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Abstract

Racial and ethnic disparities in adverse pregnancy outcomes (APOs) have been well-documented 

in the United States, but the extent to which the disparities are present in high-risk subgroups 

have not been studied. To address this problem, we first applied association rule mining to 

the clinical data derived from the prospective nuMoM2b study cohort to identify subgroups 

at increased risk of developing four APOs (gestational diabetes, hypertension acquired during 

pregnancy, preeclampsia, and preterm birth). We then quantified racial/ethnic disparities within 

the cohort as well as within high-risk subgroups to assess potential effects of risk-reduction 

strategies. We identify significant differences in distributions of major risk factors across racial/

ethnic groups and find surprising heterogeneity in APO prevalence across these populations, both 

in the cohort and in its high-risk subgroups. Our results suggest that risk-reducing strategies that 

simultaneously reduce disparities may require targeting of high-risk subgroups with considerations 

for the population context.
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1. Introduction

The U.S. department of Health and Human Services defines health disparity as a particular 

kind of health difference that is closely linked with social, economic, and/or environmental 

disadvantage.1 The American healthcare system has many examples of disparities between 

communities.2–4 In 2016–2018, the all-cause mortality rate among Black populations was 

24% higher than among White populations nationally.5 Similarly, the Hispanic population 

in the USA has lesser access to health insurance than other racial/ethnic groups—before the 

implementation of the Affordable Care Act in 2014, 30% of Hispanic individuals reported 

no health insurance as compared to 11% of non-Hispanic White individuals.

In addition to the adverse consequences for the affected people and their communities, 

health disparities result in larger economic burden for the entire nation.6,7 Eliminating health 

disparities could have reduced direct medical expenses by approximately $230 billion, and 
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indirect productivity costs by more than $1 trillion for the years 2003–2006, with the most of 

the estimated cost reduction attributed to the generally poorer health outcomes of the Black 

and Hispanic communities.6

Adverse pregnancy outcomes (APOs) such as gestational diabetes mellitus (GDM), 

preeclampsia (PReEc), preterm birth (PTB) and new hypertension (NewHTN) are known 

to disproportionally affect racial/ethnic groups. As an example, a study of 5,562 women 

found the rate of GDM was the highest among Asian American women (16%), followed 

by non-Hispanic Black women (9%), Hispanic women (11%), and non-Hispanic White 

women (8%).8 In another study, non-Hispanic Black women were found to be significantly 

more likely to experience preterm birth, hypertensive disease of pregnancy, and small-

for-gestational-age birth than were non-Hispanic White women.9 Understanding these 

disparities is critical to ensuring equitable health outcomes; however, due to the complex 

interaction between biological, social, and environmental factors, the mechanisms that lead 

to their formation are difficult to identify. It therefore remains challenging to design policies 

or intervention strategies that can reduce both APO risks and existing disparities.10

When designing this study, we had four different goals in mind. First, to identify subgroups 

at high risk for APOs from a large cohort pregnant women. Second, to quantitatively 

measure racial/ethnic disparities within these high-risk subgroups and compare them to 

the population-level disparities. Third, to identify potential intervention strategies that may 

lead to the greatest reduction in APO prevalence. And fourth, to measure the impact 

of such intervention strategies on existing disparities. To achieve this, we obtained data 

from the diverse nuMoM2b cohort which contained clinical data for 10,038 nulliparous 

women,11 and used association rule mining to identify high-risk subgroups. By increasing 

the resolution of the disparity analysis from the population-level to high-risk subgroups, 

we gained additional insights into the interplay between the main risk factors and 

disproportionate health outcomes. In addition, by measuring the effects of potential 

intervention on disparity, we found that the largest risk-reducing intervention may not be the 

largest disparity-reducing intervention. This finding could have implications for the design 

of future clinical interventions, as risk factors may vary significantly across racial/ethnic 

groups.

2. Methods

2.1. The nuMoM2b cohort

The Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-To-Be (nuMoM2b) 

cohort was recruited prospectively to identify factors that contribute to APOs.11 The study 

enrolled 10,038 subjects from eight clinical centers in the US. Women were eligible for 

enrollment if they had a viable singleton gestation, had no previous pregnancy that lasted 

more than 20 weeks of gestation (i.e., nulliparous), and were between 6 0/7 and 13 

6/7 weeks of gestation at enrollment, which was also the first study visit. Haas et al.11 

provide an overview of the biospecimen collection, clinical measurements, and standardized 

questionnaire instruments that were collected during each of the three study visits and at 

delivery. The cohort is racially and ethnically diverse, with more than 4,000 individuals 

reporting race other than White, and has a high concordance between self-reported race and 
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inferred ancestry from genetic data.12 Operationally, the cohort comprises of 1,509 subjects 

positive for at least one APO. Of those, 807 were positive for PTB, 568 for preeclampsia, 55 

for fetal demise, 414 for GDM, and 406 experienced fetal growth restriction.

To capture an accurate representation of the participants prior to any clinical interventions, 

we used data from the first study visit only. For quality control, 10 individuals with high 

information missingness were excluded. To ensure our findings are based on sufficiently 

large sample sizes and to reduce possible confounding introduced by mixed cultural effects 

within groups, only self-reported races/ethnicities with more than 100 participants were 

included and participants who did not report race/ethnicity (n = 639) or reported more 

than one race (n = 486) were excluded. Participants were then assigned to one of four 

racial/ethnic groups based on their self-reported race and ethnicity: non-Hispanic Asian, 

non-Hispanic Black, non-Hispanic White, and Hispanic. In total, 8,903 participants were 

included in the final analysis.

Our study primarily relies on clinical variables and the features selected for analysis include 

basic demographic features and a curated set of features previously known to affect the 

likelihood of developing APOs.13 These include age, body mass index (BMI), family history 

of diabetes mellitus (Family DM), polycystic ovary syndrome history (PCOS), Alternate 

Healthy Eating Index-2010 (AHEI2010) score, activity levels measured by the metabolic 

equivalent of tasks (METs),14 and high blood pressure (High BP). The diet of a participant 

was considered “poor” if her AHEI2010 score was below the 25th percentile of all scores, 

“normal” if it was between 25th and 75th percentile, and “good” if it was above the 75th 

percentile. Consistent with previous studies, a participant’s exercise level was considered 

“inactive” if her METs is below 450 and “active” otherwise.14,15 Participants reporting 

age or BMI of zero were recoded as having missing age or BMI. For compatibility with 

downstream association rules analysis, age and BMI were discretized into intervals as 

defined by the nuMoM2b study.11

2.2. Clinical data as a transactional database

To find interesting and interpretable patterns in the nuMoM2b data, we converted it to 

a transactional database and performed association rule mining.16 An association rule is 

a probabilistic implication discovered from a transactional database. For example, in the 

context of nuMoM2b, a high-confidence rule {Race = Asian, Age > 40} ⇒ {GDM = 1} has 

the interpretation “Pregnant Asian women above the age of 40 are likely to be diagnosed 

with GDM”.

A transactional database D = {t1, t2, …, tm} is a set of transactions, where each transaction is 

a subset of items from ℐ = {i1, i2, …, in}. To represent a clinical database as a transactional 

dataset, we first convert the collected descriptors and clinical measurements into clinically 

relevant binary features such as {Race = Asian}, {Age > 40} and {GDM = 1}. Then for 

each subject in the cohort, we create a transaction containing only those binary features (as 

items) that are true for the subject. For example, based on the three features above, an Asian 

participant above the age of 40 and diagnosed with GDM, would be represented as {Race = 

Asian, Age > 40, GDM = 1}. In total, 25 binary features were created from Age (5), BMI 
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(5), Family DM (2), PCOS (2), High BP (2), Exercise (2), Diet (3) and APOs (4) in the 

nuMoM2b data.

2.3. Association rules

For a transactional database D defined on a set of items ℐ, an association rule is an 

implication of the form A ⇒ B, where A and B are disjoint subsets of ℐ and are referred 

to as the antecedent and the consequent of the rule, respectively. Typically, the evidence 

of a rule in D is quantified in terms of the confidence defined as fraction of transactions 

containing all items in B out of the transactions that contain all items in A. In other words, 

it quantifies the conditional probability of seeing B in a transaction given that A has been 

already seen. Formally,

ConfidenceD(A B) =
SupportD(A ∪ B)

SupportD(A) ,

where SupportD(A) is the fraction of transactions in D that contain A; i.e., 

SupportD A = DA / D , and DA = {t|A ⊆ t, t ∈ D} is the set of transactions containing A. 

Applying these definitions to the example above, ConfidenceD({Race = Asian, Age > 40} ⇒ 
{GDM = 1}) is the fraction of women diagnosed with GDM out of all Asian women above 

the age of 40 in the cohort; i.e., the empirical probability that a pregnant Asian woman above 

the age of 40 has GDM. SupportD({Race = Asian, Age > 40, GDM = 1}) is the fraction of 

Asian women above the age of 40 diagnosed with GDM in our cohort.

Association rules can be efficiently discovered with the Apriori algorithm.16 We apply 

Apriori to the transactional database created from the nuMoM2b data using the efficient-

apriori Python package with the parameters min support = 0.0005, min confidence = 0.001, 

and max length = 6. Afterwards, we extracted rules with APOs as the consequent; i.e., 

{GDM = 1}, {NewHTN = 1}, {PReEc = 1}, and {PTB = 1}.

2.3.1. Measuring clinical significance of association rules—While confidence is 

easily interpretable as a conditional probability, it fails to capture the relative improvement 

over the baseline probability of the consequent.17 Any rule A ⇒ B, where B has 

low support, is likely to have low confidence, irrespective of the relative increase in 

the conditional probability over the baseline. Such rules are still important in clinical 

applications; e.g., finding causal attributes for rare diseases. To overcome the limitations 

of confidence, we use positive likelihood ratios (LR+), a standard measure used in clinical 

settings.18 Formally,

LR+(A B) =
ConfidenceD(A B)/ 1 − ConfidenceD(A B)

SupportD(B)/ 1 − SupportD(B) ,

with asymmetric 95% confidence intervals determined by bootstrapping.19 We additionally 

test the null hypothesis that the association between A and B occurs by chance, using 

Fisher’s exact test, and compute the p-value.
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2.4. Quantitative measure of disparity

Disparity of outcomes across different groups can be measured in several ways and there is 

not a single best quantitative measure for it.20 We adopt the measure often used in the field 

of economics to study income inequalities, and define disparity as the Gini coefficient of 

APO prevalence rates among different populations.21 More formally, let a binary outcome 

variable Y (e.g., GDM) take values  = {0, 1}, where 1 (0) indicates presence (absence) of 

an APO. Let X be a variable of interest (e.g., racial/ethnic group) taking values in , where 

different values of X characterize different subpopulations of interest. Let p(x, y) be a joint 

distribution over variables X and Y . We define the disparity of Y with respect to (w.r.t.) X as 

the Gini coefficient of the conditional probabilities p(Y = 1|X = x) over all values of x ∈ ; 

i.e.,

δ(Y ∣ X) = Gini p(Y = 1 ∣ X = x) x ∈ X ,  where Gini(S) =
∑a ∈ S ∑b ∈ S a − b

2 S ∑a ∈ S a

computes the Gini coefficient of the set S. Note that Gini coefficient is scale independent, 

due to normalization by ∑a∈S a, unlike measures such as standard deviation. This property 

makes it ideal to compare disparity between two populations (e.g., before and after removing 

high-risk individuals) with outcomes on different scales.

We study disparity of APOs w.r.t. racial/ethnic groups in the nuMoM2b dataset. Under 

the disparity formulation given above, an APO ∈ {GDM, PReEc, PTB, NewHTN} serves 

as Y and racial/ethnic groups serve as X. Let D denote a cohort under study given as a 

transactional database defined on a set of items ℐ (Section 2.2). In particular, ℐ contains 

items Y = 1 and X = x for ∀x ∈ . D defines an empirical distribution over X and Y given 

by

pD(x, y) =
SupportD(X = x ∪ Y = 1) when y = 1,
SupportD(X = x) − SupportD(X = x ∪ Y = 1) when y = 0,

where SupportD(A) denotes the Support of an itemset A ⊆ ℐ computed on D. Furthermore, 

the conditional probability pD(Y = 1|X = x) under D is given by

pD(Y = 1 ∣ X = x) = ConfidenceD(X = x Y = 1),

where ConfidenceD(A ⇒ B) denotes the confidence of the rule A ⇒ B computed on D. Thus 

the disparity of the APOs (Y) w.r.t. racial/ethnic groups (X) on D is given by

δD(Y ∣ X) = σ pD(Y = 1 ∣ X = x) x ∈ X , where σ(S) = Gini(S) .

We are interested in the contribution of the high-risk subgroups, defined in terms of the risk 

factors such as age and BMI, towards the overall prevalence and the disparities of each APO. 

To do so, we evaluate the relative difference in APO prevalence and disparity when the 

high-risk participants are omitted from the cohort. Let R ⊆ ℐ be the attributes (not including 
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APO or racial/ethnic groups) identifying the high-risk individuals. Let DR = {t|R ⊆ t, t ∈ D} 

denote the set of transactions (individuals) in D that contain R. Let DR = D\DR be the set 

of transactions in D that do not contain R. The disparity of the APOs (Y) w.r.t. racial/ethnic 

groups (X) on DR is given by,

δDR(Y ∣ X) = σ pDR(Y = 1 ∣ X = x) x ∈ X . 

The relative change in disparity on removing the participants having all phenotypes/

attributes in R is given by

δDR(Y ∣ X) − δD(Y ∣ X)
δD(Y ∣ X) .

Similarly, for the subpopulation having X = x, the relative change in the APO prevalence 

rate on removing the participants having all phenotypes/attributes in R is given by

pDR(Y = 1 ∣ X = x) − pD(Y = 1 ∣ X = x)
pD(Y = 1 ∣ X = x) .

2.4.1. Identifying high-risk subgroups—To identify high-risk subgroups used in the 

disparity analysis, we started with the initial set of rules with the APOs in the consequent, 

that pass the support and confidence thresholds. The rules were further filtered based on 

the following inclusion criteria: LR+ value above 1; does not contain the variable of interest 

(race/ethnicity) in the antecedent; and the size of the antecedent is no more than 3.

3. Results

3.1. Association rules effectively identify high-risk subgroups

A total of 1,627 rules satisfied filtering criteria, among which 726 were nominally 

significant (p < 0.05) and 527 (GDM: 188; NewHTN: 130; PReEc: 119; PTB: 90) were 

significant after adjusting for multiple hypothesis testing using the Benjamini-Hochberg 

procedure.22 Among the statistically significant subgroups, 21 rules had one attribute in the 

antecedent, 146 rules had two attributes and 360 had three attributes. BMI and Age were the 

two most common attributes in the rules, where 339 rules (64.3%) contained a BMI attribute 

and 234 rules (44.4%) contained an Age attribute (Table S1).

The generated rules were able to capture many known risk factors that are common to all 

APOs. For example, obesity is a known risk factor for APOs and the subgroup {BMI ≥ 35} 

was generated as a high-risk subgroup with varying likelihood ratios in APOs (Table 1). In 

addition, the generated rules were also able to capture APO-specific high-risk subgroups. 

For example, older age is a risk factor for GDM23 and NewHTN,24 while younger age 

is a risk factor for PTB25 and PReEc.26 Consistently with prior findings, we observe 

the corresponding risk groups {Age = 35–39} and {Age < 18} being generated in the 

association rules. The association between dietary choices and risk on PReEc was recently 
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reported27 and we similarly see an increased risk for PReEc for the subgroup that has poor 

diet.

Furthermore, association rules were able to identify high-risk subgroups from combinations 

of features where each feature individually may not necessarily be a strong risk factor. Such 

combinations of features also allow for investigating the impact of a singular feature on 

an existing subgroup. All generated rules are listed in Supplementary Table S1, which is 

available online at the project github (https://github.com/hoyinchu/PSB_2023_Supplement).

3.2. Disparity is highly heterogeneous within and across APOs

We assessed the level of disparity over the entire cohort as well as in high-risk subgroups 

finding significant heterogeneity across APOs (Fig. 1, Table 2) and risk groups (Table S1). 

For example, Black participants have the lowest prevalence of GDM compared to other 

groups (3.1%), but the highest rates of all other APOs (9.3% in PReEc, 11.1% in PTB, 

19.4% in NewHTN). Asian participants have the highest rate of GDM (10.8%), while also 

having the lowest rate of PReEc (3.2%). The rates of APOs in White participants are 

comparable to those in Hispanic, except for NewHTN (17.2% vs. 10.7%). Surprisingly, 

disparities in high-risk subgroups do not follow a regular pattern either. In GDM, for 

example, the disparity of the {Age = 35–39} subgroup (LR+ = 2.5; p = 4.7 × 10−7) is 

reduced from 0.268 (population; Table 2) to 0.112 (high-risk subgroup; Table S1), whereas 

the disparity of the {BMI = 30–35} subgroup (LR+ = 1.9; p = 1.1 × 10−6) is increased to 

0.356 (Table S1). Similar patterns were observed in other APOs.

3.2.1. Disparities in high-risk GDM subgroups—For simplicity and interpretability, 

we focus our analysis mainly on single-attribute high-risk subgroups. In GDM, the {Age ≥ 

40} subgroup has the highest LR+ compared to other single-attribute subgroups, followed by 

the {Age = 35–39}, and {High BP = 1} subgroups; Fig. 2a. Among these subgroups, the 

one with the highest disparity measure was also the {Age ≥ 40} subgroup, followed by the 

{BMI = 30–35} and {High BP = 1} subgroups (Table S3). We then evaluated the proportion 

of GDM patients in each of these subgroups to understand how these risk-factors may 

differentially impact races/ethnicities. We found that across risk-factors, Asian participants 

have higher rates of GDM compared to other races/ethnicities within the same subgroup 

except in the {Age = 35–39} subgroup (Table S4). In particular, the rate of GDM is 

considerably higher in the {Age ≥ 40} subgroup, which is also the subgroup with the highest 

GDM disparity measure (Table S3).

We next investigated the contribution of GDM rates from each high-risk subgroup to the 

overall GDM rate in the cohort by calculating the relative difference between the rate of 

GDM before and after the subgroup is removed from the cohort; see Methods. We observe 

the largest decrease in GDM rate if the {Family DM = 1} subgroup is omitted, followed by 

{BMI ≥ 35} and {BMI = 30–35} subgroups; see Fig. 2b and Table S5. Subsequently, we 

calculated the relative change in disparity if these subgroups were to be omitted. We observe 

the greatest decrease in GDM disparity when the {Age ≥ 40} subgroup is omitted (Fig. 2c), 

which is reflected in the large decrease in GDM rate in Asian participants (Table S6).
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3.2.2. Disparities in high-risk NewHTN subgroups—In NewHTN, the top three 

single-attribute subgroups with the largest LR+ are {BMI ≥ 35}, {BMI = 30–35} and {Age 

= 35–39} (Fig. 3a), where the disparity measure is the highest in the {BMI = 25–30}, {BMI 

≥ 35} and {Family DM = 1} subgroups (Table S3). The relative prevalence of NewHTN by 

race/ethnicity in each high-risk subgroup is highly heterogeneous: in high BMI groups such 

as {BMI = 25–30} and {BMI ≥ 35}, Asian participants have the highest rate of NewHTN, 

whereas White participants have the highest NewHTN rate in the {Age = 35–39} groups and 

Black participants have the highest NewHTN rate in the {Family DM = 1} group, as shown 

in Table S4.

When omitted from cohort, the top three single-attribute subgroups that result in the largest 

reduction in NewHTN rate were all BMI-related ({BMI ≥ 35}, {BMI = 30–35}, {BMI 

= 25–30}); see Fig. 3b. However, only the {BMI ≥ 35} subgroup led to a decrease in 

disparity measure when omitted (Fig. 3c). The racial/ethnic group for which the reduction in 

NewHTN risk was the highest was also different for each BMI subgroup, where omitting the 

{BMI ≥ 35} subgroup leads to the greatest reduction in NewHTN risk in Black participants, 

omitting the {BMI = 30–35} subgroup leads to the greatest reduction in NewHTN risk 

in Hispanic participants, and omitting the {BMI = 25–30} subgroup leads to the greatest 

reduction in NewHTN risk in Asian participants (Table S6).

3.2.3. Disparities in high-risk PReEc subgroups—The subgroup with the highest 

LR+ for PReEc is the {High BP = 1} subgroup, followed by the {BMI ≥ 35} and {BMI = 

30–35} subgroups (Fig. 4a, Table S3). The disparity measures for each of these subgroups 

are also similar, with {High BP = 1}, {PCOS = 1} and {Age < 18} being the three 

subgroups with the highest disparity (Fig. 4b), two of which are also in the highest disparity 

subgroups for PTB. The rates of PReEc by race/ethnicity are comparable as well, with Black 

participants having higher rates of PReEc across similar risk factors (Table S4).

The top three best PReEc risk-reducing when omitted single-attribute subgroups are {BMI 

≥ 35}, {Diet = poor}, and {BMI = 30–35}. Among these high-risk subgroups, the {Diet 

= poor} subgroup is unique to PReEc and is not a high-risk subgroup found in other 

APOs in isolation (Table S5). The best disparity-reducing single-attribute subgroup when 

omitted is {High BP = 1}, followed by {BMI ≥ 35} and {Diet = poor}; see Table S5. The 

effect of omitting these subgroups on the overall rate of PReEc varied, where omitting the 

{High BP = 1} subgroup leads to the highest reduction in PReEc rate in Black participants, 

omitting {BMI ≥ 35} leads to significant reduction in both White and Black participants, 

and omitting the {BMI = 30–35} or {Family DM = 1} lead to the highest reduction in 

PReEc rate in Asian participants, although not statistically significant (Table S6).

3.2.4. Disparities in high-risk PTB subgroups—The landscape of disparity in PTB 

was vastly different from that in GDM. In PTB, the subgroup with the highest LR+ is {High 

BP = 1}, followed by {Age < 18} and {PCOS = 1}; Fig. 5a. For these high-risk subgroups, 

the disparity measure is the highest in {Age < 18} followed by {Age = 35–39} and {High 

BP = 1}; see Table S3. The prevalence of PTB by racial/ethnic group also differed from that 

of GDM, with Black participants being the group with the highest PTB rate across high-risk 
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subgroups except those in the {Age < 18} subgroup, where the proportion of PTB patients 

are the highest among White participants (Table S4).

When omitting high-risk subgroups, we observe the greatest reduction in PTB rate is 

achieved when the {BMI ≥ 35} subgroup is omitted, followed by {Age < 18} and {High 

BP = 1} (Fig. 5b). Omitting the subgroup {BMI ≥ 35} led to highest reduction in disparity, 

followed by {Age < 18} and {High BP = 1}; see Table S5. Upon investigating the effect 

of omitting subgroup on PTB rate by race/ethnicity, we found all three high-risk subgroups 

where reduction in PTB prevalence is the most significant ({BMI ≥ 35}, {Age < 18}, {High 

BP = 1}) are also the groups that when omitted lead to the highest rate reduction in Black 

participants (Table S6).

3.3. Major APO risk-factors are associated with population structure

Given the frequent occurrence of Age and BMI as attributes in high-risk groups and the 

high variance in APO prevalence by race in these subgroups, we hypothesize that one of 

the components for disparities in APO could be partially attributable to the differences in 

age and BMI distributions between races/ethnicities in our cohort. We then employed the 

Kruskal-Wallis H-test on the age and BMI distributions marginalized by race and found the 

difference in distributions to be highly significant (Age: p = 8.7 × 10−280, BMI: p = 7.0 × 

10−268); see Fig. 6.

4. Discussion

Adverse pregnancy outcomes can affect a family long after the delivery, and the ability to 

identify sources of disparities is crucial for ensuring equitable access to resources needed 

to address these outcomes. In this study, we used association rule mining as a tool to 

detect subgroups that are at increased risk for experiencing APOs, and evaluated the racial/

ethnic disparities within these subgroups. We discovered significant heterogeneity in APO 

prevalence across racial/ethnic groups, quantified the disparity in each high-risk subgroup, 

and evaluated each subgroup’s contribution to the total risk and disparity through observing 

the relative rate change when the subgroup was omitted from the cohort. In addition, we 

identified significant differences in age and BMI distributions across racial/ethnic groups, 

which appear to play an important role in shaping the APO risk landscape. The simplicity 

and interpretable nature of association rules also enable the findings to be accessible to wide 

audiences including clinicians and policy makers. While the study does not model clinical 

intervention, our findings can be used to inform planning of policy interventions, such as 

influencing resource allocation in communities where disparities and health outcomes need 

to be addressed. For example, the high prevalence of GDM among Asian participants above 

the age of 40 could serve as evidence for prioritizing education on the potential impact 

of maternal age on the risk of gestational diabetes in Asian communities, while the high 

prevalence of PReEc among Black participants with high blood pressure could serve as 

evidence for prioritizing education on blood pressure management in Black communities.

As with any clinical data, some variables used in our study may be underreported or 

incorrectly recorded. Additionally, the modest sample size resulted in relatively large 

confidence intervals in some high-risk subgroups. The change in APO proportion if a 
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subgroup is omitted also represents an idealized form of intervention with two strong 

assumptions; i.e., we assume that if an intervention on a risk factor is given, then (1) this 

risk factor is reduced to 0% in the population and (2) individuals who originally harbored 

these risk factors will proportionally distribute to other subgroups. These should not be taken 

as a realistic estimate of how much APO prevalence might decrease if an intervention is 

placed on a specific risk factor but rather an estimate of the contribution of the risk factors to 

the overall prevalence of APOs. It is also worth mentioning that when a high-risk subgroup 

is omitted but the disparity measure increases, it does not necessarily mean that addressing 

such a subgroup should not be performed; instead, it shows that some groups may not 

receive equal benefits from addressing these risk factors.

This study can be extended to include higher-resolution groupings of risk factors as well 

as the possibilities that other factors (e.g., social, economic, cultural) could have larger 

impact on disparities than the features investigated herein. Of note, however, this work 

does not provide evidence for biological differences between races and ethnicities that 

may predispose one over another towards certain APOs. Overall, this study calls for 

the investigation of disparities beyond the population level, and brings to attention the 

importance of considering subgroup-level disparities, which may manifest differently from 

their population form.
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Fig. 1. 
The prevalence of each adverse pregnancy outcome (APO) with respect to self-reported 

race/ethnicity. GDM: gestational diabetes mellitus; NewHTN: new hypertension; PReEc: 

preeclampsia; PTB: preterm birth. A pairwise comparison of APO rates by race/ethnicity is 

available in Table S2.
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Fig. 2. 
The prevalence and disparities of GDM and high-risk subgroup relative contribution to the 

disparity. (a) The LR+ associated with high-risk GDM subgroups. (b) The relative change 

in GDM prevalence if a subgroup is omitted from the cohort. (c) The relative change 

in Gini coefficient if a subgroup is omitted from cohort, with markings for statistically 

significant values. Exact values and prevalence by each racial/ethnic group are available in 

Supplementary Tables S3–S6.
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Fig. 3. 
The prevalence and disparities of NewHTN and high-risk subgroup relative contribution 

to the disparity. (a) The LR+ associated with high-risk NewHTN subgroups. (b) The 

relative change in NewHTN prevalence if a subgroup is omitted from the cohort. (c) The 

relative change in Gini coefficient if a subgroup is omitted from cohort, with markings for 

statistically significant values. Exact values and prevalence by each racial/ethnic group are 

available in Supplementary Tables S3–S6.
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Fig. 4. 
The prevalence and disparities of PReEc and high-risk subgroup relative contribution to the 

disparity. (a) The LR+ associated with high-risk PReEc subgroups. (b) The relative change 

in PReEc prevalence if a subgroup is omitted from the cohort. (c) The relative change 

in Gini coefficient if a subgroup is omitted from cohort, with markings for statistically 

significant values. Exact values and prevalence by each racial/ethnic group are available in 

Supplementary Tables S3–S6.
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Fig. 5. 
The prevalence and disparities of PTB and high-risk subgroup relative contribution to the 

disparity. (a) The LR+ associated with high-risk PTB subgroups. (b) The relative change 

in PTB prevalence if a subgroup is omitted from the cohort. (c) The relative change 

in Gini coefficient if a subgroup is omitted from cohort, with markings for statistically 

significant values. Exact values and prevalence by each racial/ethnic group are available in 

Supplementary Tables S3–S6.
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Fig. 6. 
Age and BMI distributions for each racial/ethnic group in the cohort visualized using the 

kdeplot function from the Python library Seaborn.
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Table 1.

Examples of statistically significant association rules for the nuMoM2b cohort.

Antecedent Consequent Confidence LR+ [95% CI] Adjusted p-value

{Age = 35–39} {GDM = 1} 9.6% (51/531) 2.5 [1.9, 3.2] 4.7 × 10−7

{Age = 35–39} {NewHTN = 1} 21.1% (112/531) 1.4 [1.1, 1.7] 1.1 × 10−2

{Age < 18} {PTB = 1} 14.3% (70/489) 1.8 [1.4, 2.3] 1.7 × 10−4

{BMI ≥ 35} {GDM = 1} 8.8% (78/882) 2.3 [1.8, 2.8] 5.8 × 10−9

{BMI ≥ 35} {PTB = 1} 11.9% (105/882) 2.2 [1.8, 2.7] 7.2 × 10−4

{BMI ≥ 35} {NewHTN = 1} 25.3% (223/882) 1.8 [1.5, 2.0] 1.1 × 10−10

{Diet = poor} {PReEc = 1} 7.9% (146/1853) 1.4 [1.2, 1.6] 3.0 × 10−4

{Exercise = inactive, High BP = 1} {PTB = 1} 21.4% (19/89) 2.9 [1.8, 4.8] 5.7 × 10−3

{Diet = poor, High BP = 1} {PReEc = 1} 22.2% (16/72) 4.7 [2.7, 8.1] 1.2 × 10−3

{Age = 35–39, BMI = 30–35} {NewHTN = 1} 33.3% (22/66) 2.6 [1.6, 4.3] 3.6 × 10−3
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Table 2.

Prevalence and count of APOs in each racial/ethnic group, their respective disparity measure and p-values 

from a chi-square (χ2) test.

APO Asian (n = 381) Black (n = 1291) Hispanic (n = 1587) White (n = 5644) Total Gini χ2 p-value

GDM 41 (10.8%) 40 (3.1%) 72 (4.5%) 213 (3.8%) 366 (4.1%) 0.268 1.70 × 10−10

NewHTN 57 (15.0%) 250 (19.4%) 169 (10.7%) 968 (17.2%) 1444 (16.2%) 0.114 9.32 × 10−11

PReEc 12 (3.2%) 120 (9.3%) 90 (5.7%) 291 (5.2%) 513 (5.8%) 0.204 2.43 × 10−8

PTB 27 (7.1%) 143 (11.1%) 130 (8.2%) 459 (8.1%) 759 (8.5%) 0.087 0.004
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