin least squares support vector regression model with mixed noise characteristics
(M-TLSSVR) is proposed. The primal problem with model M-TLSSVR is shown below

Min{gPM−TLSSVR
=

1
2

ωT
1 ·ω1 +

C1

N
· [λ1 ·

N

∑
i=1

(l1(ξi))+λ2 ·
N

∑
i=1

(l2(ξi))]}

s.t. yi = ωT
1 · φ(Ai) + b1 − ξi

(2)

Min{gPM−TLSSVR
=

1
2

ωT
2 ·ω2 +

C2

N
· [λ3 ·

N

∑
i=1

(l1(ξ∗i ))+λ4 ·
N

∑
i=1

(l2(ξ∗i ))]}

s.t. yi = ωT
2 · φ(Ai) + b2 + ξ∗i

(3)

where v1, v2 denotes the weight vector and b1, b2 is the bias term, Φ(A) is the nonlinear mapping
that transfers the input vector to a higher-dimensional feature space. ξi, ξ∗i are random slack variable
at time i. l1(ξi), l1(ξ∗i ), l2(ξi), l2(ξ∗i ) > 0(i = 1, 2, . . . , N) be general convex empirical risk loss values
for noise characteristic in the sample point (Ai, yi) ∈ DN ((i, j = 1, 2, . . . , N)). C1 > 0, C2 > 0 be the
penalty parameter, weight factor λ1, λ2, λ3, λ4 ≥ 0, and λ1 + λ2 = 1, λ3 + λ4 = 1.

According to the literature [28], the mixed noise model is distributed by multiple noises, and its
performance is better than the single noise model. In this section, Gauss–Laplace mixed homoscedastic
and heteroscedastic noise distributions are used to describe complex noise characteristics.
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3.1. TLSSVR Model of G-L Mixed Homoscedastic Noise Characteristics

According to Bayesian principle, it concludes that the empirical risk loss of the homoscedastic
Gaussian noise of the lower bound function is l1(ξ) = 1

2σ2 · ξ2, the Laplace noise is l2(ξ) = |ξ|.
Adopting G-L mixed homoscedastic noise distribution to fit complicated noise-characteristic,
by Equation (1), the empirical risk loss about G-L mixed homoscedastic noise is l(ξ) = λ1

2σ2 · ξ2 + λ2 · |ξ|.
The lower bound function of the G-L mixed homoscedastic noise characteristic TLSSVR model
(GLM-TLSSVR) is proposed, the primal problem of the lower bound function is depicted as

Min{gPGLM−TLSSVR
=

1
2

ωT
1 ·ω1 +

C1

N
· ( λ1

2σ2 ·
N

∑
i=1

ξi
2+λ2 ·

N

∑
i=1
|ξi|)}

s.t. yi = ωT
1 · φ(Ai) + b1 − ξi

(4)

Similarly, we can get that the primal problem of the upper bound function of the model
GLM-TLSSVR is

Min{gPGLM−TLSSVR
=

1
2

ωT
2 ·ω2 +

C2

N
· ( λ3

2σ∗2 ·
N

∑
i=1

ξi
∗2
+λ4 ·

N

∑
i=1
|ξ∗i |)}

s.t. yi = ωT
2 · φ(Ai) + b2 + ξ∗i

(5)

Where ξi and ξ∗i are the random noise and slack variables at time i. parameter vector ω1, ω2 ∈ Rn,
σ2, σ∗

2
are homoscedastic, C1, C2 > 0 are a penalty parameter, and the weight factors are λ1, λ2, λ3, λ4 ≥

0, λ1 + λ2 = 1, λ3 + λ4 = 1.

Proposition 1. The solution of primal problem (4), (5) of GLM-TLSSVR about v1, v2 exist and are unique.

Theorem 1. The dual problem of primal problem (4) of GLM-TLSSVR is

Max{gDGLM−TLSSVR = −1
2

N

∑
i=1

N

∑
j=1

(αi + βi) · (αj + β j) · K(Ai, Aj)−

C1σ2

N · λ2
2

λ1
·

N
∑

i=1

αi
βi
− Nσ2

2C1λ1

N
∑

i=1
α2

i }

s.t.
N
∑

i=1
(αi + βi) = 0

(6)

The dual Problem of primal problem (5) of GLM-TLSSVR is

Max{gDGLM−TLSSVR = −1
2

N

∑
i=1

N

∑
j=1

(α∗i + β∗i ) · (α∗j + β∗j ) · K(Ai, Aj)−

C2σ∗
2

N · λ2
4

λ3
·

N
∑

i=1

α∗i
β∗i
− Nσ∗

2

2C2λ3
·

N
∑

i=1
α∗

2

i }

s.t.
N
∑

i=1
(α∗i + β∗i ) = 0

(7)

where parameter vector ω1, ω2 ∈ Rn, σ2, σ∗
2

are homoscedastic, C1, C2 > 0 are a penalty parameter, and the
weight factors are λ1, λ2, λ3, λ4 ≥ 0, λ1 + λ2 = 1, λ3 + λ4 = 1, αi, αj, α∗i , α∗j are the Lagrange multiplier.

Proof. On the lower bound function of the GLM-TLSSVR model, for any vector u, If we set u± ≥ 0 to
u = u+ − u−, then min |u| = min{u+ + u−} will be established [54]. Therefore, by setting ξi = pi − ri,
ri, pi ≥ 0, the primal problem of the lower bound function of GLM-TLSSVR is simplified, as follows



Entropy 2020, 22, 1102 6 of 18

Min{gPGLM−TLSSVR
=

1
2

ωT
1 ·ω1 +

C1

N
· [ λ1

2σ2 ·
N

∑
i=1

ξi
2+λ2 ·

N

∑
i=1

(ri + pi)]}

s.t. yi − (ωT
1 φ(Ai) + b1)− ri + pi = 0

yi = ωT
1 φ(Ai) + b1 − ξi

ri, pi ≥ 0(i = 1, . . . , N)

(8)

We introduce the Lagrange function and KKT(Karush–Kuhn–Tucker) condition [55].

We get the solution of the lower bound function

ω1i =
N

∑
i=1

(αi + βi) · φ(Ai),

b1 =
N

∑
i=1

[yi −
N

∑
j=1

(αi + βi) · K(Ai, Aj)−
1

λ1
· N · σ2 · αi

C1
].

Thus, the lower function of model TLSSVR with Gauss–Laplace mixture homoscedastic noise
characteristic (GLM-TLSSVR) can be written as

f1(A) = ωT
1 · φ(A) + b1 =

N

∑
i=1

(αi + βi)K(Ai, A) + b1

Theorem 2. The primal problem of the upper bound function of GLM-TLSSVR is simplified, as follows

Min{gPGLM−TLSSVR
=

1
2

ωT
2 ·ω2 +

C2

N
· ( λ3

2σ∗2 ·
N

∑
i=1

ξi
∗2
+λ4 ·

N

∑
i=1

(ri + pi))}

s.t. yi − (ωT
2 φ(Ai) + b2) + ri − pi = 0

yi = ωT
2 φ(Ai) + b2 + ξ∗i

ri, pi ≥ 0(i = 1, . . . , N)

(9)

Similarly, we introduce the Lagrange function and KKT conditions again.

We obtain the solution of the upper bound function

ω2i =
N

∑
i=1

(α∗i + β∗i ) · φ(Ai),

b2 =
N

∑
i=1

[yi −
N

∑
j=1

(α∗i + β∗i ) · K(Ai, Aj)−
1

λ3
· N · σ∗2 · α∗

C2
].

Thus, the upper function of model TLSSVR with Gauss–Laplace mixture homoscedastic noise
characteristic (GLM-TLSSVR) can be written as

f2(A) = ωT
2 · φ(A) + b2 =

N

∑
i=1

(α∗i + β∗i )K(Ai, A) + b2

At last, the estimated regressor of GLM-TLSSVR is written, as follows

f (A) =
ωT

1 + ωT
2

2
· φ(A) +

b1 + b2

2
=

N

∑
i=1

αi + βi + α∗i + β∗i
2

· K(Ai, A) +
b1 + b2

2

where, parameter vector ω1, ω2 ∈ Rn, φ : Rn → H, (φ(Ai) · φ(Aj)) is the inner product of H,
K(Ai, Aj) = (φ(Ai) · φ(Aj)) is the kernel function.
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3.2. TLSSVR Model of G-L Mixed Heteroscedastic Noise Characteristics

If the noise is Gaussian noise with zero mean and variance of heteroscedasticity, and these
variance are σ2

i , (σ∗i )
2, where σi 6= σj, σ∗i 6= σ∗j , i 6= j(i, j = 1, . . . , N). Similarly, by Equation (1),

the empirical risk loss is l(ξi) =
λ1
2σ2

i
· ξ2

i + λ2 · |ξi| , (i = 1, . . . , N). A TLSSVR model for Gauss–Laplace

mixed heteroscedastic noise characteristics is established, and we named it GLMH-TLSSVR. A pair of
optimization problems of GLMH-TLSSVR can be depicted:

Min{gPGLM−TLSSVR
=

1
2

ωT
1 ·ω1 +

C1

N
· ( λ1

2σ2
i
·

N

∑
i=1

ξi
2+λ2 ·

N

∑
i=1
|ξi|)}

s.t. yi = ωT
1 · φ(Ai) + b1 − ξi

(10)

Min{gPGLM−TLSSVR
=

1
2

ωT
2 ·ω2 +

C2

N
· ( λ3

2σ∗
2

i

·
N

∑
i=1

ξi
∗2
+λ4 ·

N

∑
i=1
|ξ∗i |)}

s.t. yi = ωT
2 · φ(Ai) + b2 + ξ∗i

(11)

where ξi and ξ∗i are random noise and slack variables at time i. These heteroscedastic variables
are σ2

i .(σ∗i )
2(i = 1, 2, . . . , N), C1, C2 > 0 are the penalty parameter, weight factor λ1, λ2, λ3, λ4 ≥ 0,

and λ1 + λ2 = 1, λ3 + λ4 = 1.

Proposition 2. The solution of primal problem (10), (11) of GLMH-TLSSVR about ω1, ω2 exist and are unique.

Theorem 3. The dual problem of GLMH-TLSSVR in primal problem (10), (11) be

Max{gDGLM−TLSSVR = −1
2

N

∑
i=1

N

∑
j=1

(αi + βi) · (αj + β j) · K(Ai, Aj)−

C1σ2
i

N · λ2
2

λ1
·

N
∑

i=1

αi
βi
− Nσ2

i
2C1λ1

N
∑

i=1
α2

i }

s.t.
N
∑

i=1
(αi + βi) = 0

(12)

Max{gDGLM−TLSSVR = −1
2

N

∑
i=1

N

∑
j=1

(α∗i + β∗i ) · (α∗j + β∗j ) · K(Ai, Aj)−

C2σ∗
2

i
N · λ2

4
λ3
·

N
∑

i=1

α∗i
β∗i
− Nσ∗

2
i

2C2λ3
·

N
∑

i=1
α∗

2

i }

s.t.
N
∑

i=1
(α∗i + β∗i ) = 0

(13)

Proof. Similar to Theorems 1 and 2, an appendix to the proof of Theorem 3.

We can obtain the solution of the lower bound function

ω1i =
N

∑
i=1

(αi + βi) · φ(Ai),

b1 =
N

∑
i=1

[yi −
N

∑
j=1

(αi + βi) · K(Ai, Aj)−
1

λ1
·

N · σ2
i · αi

C1
].

Thus, the lower function of model TLSSVR with Gauss–Laplace mixture heteroscedastic noise
characteristics (GLMH-TLSSVR) can be written as

f1(A) = ωT
1 · φ(A) + b1 =

N

∑
i=1

(αi + βi)K(Ai, A) + b1
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We also get the solution of the upper bound function

ω2i =
N

∑
i=1

(α∗i + β∗i ) · φ(Ai), b2 =
N

∑
i=1

[yi −
N

∑
j=1

(α∗i + β∗i ) · K(Ai, Aj)−
1

λ3
·

N · σ∗2

i · α∗

C2
].

The upper function of model TLSSVR with Gauss–Laplace mixture heteroscedastic noise
characteristics (GLMH-TLSSVR) can be written as

f2(A) = ωT
2 · φ(A) + b2 =

N

∑
i=1

(α∗i + β∗i )K(Ai, A) + b2

At last, the estimated regressor of GLMH-TLSSVR is written, as follows

f (A) =
ωT

1 + ωT
2

2
· φ(A) +

b1 + b2

2
=

N

∑
i=1

αi + βi + α∗i + β∗i
2

· K(Ai, A) +
b1 + b2

2

If this noise characteristic is Gaussian with the homoscedasticity, we can use Theorem 3 in order
to derive Theorems 1 and 2.

4. ALM Method Analysis

In this section, we apply the augmented Lagrange multiplier method (ALM) [56] to solve the
duality problems in Equations (6) and (7) by applying gradient descent or Newton’s method to
equality-constrained sequences. By eliminating the equality constraints, any equality constraints can
be reduced to the equivalent unconstrained problem [57,58]. When we deal with some large-scale data
sets, some rapid optimizations can combine these techniques with the proposed model. For example,
the sequential minimum optimization (SMO) algorithm [59] and stochastic gradient appropriate
(SDG) algorithm [60].

From Theorems 1–3, we can find that this ALM method can help us to effectively identify the
GLM-TLSSVR and GLMH-TLSSVR models. In this section, the lower bound function and upper
bound function of the GLM-TLSSVR model can be solved by the ALM method. Similarly, the lower
bound function and upper bound function of the GLMH-TLSSVR model can also be solved by the
ALM method. The specific algorithm steps are as follows

(1) Set data-set be DN = {(A1, y1), (A2, y2), . . . , (AL, yN)}, where Ai ∈ Rn, yi ∈ R, i = 1, . . . , N.
(2) Select the appropriate kernel function through the 10-fold cross-validation strategy and obtain

the appropriate parameters C1, C2, λ1, λ2, λ3, λ4 of the lower and upper bound function of the model
GLM-TLSSVR.

(3) When the optimization problem is solved in Equations (6) and (7), we can obtain the optimal
solution α = (α1, . . . , αN), α∗ = (α∗1 , . . . , α∗N), β = (β1, . . . , βN), β∗ = (β∗1, . . . , β∗N).

(4) The decision function is established, as shown below

f (A) = ωT · φ(A) + b =
N

∑
i=1

αi + α∗i + βi + β∗i
2

· K(Ai, A) + b

5. Experiments and Discussion

In the section, to check the performance of the proposed model GLM-TLSSVR, we compared it
with ν-SVR, LS-SVR, and TSVR on actual data-set from Heilongjiang, China. This part mainly includes
three contents: G-L mixed noise characteristics of wind speed in Section 5.1; the criteria for algorithm
evaluation in Section 5.2; and, application on predicting the short-term wind speed in Section 5.3.
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5.1. G-L Mixed Noise Characteristics of Wind Speed

What we collected consists of one-year wind speed data-set from Heilongjiang Province, China.
These data record the wind speed value every 10 min in order to better analyze the characteristics of
mixed noise in the wind speed forecast error. In the above wind speed data, we found that some noise
is a mixture of Gauss–Laplace. Some of the researchers have found that turbulence is the main cause
of the uncertainty of strong random fluctuations in wind speed. From the perspective of wind energy,
the most significant feature of wind resources is its variability.

We adopted the persistence method, which is often used to study the distribution of
wind speed forecast errors, in order to analyze the wind speed data set of a one-month time
series [54]. This experiment shows that the error variable ξ does not satisfy a single noise
distribution, but approximately obeys the Gauss–Laplace mixed noise distribution, and the PDF of
ξ is P(ξ) = 1

2 e−|ξ| · 1
2σ2 ξ2, we show the forecast error of Gauss–Laplace mixed wind speed distribution

in Figure 3. It is found that this is a regression learning task about mixed noise.

Figure 3. The wind speed forecast error distribution with mixed Gauss-Laplace noise. (This red line is
used as a reference. It is determined by the quarter point and the third quarter point. These two points
just determine the line in the QQ plot. These blue distribution points are the error between the actual
value of wind speed and the predicted value of wind speed.).

5.2. The Criteria for Algorithm Evaluation

We specified evaluation criteria before introducing the experimental results in order to compare
the performance of various models. The evaluation criteria are, as follows: the mean absolute
error (MAE), the root mean square error (RMSE), sum of squared regression (SSR), sum of squared
deviation of testing (SST), sum of squared error of testing (SSE), and teTime are used to evaluate
the predictive performance of models ν-SVR, LS-SVR, TSVR, and GLM-TLSSVR. The five criteria are
defined, as follows [34,37].

In Table 1, L is the number of testing samples, yi is the ith the real value, y∗i represents the
predicted value, and y is the mean of the testing data-set. teTime(in seconds) represents the testing
time of constructing a regressor.
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Table 1. Evaluation criteria for short-term wind speed prediction.

Parameter Mathematical Expression

MAE 1
L

N
∑

i=1

∣∣y∗i − yi
∣∣

RMSE

√
1
L

N
∑

i=1
(y∗i − yi)

2

SSE
L
∑

i=1
(y∗i − yi)

2

SSR
L
∑

i=1
(y∗i − y)2

SST
L
∑

i=1
(yi − y)2

SSE/SST
L
∑

i=1
(y∗i − yi)

2/(yi − y)2

SSR/SST
L
∑

i=1
(y∗i − y)2/(yi − y)2

5.3. Application on Predicting the Short-Term Wind Speed

In the section, we confirmed the feasibility and effectiveness of the proposed model GLM-TLSSVR
on the short-term wind speed data set of Heilongjiang Province, China. The source of the wind speed
data set is a related wind farm under the Meteorological Bureau of Heilongjiang Province, and a
lightning imager measures the wind speed. This wind speed data set has been recorded for more
than a year, and the average wind speed is recorded every 10 min. In general, we collected a total of
62,466 samples, which have four attributes, namely variance, mean, maximum, and minimum. We use
1440 uninterrupted data samples (from 1 to 1440, the time span is 10 days) as training samples. We also
use 720 uninterrupted data samples (from 1441 to 2160, the time span is five days), and 80 consecutive
data as the testing samples. As for the original sequence, we need to transform it into a multiple
regression task by using mode

−→
Xi = (Xi−11, Xi−10, . . . , Xi−1, Xi) as an input vector to predict Xi+step,

where the vector orders of wind speed is determined by the chaotic operator network method.
Where Xj is the real value of wind speed at time j(j = i − 11, i − 10, . . . , i). In the experiments,
we try step = 1, 3, and 5. In other words, we predicted the wind speed of every point Xi after 10, 30,
and 50 min, respectively.

These four models (ν-SVR, LS-SVR, TSVR, and GLM-TLSSVR) have been implemented in
Python 3.7 on Windows 10 running on a PC with system configuration Intel i7 processor (3.19 GHz)
with 8 GB of RAM. The initial parameters be C1, C2 ∈ 2i|i = −9,−8, . . . , 10, λ1, λ2, λ3, λ4 ∈ [0, 1].
C1, C2, λ1, λ2, λ3, λ4 are some tuned parameters by virtue of the 10-fold cross validation technique,
where the cross validation technique is explained in detail in [61,62]. This technique can help us
to find the optimal parameters. In this article, in order to reduce the computational burden of the
GLM-TLSSVR model, the parameter assignments are, as follows: C1 = C2, λ1 = λ2 = 1

2 , λ3 = λ4 = 1
2 .

As for the choice of kernel function, many experiments show that polynomial kernel function
and Gaussian kernel function have good performance. In this experiment, we apply Gaussian
kernel functions and polynomial kernel function to these four models (ν-SVR, LS-SVR, TSVR, and
GLM-TLSSVR), as below [63].

K(Xi, Xj) = ((Xi, Xj) + 1)d,

K(Xi, Xj) = e−
‖Xi−Xj‖

2

σ2 ,

where d is a positive integer, and σ is positive.
The dual problem of ν-SVR, LS-SVR, and TSVR are as follows.
ν-SVR: the authors of [18,61] define the dual problem of ν-SVR, as
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Max{gDv−SVR = −1
2 ∑

i∈RSV
∑

j∈RSV
(α∗i − αi)(α

∗
j − αj) · K(Ai, Aj) ∑

i∈RSV
(α∗i − αi) · yi} (14)

s.t. :
N

∑
i=1

(α∗i − αi) = 0,

0 ≤ α∗i ≤
C
N

,

N

∑
i=1

(αi + α∗i ) ≤ C · v, i = 1, . . . , N.

LS-SVR: the authors of [64] define the dual problem of LS-SVR as

Max{gDLS−SVR = −1
2

N

∑
i=1

N

∑
j=1

(αi · αj · K(Ai, Aj))+
N

∑
i=1

(αi · yi)−
N
2C
·

N

∑
i=1

α2
i } (15)

s.t. :
N

∑
i=1

αi = 0.

TSVR: the authors of [34] define the dual problem of TSVR, as

Max{gDTSVR = −1
2

αT H(HT H)−1HTα + f T H(HT H)−1HTα− f Tα} (16)

s.t. : 0 ≤ α ≤ C1e.

Max{gDTSVR = −1
2

γT H(HT H)−1HTγ− hT H(HT H)−1HTγ + hTγ} (17)

s.t. : 0 ≤ γ ≤ C2e.

where, H =
[
K(A, AT)e

]
.

In Figure 4, wind-speed forecasting-results at Ai-point of the above four models are presented
after 10 min. Figure 5 shows the error statistic of wind-speed prediction using the above four models
after 10 min. In Figure 6, wind-speed forecasting-results at Ai-point of the above four models are
presented after 30 min. Figure 7 shows the error statistic of wind-speed prediction using the above
four models after 30 min. In Figure 8, wind-speed forecasting-results at Ai-point of the above four
models are presented after 50 min. Figure 9 shows the error statistic of wind-speed prediction using
the above four models after 50 min. Tables 2–4 display the statistical criteria of MAE, RMSE, SSE/SST,
SSR/SST, and teTime.

Table 2. Error statistics of four short-term wind speed forecasting models after 10 min.

Model MAE (m/s) RMSE (m/s) SSE/SST SSR/SST teTime (s)

ν-SVR 0.4797 0.6799 0.2603 0.4552 0.68

LS-SVR 0.4434 0.6366 0.2282 0.5064 0.66

TSVR 0.4182 0.6161 0.2137 0.5270 0.56

GLM-TLSSVR 0.4091 0.6069 0.2074 0.5384 0.55
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Table 3. Error statistics of four short-term wind speed forecasting models after 30 min.

Model MAE (m/s) RMSE (m/s) SSE/SST SSR/SST teTime (s)

ν-SVR 0.7596 1.0041 0.4378 0.2365 0.71

LS-SVR 0.7131 0.9466 0.3891 0.2932 0.68

TSVR 0.6167 0.8546 0.3171 0.3793 0.59

GLM-TLSSVR 0.5787 0.8204 0.2923 0.4197 0.57

Table 4. Error statistics of four short-term wind speed forecasting models after 50 min.

Model MAE (m/s) RMSE (m/s) SSE/SST SSR/SST teTime (s)

ν-SVR 0.7781 0.9877 0.4333 0.2227 0.77

LS-SVR 0.7252 0.9202 0.3761 0.2714 0.69

TSVR 0.6566 0.8485 0.3198 0.3287 0.65

GLM-TLSSVR 0.6121 0.8005 0.2847 0.3702 0.58

Figure 4. Result of four short-term wind speed forecasting models after 10 min.

Figure 5. Error of four short-term wind speed forecasting models after 10 min.



Entropy 2020, 22, 1102 13 of 18

Figure 6. Result of four short-term wind speed forecasting models after 30 min.

Figure 7. Error of four short-term wind speed forecasting models after 30 min.
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Figure 8. Result of four short-term wind speed forecasting models after 50 min.

Figure 9. Error of four short-term wind speed forecasting models after 50 min.

From Tables 2–4 and Figures 4–9, these evaluation criteria can indicate that the error statistic
of GLM-TLSSVR model is better than that of models ν-SVR, LS-SVR, and TSVR. As the forecast
time interval increases from 10-min. to 30-min. and 50-min., the forecasting error of the four
models increases and the relative error decreases. Therefore, in these cases, it is not so important.
However, as can be seen from Tables 2–4, under all conditions of MAE, RMSE, SSE/SST, and SSR/SST,
the model GLM-TLSSVR with Gaussian–Laplace mixed noise characteristics is slightly better than
the other three classical ν-SVR, LS-SVR and TSVR models. In general, a lower value of MAE, RMSE,
and SSE/SST reflects the consistency between the predicted values and true values, while the higher
values of SSR/SST indicate that the regressor accounts for higher statistical information. Further,
the performance indices indicate that GLM-TLSSVR outperforms ν-SVR, LS-SVR, and TSVR for
short-term wind speed data set in terms of SSE/SST, RMSE, and MAE. The ratio of SSR/SST can
estimate the goodness of fit of the predictive model and extract the maximum information from
the data set. Therefore, the proposed model GLM-TLSSVR is considered to be the best regression
indicator among all of the models. The SSE/SST is lower for GLM-TLSSVR when compared to other
methods that imply good estimation between real values and predictive values from Tables 2–4.
In addition, among all of the models, the computational cost of testing model GLM-TLSSVR is the
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lowest, which indicates that our proposed iterative methods are the efficient algorithm for regression,
on the other hand, the reason is that this proposed model GLM-TLSSVR combines the spirit with the fast
speed of LS-SVR yields a new regressor. In addition, the generalization performance of the proposed
model GLM-TLSSVR is best, i.e., it owns the smallest and largest evaluation criteria, respectively, viz.
RMSE, and SSR/SST from Tables 2–4; this is mainly due to the idea of twin hyperplanes.

6. Conclusions

Many regression techniques today assume that this model is a single noise characteristic.
Wind speed prediction is complicated by its volatility and uncertainty, so it is difficult to model with a
single noise distribution. This section summarizes our main work: (1) we use the Bayesian principle to
derive the best empirical risk loss of G-L mixed noise characteristics; (2) the TLSSVR model of G-L
mixed homoscedastic noise (GLM-TLSSVR) and G-L mixed heteroscedastic noise (GLMH-TLSSVR)
for complicate noise is developed; (3) use the Lagrange function and obtain the dual problem of
GLM-TLSSVR and GLMH-TLSSVR according to KKT conditions; (4) solve the GLM-TLSSVR by the
ALM method, ensuring the stability and effectiveness of the algorithm; (5) use the proposed technique
to predict the future short-term wind speed, calculate wind speed based on past data, and then predict
wind speed at some time after 10, 30, and 50 min, respectively. Based on our results, it is observed
that GLM-TLSSVR outperforms ν-SVR, LS-SVR, and TSVR for the short-term wind speed data-set,
as shown in the experiment. Further, the ratio of SSR/SST can estimate the goodness of fit of the
predictive model and extract the maximum information from the data set. Therefore, the proposed
model GLM-TLSSVR is considered to be the best regression indicator among all of the models. A low
ratio of SSE/SST implies good estimation between real values and predictive values. In addition,
the computational time for all the models is evaluated and it is found that GLM-TLSSVR is the
lowest, owing to its smaller sized constrained optimization. These results also bring many benefits
to the industrial sector, such as better statistical analysis of the relationship between wind speed
characteristics and power generation.

There are uncertainties in the data in some actual regression problems. Uncertainty, like this
accident, is mainly reflected in the uncertain time of the accident, the uncertain situation of the
accident, and the uncertain direction of the accident. We should study the regression algorithm of
fuzzy uncertainty with mixed noise characteristics models. In addition, our work only discusses the
problem of regression models with Gaussian–Laplace mixed noise characteristics. In fact, we can
develop similar problems to classification learning. In a similar idea, we can still study the classification
problems with Gaussian–Laplace mixed noise characteristics in the future.
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