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Mutations of the insulin-like receptor in Drosophila extend lifespan. New research
suggests this receptor operates in two modes. The first extends lifespan while slowing
reproduction and reducing growth. The second strongly extends lifespan without
impairing growth or reproduction; it confers longevity assurance. The mutation that
confers longevity assurance resides in the kinase insert domain, which contains a
potential SH2 binding site for substrate proteins. We apply a recent model for the
function of receptor tyrosine kinases to propose how insulin receptor structure can
modulate aging. This concept hypothesizes that strong insulin-like ligands promote
phosphorylation of high threshold substrate binding sites to robustly induce
reproduction, which impairs survival as a consequence of trade-offs. Lower levels of
receptor stimulation provide less kinase dimer stability, which reduces reproduction and
extends lifespan by avoiding reproductive costs. Environmental conditions that favor
diapause alter the expression of insulin ligands to further repress the stability of the
interacting kinase domains, block phosphorylation of low threshold substrates and thus
induce a unique molecular program that confers longevity assurance. Mutations of the
insulin receptor that block low-phosphorylation site interactions, such as within the kinase
insert domain, can extend lifespan while maintaining overall dimer stability. These flies are
long-lived while maintaining reproduction and growth. The kinase insert domain of
Drosophila provides a novel avenue from which to seek signaling of the insulin/insulin-
like growth factor system of humans that modulate aging without impacting reproduction
and growth, or incurring insulin resistance pathology.
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INTRODUCTION

Mutations of the insulin/IGF tyrosine kinase receptor slow aging in Drosophila and C. elegans, and
perhaps as well in humans (1–3). These invertebrates have single insulin/IGF-like receptors, InR in
Drosophila and DAF-2 in C. elegans. Besides aging, these receptors regulate traits including
development, growth, metabolism, reproduction, sleep, behavior, and Dauer/diapause (4–10). In
mammals, a family of insulin, IGF, relaxin, and insulin-like peptides modulate many functions
including metabolism, cell cycle, development, reproduction, cognition, and vascular physiology
(11–13), where adult insulin and IGF1 signals via three dimeric receptors [IR, IGF1-R, IR/IGF1R
n.org March 2021 | Volume 12 | Article 6498801
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hybrid (14)]. In contrast, the single invertebrate insulin-like
receptors respond to a number of unique insulin-like ligands,
seven in Drosophila and as many as 40 in C. elegans (15, 16).
Despite their centrality, little is understood about how these
invertebrate insulin-like ligands control such an array of distinct
phenotypes. Here we explore a potential solution. We integrate
new observations derived from single amino acid substitutions of
Drosophila InR (17) with the receptor tyrosine kinase (RTK)
threshold model of Zinkle and Mohammadi (18). We will
propose that the level of insulin-stimulated dimer stability
determines which substrate binding sites are activated to
impact specific traits. Mutations of InR may slow aging
because they reduce overall receptor dimer stability or because
they directly modify binding sites. This model suggests how
insulin-like receptors might slow aging without insulin-
resistance and how diverse Drosophila insulin-like ligands
control unique sets of traits. The model provides a framework
to understand where and how modified insulin/IGF signaling
can affect human aging.
THE THRESHOLD MODEL OF RECEPTOR
TYROSINE KINASE SIGNALING

Receptor tyrosine kinases (RTK) are single-pass transmembrane
proteins that transduce extracellular ligand binding into kinase
activity. Strongly bound ligands are thought to induce sustained
kinase activity to promote outputs distinct from those of weak
ligands, which produce transient or low kinase activity; the
intensity and duration of intracellular signaling pathways
determines the cellular response (19). As reviewed in Zinkle
and Mohammadi (18), this process was first proposed for rat
PC12 cells where the duration of MAPK activation differentially
promotes neurite outgrowth versus cell proliferation,
independent of ligand or receptor identity (19). In a second
example, isoforms of fetal growth factor (FGF) ligand FGF8a and
FGF8b differentially induce the midbrain to differentiate or
expand. This specificity, however, is based on the relative
abundance of each isoform and the associated magnitude of
Ras/MAPK induction, not upon the ligand identity (20).

RTK also phosphorylate binding sites within their
juxtamembrane (JM), C-terminal tail, and kinase domains.
These sites recruit adapter proteins including those with Src
homology 2 (SH2), phosphotyrosine-binding (PTB), and SH3
domain-binding sites. The identity of recruited substrate
specifies which transduction pathways the receptor activates
(21–23). Thus, mutation of one docking site can alter one
particular outcome without affecting others, for instance when
mutation of the Grb2-recruitment site on the canine kidney cell
MET receptor blocks tubulogenesis without disrupting cell
dissociation (24). In this view, the quality of the receptor-
protein interaction determines the cellular response.

Zinkle and Mohammadi (18) integrate how the intensity of
activation and the quality of interactions determine RTK
function. Ligand binding causes receptor tyrosine kinase
protomers to dimerize or in the case of IR preformed dimers
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cause the intracellular domains to structurally reorient (25).
Repositioning of IR intracellular domains is induced when
insulin binds multiple ectodomain sites upon both protomers
to affect hinge motions that bring each internal kinase domains
into proximity, permitting them to asymmetrically
transphosphorylate A-loop tyrosine residues (26–28). This
transactivation stimulates subsequent kinase activity to
phosphorylate endodomain tyrosine residues and substrate
binding proteins. Central to the model (18), the level of
stability between the repositioned intracellular domains
determines which endodomain tyrosine residues are
phosphorylated, where adaptor binding sites have unique
phosphorylation thresholds. High affinity insulin ligands will
have fast on-rates and slow off-rates at receptor binding sites and
thus continuously stabilize the dimer to phosphorylate both low-
and high-threshold sites (Figure 1A). Relatively weak or
transient ligands will have slower on-rates and faster off-rates
and consequently induce weak dimer stability that only activates
binding sites with low phosphorylation thresholds. As a general
point for the model relevant for any RTK, although thresholds
are ordered, cellular responses need not be nested because signals
from a high threshold site can inhibit the output from lower
threshold sites (Figure 1B).

Overall, Zinkle and Mohammadi synthesize both perspectives
of RTK operation: the intensity and duration of dimer stability
regulates which binding proteins are activated, and these
substrates specify the cellular outcome of the stimulated
receptor. Here we develop how this threshold model helps
explain control of aging by insulin-like receptors. First we
describe longevity-extending mutations of Drosophila InR and
C. elegans daf-2, and introduce known adaptor proteins of InR.
THE DROSOPHILA AND C. ELEGANS
INSULIN-LIKE RECEPTORS

Gems, Patel, and colleagues classified multiple mutations of the
C. elegans insulin-like receptor daf-2 (29, 30). “Class 1” mutants
include substitutions in the extracellular CR, L2, and FnIII
domains. These induce dauer, an alternative quiescent
developmental stage, and promote adult longevity. “Class 2”
substitutions reside in the L1 ligand pocket, the CR ectodomain,
and the intracellular tyrosine kinase domain. These alleles induce
dauer and extend lifespan, but also variously affect feeding,
reproduction, movement, and growth (29). Class 1 and Class 2
alleles stimulate unique transcriptional profiles (30). To explain
these differences, Patel (30) suggested Class 1 mutants reduce
DAF-2 abundance and thus activate the transcription factor
DAF-16/FOXO. Class 2 alleles were thought to increase
receptor perdurance and thereby reduce interaction with Ras-
associated substrates while retaining signal induction of PI3K/
Akt. From extensive phenotypic analyses, these authors suggest
the DAF-2 receptor has two distinct functional outputs.

We recently studied how mutations in Drosophila InR affect
aging (17). InR is generated from three alternative 5’UTRs (31, 32)
to produce isoforms differing by a 368-amino acid C-terminal tail
March 2021 | Volume 12 | Article 649880
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(33–35). Based on our analysis of codon substitutions, InR appears
to modulate aging through distinct modes (Table 1). As
transheterozygotes, Mode 1 alleles increase survival, decrease egg
production, reduce body size, and repress insulin-stimulated Akt
phosphorylation (17). Among genotypes from these alleles,
lifespan negatively correlates with egg production (Figure 2A),
consistent with theory for how aging arises when selection
optimizes fitness (47). These pro-longevity mutations produce
amino acid substitutions in the extracellular FnIII domain
(extracellular V810D), and in conserved residues of the kinase
A-loop and the kinase C-lobe (Figure 2B). As a group, these
substitutions are likely to destabilize protomer endodomain
interaction or directly inhibit kinase catalytic function (27, 28).
Frontiers in Endocrinology | www.frontiersin.org 3
Mode 2 is represented by the dominant allele InR353 (17).
Adult heterozygotes (wildtype/InR353) have robustly increased
lifespan but remarkably so without decreasing reproduction or
growth (Table 1). Unlike Mode 1 flies, tissue from the InR353

heterozygotes strongly induces pAkt in response to insulin—they
are not insulin resistant. When InR353 is combined with Mode 1
alleles, adults lay fewer eggs and lifespan is increased by the
combined effects of reduced survival costs of reproduction added
to the longevity assured by InR353 (Figure 2A).

The InR353 substitution Arg1466Cys lies within the kinase
insert domain (KID) (Figure 2C), an unstructured peptide
segment that interrupts the kinase domain of many RTKs (48).
Arg1466 of Drosophila is homologous to Arg1092 of the human
A

B

FIGURE 1 | The Receptor Tyrosine Kinase threshold model of Zinkle and Mohammadi applied to the insulin-like receptor. (A) Structural reorientation of insulin-like
protomers is induced by ligand binding. Strong binding ligands have fast-on/slow-off rates and produce highly stable interactions of the internal kinase domains. This
permits phosphorylation of endodomain substrate binding sites that have high as well as low thresholds, thus recruiting a full complement of available substrate
proteins. Weaker ligands produce moderate kinase domain interaction stability and thus only induce residue phosphorylation at sites with a relatively low stability
threshold. In the absence of ligand, or when the receptor is bound by an antagonist ligand, protomers fail to reorient or are highly unstable. In this state, the kinase
domains do not phosphorylate substrate residue sites and few if any substrate binding protein are engaged. (B) Signal feedback among hierarchical thresholds can
produce unnested signaling outcomes. As an example: In weak stability activation of the receptor, low threshold binding protein interactions activate a signal
pathway through the substrate protein a to induce a transcriptional program X. This program is not necessarily activated, however, when the receptor gains greater
stability, even though the substrate protein a is recruited. A high threshold substrate interaction that activates binding protein A may simultaneously propagate
signaling to induce the transcriptional program Z and repress signaling otherwise propagated by a.
March 2021 | Volume 12 | Article 649880
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insulin receptor (49). In humans, the insulin receptor mutation
Arg1092Glu produces Donohue syndrome where heterozygotes
are largely normal while homozygotes are strongly insulin
resistant, small, and inviable (50). Overall, the function of
kinase insert domains is poorly understood but whereas the
human IR and IGFR domains are short, the longer Drosophila
KID contains a potential SH2 binding motif (Tyr1477-Leu-Asn;
Figure 2C). This site may recruit an adaptor protein, potentially
Grb2 as seen in the KID of mammalian PDGFR, CSF1R, and Kit
(48). We hypothesize the InR353 substitution disrupts this
receptor-protein interaction to induce longevity assurance—a
homeostatic program that increases somatic survival
independent of reproductive trade-offs (51).
ADAPTOR AND SUBSTRATE PROTEINS
OF DROSOPHILA INR

A number of receptor-adaptor protein interactions are
documented for the Drosophila insulin receptor. The C-
terminal tail of InR recruits Chico (homolog of IRS1-4),
although apparently without phosphorylating this substrate
(52, 53). The tail likewise contains YXXM motifs to recruit the
Frontiers in Endocrinology | www.frontiersin.org 4
p85/p60 subunit of PI3-kinase (34), and PXXP sequences for the
SH2/SH3 adapter Dock (homolog of mammalian Nck) (54).
Dock modulates photoreceptor axon guidance but does not affect
growth. No data address if protein interactions with the C-
terminal tail affect aging.

The juxtamembrane domain (JM) of InR also recruits Chico,
using NPXY residues conserved in the human insulin receptor
(42, 53). Interaction between InR and Chico is mediated by the
SH2B1 adaptor protein Lnk (44, 45, 55). In mammals, SH2B1 is
recruited to insulin receptor A-loop phosphotyrosines (56, 57).
In Drosophila, Lnk colocalizes InR and Chico to promote
phosphorylation of Akt (55). Genetic loss of Lnk extends
longevity, reduces body size, and represses fecundity (Table 1).

Mutation of chico itself slows aging (Table 1). Appropriate for
the centennial of insulin discovery, chico is debated to harken
back to 1919, potentially as an allele of the mutation flipper
identified by Bridges and Mohr (see https://flybase.org/reports/
FBgn0000675). Modern chico mutant alleles are transposon
insertions initially characterized to elevate lipids, and impair
cell size and number (42, 58). Homozygotes of the mutant chico1

are small, long-lived, and sterile; wildtype/chico1 heterozygotes
are also long-lived and similar to wildtype/InR353 these adults
have normal growth and fertility (36–38) (Table 1).

Chico is a substrate adapter protein. It recruits SH2/SH3
domain-containing proteins including the p85/p60 subunit of
PI3K and the Grb2 homolog Drk (Downstream of receptor
kinase) (42, 53, 59). Oldham expressed chico-transgenes in
chico1 homozygotes (59). Wildtype chico-transgenes rescued
body size and fertility. Transgenes that only restored Grb2/Drk
binding did not rescue these traits while those that restored p60/
PI3K restored growth and reproduction. Slack (40) used this
design to study aging. The exceptional longevity of chico1

heterozygotes reverted to normal by addition of a wildtype
chico transgene but not when the chico transgene contained
only functional p60/PI3K sites or only functional Grb2/Drk sites.
Overall, Chico controls p60/PI3K/Akt to modulate growth,
metabolism, and longevity, but its effects through Grb2/Drk
appear to be limited to aging.

As in mammals, activated InR phosphorylates Akt to repress
Drosophila Foxo, the homolog of mammalian FOXO1-4 and C.
elegans DAF-16. As seen for daf-16, foxo is required for insulin
receptor mutations to extend Drosophila lifespan (39, 46). Gene
targets of these transcription factors in both invertebrates reveal
many distal mechanisms to slow aging (60–62). Parallel to Akt-
Foxo, Drosophila Grb2/Drk regulates Ras to control signaling
through Erk (63). Slack (40) demonstrated Chico acts through
Ras-Erk to regulate the E-twenty-six transcription factor
Anterior Open (Aop). Aop is required for chico mutations to
extend lifespan, however no data yet shows if this interaction is
downstream of InR rather than other potential IRS-regulatory
receptors (64).

These observations provide three touchpoints. First,
mutations of InR may affect aging through altered kinase
activity while another may act by altering adapter protein
interaction. Second, InR353 and chico1 are dominant alleles that
produce long-lived adults that are unexpectedly large and
TABLE 1 | Phenotypes of Drosophila insulin/IGF receptor and substrate protein
mutations.

Genotype Lifespan
increaseDays
(proportion)

Net fecundity,
proportion

Adult size,
proportion

Ref

Mode 2: Increase longevity without reduced fecundity or growth
WT/InR353 10–16 d (1.2–1.4) 1.6 1.0 (17)
WT/chico1 14–18 d (1.3–1.4)

10 d (1.4)
3–16 d (1.1–1.4)
12–22 d (1.2–1.5)

8 d (1.1)
10 d (1.2)

2.0
0.80

1.0
1.0

(36)
(37)
(38)
(39)
(40)
(41)

Mode 1: Increase longevity with reduced fecundity or growth
InR74, InRE19,
InR211

6–14 d (1.2–1.4) 0.05–0.75 0.81–0.88 (17)

chico1/chico1 16 d (1.3)
16 d (1.6)

12–22 d (1.2–1.5)
18 d (1.4)

sterile 0.40–0.50
0.35

(36)
(37)
(38)
(42)
(41)

Lnk/Lnk
(SH2B1)

5–8d (1.0–1.1) <0.2 0.60–0.65 (43)
(44)
(45)

InR-DN 9–13 d (1.2–1.4) 0.19–0.86 0.55 (46)
UAS-p110 5 d (1.1) 0.73 (46)
Compiled from sources that together describe lifespan and reproduction (female); and
adult size when available. Values for lifespan are the average gain in median survival relative
to wildtype controls, in days and as a proportion relative to control. When shown, range is
among replicate trials within the publication. Fecundity: net egg production per female
across the measured duration of each genotype relative to wildtype. Adult size based on
mass or wing area, as a proportion relative to wildtype. Empty cells: data not available.
Upper table compilesMode 2 genotypes: longevity is extended without reduced fecundity
or impaired growth; representing longevity assurance. Lower table compiles Mode 1
genotypes: longevity is extended while reproduction and growth are impaired;
representing life history trade-offs.
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A

B

C

FIGURE 2 | Characteristics of single amino acid substitution of the Drosophila insulin-like receptor. (A) Relationship of genotype average median lifespan relative to rate
of egg production, from Yamamoto (17). Egg production rate is number of eggs produced daily scaled by the ovary size (number of ovarioles: ovary subunits). Lifespan is
the average of median survival among replicate trials and independent genetic accessions of each genotype. Blue regression: genotypes lacking the InR353 allele (“353” in
figure). Red regression: genotypes that include one InR353 allele. “E19” is the allele InRE19, a V810D substitution in the extracellular FnIII domain (17). Other alleles (InR74,
InR211, InR246; in figure “74,” “211,” “246”) are substitutions within the kinase domain. The +/+ genotype is wildtype coisogenic will all mutant alleles, co-derived by
homologous recombination; details in Yamamoto (17). (B) Model of kinase domain structure for the Drosophila insulin-like receptor. Subdomains: N-lobe (green), C-lobe
(gray), A-loop tyrosines (yellow), Kinase Insert Domain (magenta) within box. Substitution residues for kinase domain mutations in red; Tyrosine1477 of the proposed SH2
binding site within the KID. (C) Partial amino acid alignment of the C-lobe to include region of the KID in human IR, human IGF1R and Drosophila InR [alignments and
nomenclature from (17)]. Site of the InR353 substitution in red (R1466C), site of the proposed SH2 motif underlined in blue.
Frontiers in Endocrinology | www.frontiersin.org March 2021 | Volume 12 | Article 6498805
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fecund. Third, Chico appears to signal through SH2-Grb2/Drk-
Ras to modulate aging without affecting growth or reproduction,
while we suggest the InR kinase insert domain contains an
unrecognized SH2 binding motif. The Arg1466Cys substitution
of InR353 within the KID may destabilize Grb2/Drk direct
signaling to slow aging. These observations can be integrated
with the RTK threshold model to hypothesize how InR
regulates aging.
HYPOTHESIS: STABILITY THRESHOLDS
TO REGULATE AGING

Zinkle andMohammadi (18) propose stimulated RTK have varied
levels of dimer stability that progressively phosphorylate adaptor
binding sites, each with a characteristic threshold. Activated
binding sites interact with specific adaptor proteins to stimulate
unique cellular outcomes. We envision this model operates
within insulin-like receptors (Figure 3A). In Drosophila InR,
sites with high thresholds may include those that recruit Lnk
and Chico while sites with a relatively Low phosphorylation
threshold might recruit Grb2/Drk. In conditions favoring full
reproduction, abundant, strong insulin ligands interact
with InR to stabilize protomer kinase domain interaction.
Strong transphosphorylation and extensive kinase activity
phosphorylate both low (Grb2/Drk) and high threshold receptor
binding sites (Chico, Lnk), and efficiently phosphorylate substrate
proteins. The activated substrates transduce signals through Akt,
TOR, Ras, AMPK, and GSK to promote growth and reproduction.
These conditions are permissive for aging because lifetime
reproductive success is optimized through the balance of egg
production with associated survival costs.

In restricted conditions such as limited diet, adults secrete
fewer or different DILPs (65). We propose this moderately
reduces dimer stability to a level that dampens kinase activity
while Akt is still phosphorylated. The receptor propagates
less intense signaling, which reduces reproduction and
correspondingly increases survival. In extreme conditions,
such a season that induces diapause, we propose the
endocrine state minimizes InR dimer stability so that low
threshold residues become dephosphorylated. The SH2 motif
of the kinase insert domain may represent such a site. It may be
activated in normal conditions by insulin ligands to induce
Grb2/Drk-Ras/Erk signaling. However, in diapause conditions
key insulin ligands are repressed (67). We hypothesize this will
destabilize InR dimers to dephosphorylate the SH2/Grb/Drk
site of the KID, and thereby blunt Erk signaling to release
somatic maintenance programs that retards somatic aging.
Because of the hierarchy within the threshold model, high-
phosphorylation threshold sites of InR will not be activated in
this state of low dimer stability; Akt will not transduce pro-
reproductive signaling. This mechanism models InR regulation
of reproductive diapause; it simultaneously stalls reproduction
and assures somatic survival until favorable environmental
conditions return (68, 69).
Frontiers in Endocrinology | www.frontiersin.org 6
This model may explain how some insulin receptor mutations
slow aging without affecting reproduction or insulin sensitivity
(Mode 2). We hypothesize the Arg1466Cyr substitution disrupts
how Grb/Drk is recruited to the SH2 binding motif of the KID.
This mutation, however, does not destabilize the dimer and
heterozygous receptors therefore phosphorylate Akt and retain
kinase activity that propagate reproduction and growth.
Although, balancing this hypothesis, the drug Trametinib, a
selective MEK1 and MEK2 inhibitor, extends fly lifespan while
reducing fecundity (70). In contrast, Mode 1 mutations have
reduced kinase activity and are therefore insulin resistant (17).
We propose these mutations somewhat increase dimer
instability, but not to an extent that dephosphorylates Try1477.
Fecundity and growth are reduced with moderate loss of dimer
stability, and longevity is increased by mitigating survival costs
of reproduction.
DROSOPHILA INSULIN-LIKE LIGANDS

In this threshold model, receptor dimer stability will be
modulated by the quantity, quality, and bioavailability of
insulin-like ligands. Drosophila has seven insulin-like loci,
dilp1-7 (49, 66, 71). Based on dilp sequence from 12
Drosophila species, Gronke (66) concluded these ligand
peptides contain conserved cysteine disulfide bridges, bioactive
A and B chains, and functional signal peptides (Figure 3B).
DILP1, DILP6, and DILP7 are notable for their extended B-chain
N termini. DILP6 has a short C-peptide sequence and may thus
more resemble mammalian IGF. An alternative insulin-like
peptide was subsequently identified, dilp8, which encodes a
relaxin-like ligand that stimulates G protein-coupled signaling
(72, 73). The insulin-like peptide genes are expressed in varied
tissues from embryo to adult, and early work showed mutants of
these loci affect growth and metabolism (49, 74, 75). In normal
adults, dilp2-3, and 5 are primarily produced in median
neurosecretory cells (MNC) where they are released into the
brain, into secondary endocrine organs, and into circulation (74).
In contrast, adult dilp1 is only expressed in MNC during
reproductive diapause (76). The MNCs derive from anterior
neuroectoderm of the fly embryo, orthologous to vertebrate
adenohypophyseal placoid that is the developmental source of
mammalian islet-like endocrine cells (77). As well, dilp6 is
expressed in the fat body, a tissue with liver- and adipose-
related function (78, 79).

Synthetic and recombinant peptides have been used to reveal
the function of individual DILPs. Dimeric recombinant DILP5
binds human insulin receptors in a manner consistent with
negative cooperativity (80), and when injected into rats and
Drosophila the recombinant hormone transiently lowers
circulating sugar. DILP5 also interacts with the insect-binding
protein Imp-L2 (80, 81), likely to antagonize circulating insulin
(82, 83). Notably, elevated Imp-L2 is associated with extended
lifespan, even in conditions where dilp2, dilp3, and dilp5 mRNA
are elevated (84–86). It is not known which insulins aside from
DILP5 bind to Imp-L2.
March 2021 | Volume 12 | Article 649880
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A synthetic DILP2 was compared to DILP5 when these
peptides stimulated Drosophila S2 cells in culture (87). These
peptides induced broadly similar signaling elements (Akt, Erk,
S6K) and transcriptional profiles, but they also revealed unique
outputs. DILP5 produced high, continuous phosphorylation of
Akt whereas DILP2 only induced a transient response. In a
phosphoproteomic scan, DILP2 equally increased and decreased
the number of total phosphorylation sites while DILP5
overwhelmingly increased total phosphorylation. Several
Frontiers in Endocrinology | www.frontiersin.org 7
specific proteins were differentially phosphorylated by these
peptides. Notably, glycogen phosphorylase did not respond to
DILP5 but the enzyme was dephosphorylated and inactivated in
cells stimulated by DILP2, a response typical for human insulin.
Conversely, elevated glycogen phosphorylase activity was found
in dilp2 mutant flies, which are long lived, while transgenic
expression of GlyP was sufficient to extend lifespan. These data
demonstrate measurable differences among specific DILPs acting
through a common receptor. And they remind us that the action
A

B

FIGURE 3 | How insulin-like receptors and ligands may modulate aging relative to reproduction, growth and metabolism through the Receptor Tyrosine Kinase
threshold model. (A) The environment determines the level of insulin-like receptor dimer stability through control of Drosophila insulin like peptides (DILP). Peptides
with high binding activity (DILP5, perhaps DILP3) promote stable protomer kinase interaction, leading to strong kinase catalytic activity and phosphorylation of high
threshold substrate binding sites, activation of the adaptor proteins LNK, Chico and Grb, and signal transduction through AKT and Ras. This stimulates reproduction
and growth. Limited diet (or moderating environments) reduce DILP5 and DILP3 but retain DILP2 expression (65). DILP2 has reduced kinase dimer stability,
potentially sufficient to activate AKT and RAS through PI3K and Grb/Drk recruitment but with less kinase catalytic activity. This state sustains less reproduction.
DILP2 represses expression of dilp1. In extreme environments, flies enter diapause and express dilp1. We propose DILP1 is a competitive receptor antagonist.
Kinase dimer stability is minimized. High/moderate threshold sites required to activate Akt are not phosphorylated, ceasing reproduction. Low threshold sites
required to activate Grb/Drk are not activated. This impairs Ras signaling, which induces systems to support somatic survival (longevity assurance). This state
produces reproductive diapause. The InR353 mutation (Arg1466Cys), we propose, inhibits phosphorylation of Grb/Drk by the KID but does not (as observed) affect
the ability of the receptor to induce phosphorylation of Akt. The mutation unleashes the longevity assurance program of diapause while bypassing the loss of dimer
stability that would otherwise inhibit reproduction. (B) Sequences of the Drosophila insulin-like peptides DILP1-7, B- and A-chains, using cleavage sites predicted by
Gronke (66), with potential alternatives where the additional residues are noted in bold. Chains are aligned across bridge cysteines. Human insulin and insulin growth
factor 1 for comparison, numbered from insulin.
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of insulin-like peptides in aging can involve non-genomic,
cellular metabolic regulation independent of canonical FOXO
transcription factors.

Understanding DILP function in vivo is complicated because
mutation of one dilp changes the expression of others (66).
Nonetheless, abundant data shows longevity is extended when
dilp2 is reduced alone or with other insulins (66, 79, 88). dilp2
expression in adults is greatest on diet of low protein and high
sugar (65). In contrast, adult dilp1 is absent under normal
conditions soon after eclosion, but is elevated 14-fold in dilp2
mutants and 4-fold during diapause (76, 89). Post (89)
demonstrated that dilp1 is required for loss of dilp2 to extend
lifespan, but dilp1 is not required for the loss of dilp2 to induce
dilp3 and dilp5 or stimulate phosphorylation of Akt. In contrast,
loss of dilp2 represses pErk in a dilp1 dependent manner. DILP1
and DILP2 appear to have countervailing functions associated
with diapause, longevity, and Erk signaling.

These observations suggest how Drosophila insulin-like
peptides might regulate the outcomes of InR. We tentatively
propose DILP5 (and perhaps DILP3) strongly stabilizes InR
dimers; DILP2 transiently stabilizes the dimer; DILP1 inhibits
InR stability and competitively blocks other insulin-like ligands.
In good environments, DILP2, DILP3, and DILP5 promote
dimer stability and kinase activity. This activates pAKT and
pERK signal transduction to promote growth and reproduction.
In this state DILP2 simultaneously represses dilp1. Conditions of
limited diet repress dilp3 and dilp5 but not dilp2 (65); dimer
stability is moderately reduced. This state still phosphorylates
Akt but diminishes kinase signaling, which down-regulates
reproduction and improves survival. At the extreme, in
diapause, dilp1 is transcribed. Abundant DILP1 inhibits the
binding of other insulin ligands to the receptor, minimizes
dimer stability, prevents Akt phosphorylation to retard
reproduction, and extinguishes Grb2/Drk-Erk signaling to
induce systems of longevity assurance.

This sketch is speculative and incomplete. No work yet reveals
how DILP1 or DILP2 interact with InR, or how any DILP affects
dimer stability or substrate protein interaction. We have not
considered DILP6, perhaps the most IGF-like fly ligand, which
non-autonomous affects aging through its action in the fat body
(78, 79). Little functional data are available for DILP3 despite its
abundance in adults. There is much work ahead.
THE PARADOX OF INSULIN RESISTANCE
AND LONGEVITY

How could altered insulin-like signaling support healthy human
aging as found in C. elegans and Drosophila? One solution argues
the domain-defined functions of the invertebrate insulin-like
receptor are distributed across the mammalian IR and IGFR
receptors. The Arg1466Cys substitution of the Drosophila kinase
insert domain promotes longevity without impairing growth and
reproduction, or incurring loss of kinase activity (stimulated
pAkt). Similar outcomes arise in chico heterozygotes and when
the SH2/Grb site of Chico is blocked. None of these genotypes
Frontiers in Endocrinology | www.frontiersin.org 8
are particularly hyperglycemic or insulin resistant (17, 40).
Instead, insulin resistance occurs in InR genotypes where we
predict the mutations reduce stability of activated protomers.
These outcomes suggest we identify where the longevity
assurance function of the Drosophila KID translates to human
IR or IGFR. While the human kinase insert domains share the
KID sequence Arg-Pro-Glu where Arg1466Cys is substituted in
Drosophila InR353, the human KID are small and lack the SH2
motif proposed for Drosophila. It is possible in the evolution of
insulin-like receptors that some ancestral KID functions were
integrated into the four insulin receptor substrates of mammals,
as may also be the case of the Drosophila IRS-like C-terminal tail.
In particular, IRS2 contains SH2 binding motifs that recruit
Grb2, and mice mutant for IRS2 are long-lived (90). This
property of IRS2 could involve interactions with IGF1R
(91, 92). Notably, human polymorphisms in IGF1R are
associated with survival to extreme age (3), and mice
heterozygous for IGF1R are long-lived in some genetic
backgrounds (93). It would be interesting to explore how these
IGF1R genotypes affect specific phospho-sites of IRS2, and
whether they alter Grb/Ras/Erk signaling.

If human aging can be modulated by IGFR-IRS2, insulin
resistance is not required to slow aging (94), which is otherwise a
paradox attributable to invertebrate models. Insulin resistance
and slow aging indeed covary in Drosophila but the traits are
decoupled in a mutation of the KID that potentially avoids loss of
high dimer-stability signaling. Parallel benefits in humans might
occur through elements of IGFR-mediated signaling rather than
through reduced insulin sensitivity.
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