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ABSTRACT

The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner.
Objective: Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic [3 cells and its overall
impact on insulin release and glucose homeostasis.

Methods: We used viral retrograde tracing techniques, surgical and chemodenervation models, and primary cell-based co-culture systems to
uncover the biology underlying sex differences in sensory modulation of pancreatic 3-cell activity.

Results: Retrograde transsynaptic labeling revealed a sex difference in the density of sensory innervation in the pancreas. The number of
sensory neurons emanating from the dorsal root and nodose ganglia that project in the pancreas is higher in male than in female mice. Im-
munostaining and confocal laser scanning microscopy confirmed the higher abundance of peri-islet sensory axonal tracts in the male pancreas.
Capsaicin-induced sensory chemodenervation concomitantly enhanced glucose-stimulated insulin secretion and glucose clearance in male mice.
These metabolic benefits were blunted when mice were orchidectomized prior to the ablation of sensory nerves. Interestingly, orchidectomy also
lowered the density of peri-islet sensory neurons. In female mice, capsaicin treatment did not affect glucose-induced insulin secretion nor glucose
excursion and ovariectomy did not modify these outcomes. Interestingly, same- and opposite-sex sensory-islet co-culture paradigms unmasked
the existence of potential gonadal hormone-independent mechanisms mediating the male-female difference in sensory modulation of islet B-cell
activity.

Conclusion: Taken together, these data suggest that the sex-biased nature of the sensory control of islet B-cell activity is a result of a
combination of neurodevelopmental inputs, sex hormone-dependent mechanisms and the potential action of somatic molecules encoded by the

sex chromosome complement.
Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION [2]. In mammals, males undergo a testosterone surge during fetal and

neonatal development and the resulting high levels of testosterone,

Sex difference in physiological and behavioral responses is a byproduct
of combinatory effects of cell-autonomous factors encoded by the sex
chromosome complement, the organizational action of testosterone in
males, and the activational effect of male and female gonadal hor-
mones after puberty [1]. However, it has been experimentally difficult
to uncouple the effects of gonadal hormones from the sex chromo-
some genes. Sex steroid hormones are largely believed to be the
primary signals driving the sexual dimorphisms of non-gonadal tissues

secreted by the testes, masculinize several regions of the brain and
ultimately lead to sexually dimorphic physiology and behavior in
adulthood [1,3]. When given to females, during a specific develop-
mental time window, testosterone elicits irreversible lifetime lasting
masculinization of the female brain, thus highlighting the powerful
effect of sex steroids irrespective of the sex genotype [4,5]. The hy-
pothesis that the action of gonadal hormones outweighs the effects of
the sex chromosome complement has been recently challenged with
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the advent of mouse models allowing the separation of the action of
sex hormones from the effect of sex chromosomes [6]. New data have
emerged to depict how gonadal hormones interact with sex chromo-
somes to control biological pathways in a sex-specific manner in
health and disease [7]. In the context of pancreatic islet B cells, sex
differences are apparent in physiological and diabetic conditions [8—
10]. Glucose-stimulated insulin secretion (GSIS) is higher in females
than in males; in rodents [9] and humans [11]. The superior GSIS in
women was highlighted in clinical studies showing that insulin
response to a glucose load, in otherwise healthy individuals, was
higher in women than in men despite similar insulin sensitivity in both
sexes [12,13]. Endogenous estrogens enhance insulin synthesis and
secretion and protect pancreatic 3 cells from metabolic injuries [14].
Testosterone also increases GSIS in cultured human and mouse
pancreatic islets through potentiation of islet-derived GLP-1 action.
Mice lacking androgen receptors, specifically in pancreatic [ cells,
display impaired GSIS and glucose excursion [15]. Consistent with the
insulinotropic action of testosterone, developmental and postnatal
androgen excess in females results in insulin hypersecretion and
hyperinsulinemia and may lead to B-cell dysfunction as observed in
women with polycystic ovary syndrome [16,17]. Beyond their impact
on islet B-cell function, several studies highlighted the critical roles of
sex hormones in B-cell mass [14,18—21]. Interestingly, pancreatic -
cell failure is sexually dimorphic as well; the prevalence of type 1 and
type 2 diabetes is higher in males than in females [22,23]. However,
the molecular basis of this sex-specific pattern in 3-cell function and
dysfunction is unknown [24]. Sex hormones are powerful modifiers but
might not be the sole players in the development of sexually dimorphic
patterns in metabolic health and disease. With the advent of the Four
Core Genotypes (FCG) mouse model, it is now possible to separate the
effects of sex hormones from those of sex chromosomes [6]. Emerging
data suggest that the sex chromosome complement—independently
of gonadal hormones—plays a role in adiposity, food intake, insulin
resistance and glucose homeostasis [25], although no such effects
have been described in B-cell biology. Deconstructing the cellular and
molecular underpinnings of the sexual dimorphism in B-cell activity
would, therefore, unmask risk and protective factors for diabetes.
Importantly, understanding the “sexome” of B-cell biology will unleash
novel translational potential that can be leveraged to develop sex- and
gender-based therapeutic interventions.

We recently reported that the pancreas-projecting sensory neurons
directly regulate islet B-cell function in a sex-dependent manner [10].
Here, we probed the sex-biased nature of this islet-neuron crosstalk
to determine the underlying mechanisms of the well-known sexual
dimorphism in B-cell function and glucose homeostasis. We
employed retrograde tracing approaches and showed that the
number of spinal and vagal sensory afferents projecting in the
pancreas is lower in female mice as compared to age-matched
males. Moreover, the combined use of chemodenervation and go-
nadectomy models revealed the critical roles of male sex hormones
in the abundance of pancreatic peri-islet afferent neurons and the
sensory regulation of B-cell activity. Interestingly, we developed
sensory neuron-islet co-culture systems and demonstrated that the
sex-biased interaction between sensory neurons and islet 3 cells can
be recapitulated in vitro independently of circulating gonadal hor-
mones. Finally, same- and opposite-sex neuron-islet co-cultures
unveiled potential sex hormone-independent factors—in pancreatic
islets and sensory neurons—which mediate the male-female dif-
ference in sensory modulation of insulin secretion. Together, these
studies suggest that the sex-specific sensory modulation of B-cell
activity likely has neurodevelopmental origins and is influenced by a

combination of gonadal-hormone and potential sex-chromosome
mechanisms in adulthood.

2. METHODS

2.1. Animals

All mice studied were on the C57BL/6J background (stock #000664,
The Jackson Laboratory). Mice were housed in pathogen-free facilities
and maintained on a 12-hour light/dark cycle in the Animal Care Fa-
cility at the Child Health Institute of New Jersey. All studies and pro-
tocols were approved by the Rutgers University Animal Care and Use
Committee and were in accordance with the National Institutes of
Health guidelines. Blood glucose was monitored using an automated
glucose monitor (Bayer).

2.2. Retrograde viral tracing

All tracing studies were performed in five-week-old male and female
wild-type C57BL/6J mice. Pseudorabies virus (PRV) was prepared as
previously described [26]. Ten microliters of PRV-Bartha (1 0° plaque-
forming units [pful/mL) encoding green fluorescent protein (PRV-152
containing CMV-GFP) [27] and red fluorescent protein (PRV-614 con-
taining CMV-RFP) [28] were injected, in laparotomy settings, in the
pancreas and liver, respectively. Two-microliter aliquots of PRV-152
were injected in different parts of the pancreas, including the splenic,
gastric, and duodenal regions. For liver injections, 2-pL aliquots of PRV-
614 were injected in different regions/lobes. Mice were sacrificed five
days after infection. Dorsal root and nodose ganglia were collected, fixed
in Z-Fix (Cat# NC9937162, Fisher Scientific) for 2 h, incubated in 30%
sucrose for 16 h, and then embedded in optimal cutting temperature
(OCT) compound. Five-micrometer sections were cut and mounted for
imaging of endogenous GFP and RFP fluorescence.

2.3. Pancreas immunostaining and morphometric analysis

Mice were sacrificed with CO, and intracardially perfused with 25 mL
of 0.1 M phosphate-buffered saline solution (PBS), followed by 25 mL
Zamboni’s fixative (4% formaldehyde/12.5% picric acid solution in
0.1 M PBS) at 4 °C over a 2-min period. The pancreas was dissected
and fixed at 4 °C for 24 h in the perfusion fixative and then cry-
oprotected for 24 h in 30% sucrose in 0.1 M PBS. The pancreas was
embedded in TissueTek® (Sakura, Torrance, CA, USA) and cut on a
cryostat at a thickness of 30 um. For staining, tissue sections were
incubated for 30 min at room temperature (RT) in a blocking solution of
10% goat serum in PBS with 0.3% Triton X-100 and then incubated
overnight at RT in the blocking solution containing the primary anti-
bodies rabbit anti-CGRP (Sigma, C8198, 1:3000) and mouse anti-
insulin (Sigma, 12018, 1:2000). Tissue sections were thereafter incu-
bated with secondary goat anti-rabbit IgG-Alexa 488 (Jackson
Immunoresearch, 111-545-003, 1:200) and goat anti-mouse cy3
(APEXBIO, 1:200) for 2 h at RT before sections were mounted for
confocal imaging. Quantification of CGRP axonal tracts surrounding
pancreatic islets was performed based on image pixels using ImageJ
software. The CGRP staining around islets was quantified within ~50-
um radial distance and was normalized to the total CGRP signal within
the imaged field.

2.4. Gonadectomy

For orchidectomy experiments, 10-week-old male mice were deeply
anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) and
received an analgesic (Buprenorphine 0.05 mg/kg BW) by subcu-
taneous injection. Using a sterile scalpel, a single incision (0.5 cm) on
the ventral side of the scrotum was made. The testicular fat pad was
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gently pulled through the incision using blunt forceps and the cre-
master muscle was cut. After exposing the testicular content, the
cauda epididymis, the caput epididymis, and the vas deferens along
with testicular blood vessels were exposed while holding the testicular
sac with sterile tooth forceps. To prevent bleeding after testis removal,
a single ligature around the blood vessels was performed. The cauda
epididymis and the caput epididymis were severed and the testis was
gently removed by severing blood vessels. The remaining content was
placed back in the testicular sac. For sham operations, the testis was
placed back in the scrotum. The skin was sutured with non-absorbable
sutures using interrupted suture technique and double knots. Similar
steps above were repeated to ablate the other testis. For ovariectomy
experiments, 10-week-old female mice were anesthetized as indi-
cated above. After the onset of anesthesia, mice were shaved bilat-
erally over the lumbar spine. Using small scissors, a single midline
incision (0.5 cm), penetrating the skin, was made in the lower back,
directly under the rib cage. Subcutaneous connective tissue was gently
freed from the underlying muscle layer on each side using blunt for-
ceps. Ovaries were located and a small incision (less than 1 cm) was
made on each side to gain access to the peritoneal cavity. The ovarian
fat pad was retracted with blunt forceps to expose the oviduct. For
sham operations, the ovaries were placed back in the peritoneal cavity.
For ovariectomy, a single ligature was performed 0.5 cm far from the
ovary to prevent bleeding following removal of the ovary. The gonad
was removed by gentle severing of the oviduct. The uterus and the
remaining part of the oviduct were placed back in the abdominal cavity
and the muscle layer was sutured using absorbable sutures. The skin
incision was closed with non-absorbable sutures. The steps described
above were repeated to sever the other ovary.

2.5. Islet-DRG co-culture

DRG neurons were prepared as previously described [29]. Briefly,
thoracic DRG were harvested from 3-week-old mice and dissociated in
collagenase (5 mg/mL) and dispase (1 mg/mL) at 37 °C for 70 min, and
then cultured in 12-well plates coated with Poly-p-lysine (100 pg/mL)
and laminin (10 pg/mL). DRG neurons were plated at a density of
5 x 10* cells/well in Neurobasal media containing B27 (200 mM), NGF
(50 ng/mL), GDNF (2 ng/mL) and AraC (10 tM) and were allowed to grow
alone before acute co-culture with pancreatic islets. Islets were isolated
as previously described [30—32]. After 3 days of axonal outgrowth, DRG
neurons were washed in HEPES and co-cultured using transwell inserts
(Corning, cat#3477) with 50 size-matched 8-week-old primary islets in
HEPES for GSIS studies. Islets cultured alone or with DRG neurons were
incubated in HEPES solution containing 5.5 mM glucose for 60 min and
then 16.5 mM glucose for 60 min, successively. Supernatants were
collected for insulin ELISA assays (Crystal Chem, cat#90080) to
determine basal and glucose-stimulated insulin release. Insulin
secreted was normalized to total insulin content.

2.6. Statistical analysis

All data are presented as mean =+ standard error of the mean (SEM).
Data were analyzed using Student’s ‘t’ test or one-way ANOVA with
Tukey’s multiple-comparisons tests. A “p” value of less than 0.05 was
considered statistically significant.

3. RESULTS

3.1. Sex difference in the density of pancreas-projecting sensory
neurons

Bartha is an attenuated vaccine strain of the PRV that can cross synapses
and spread retrogradely from postsynaptic to presynaptic neurons. Owing
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to its transsynaptic transport properties, Bartha-PRV allows for tracing
and quantification of central and peripheral neuronal projections to
infected target organs [33]. Based on our recent report suggesting a role
for sensory neurons in the sex-specific regulation of pancreatic -cell
function [10], we used fluorescent PRV Bartha recombinants to determine
whether the pancreas sensory innervation density is different in male and
female mice. Briefly, 10 pL of PRV-152 (1 0° pfu/mL) encoding green
fluorescent protein (GFP) was injected in the pancreas and 10 pL of PRV-
614 (1 0° pfu/mL) encoding red fluorescent protein (RFP) in the liver of 5-
week-old C57BL/6J male and female mice. Co-tracing of axonal tracts
from the liver was performed to contrast the abundance of sensory
neurons in the pancreas with that of a distinct but anatomically close
organ. Five days post-injection, dorsal root (DRG) and nodose ganglia
(NG) were harvested and mounted for imaging and quantification
(Figure 1A). We collected the DRG located at the lower cervical C7
through the upper lumbar L2 (17 pairs) and harvested both the right and
left NG. Manual counting of labeled and non-labeled ganglion cells was
carried out to determine the percentage of DRG and NG neurons pro-
jecting directly in the pancreas (GFP-labeled), in the liver (RFP-labeled), or
dually in both tissues (GFP/RFP-labeled). The percentage of labeled (GFP,
RFP, GFP/RFP) cells is calculated as the ratio of labeled cells over the total
number of cells identified based on background fluorescence; an average
of 1000 cells was counted per ganglion in both males and females. Our
data analysis revealed that the percentage of vagal sensory neurons
innervating the pancreas (P) is halved in females when compared to age-
matched males (Figure 1B). This was observed in both left (LNG) and right
(RNG) nodose ganglia (Figure 1D,E). The proportional number of vagal
afferent projections to the pancreas, within the same sex, is similar
between LNG (Figure 1D) and RNG (Figure 1E). The percentage of vagal
afferents projecting in the liver (L) is similar in males and females
(Figure 1D—F). Interestingly, we found that some neurons bifurcate to
project in both the pancreas and liver (Figure 1B). The proportion of these
dually projecting (P/L) vagal neurons is decreased in female LNG
(Figure 1D) and RNG (Figure 1E). This decrease was statistically signifi-
cant when LNG and RNG were combined (LNG/RNG) for analysis
(Figure 1F). Similar to the sex difference encountered in the NG inner-
vation pattern, the percentage of pancreas-projecting DRG neurons is
40% lower in females when compared to age-matched males. No sex
difference was observed in the percentage of DRG neurons projecting in
the liver. Remarkably, the proportion of GFP/RFP double-positive neurons
was four-fold higher in males as compared to females (Figure 1C,G).
Together, retrograde transsynaptic tracing studies revealed a major sex
difference in the density of pancreas-projecting sympathetic and para-
sympathetic sensory neurons, which suggests a neurodevelopmental
feature contributing to the sexual dimorphism in the neuromodulation of
islet B-cell activity.

3.2. Male sex hormones regulate the density of peri-islet sensory
innervation in adulthood

To validate the enhanced density of islet-projecting afferent neurons in the
male pancreas, we employed immunostaining and confocal microscopy
techniques. Pancreatic tissues harvested from 6-week-old male and fe-
male C57BL/6J mice were co-stained with specific antibodies against the
sensory and endocrine markers calcitonin-gene related protein (CGRP) and
insulin, respectively. The fluorescence intensity of CGRP™ terminal endings
within ~50-pum radial distance from islets was determined using ImageJ.
The percentage of peri-islet CGRP' sensory axon terminals was
normalized to the total CGRP signal captured within the imaged field. This
quantification method allows for selective quantification of peri-islet
innervation by discarding signals from varicosities in acinar tissue.
Consistent with the conclusions drawn from retrograde viral tracing
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Figure 1: Sex difference in the density of pancreas-projecting sensory neurons Retrogradely labeled sensory neurons projecting in the pancreas and liver. Five-week-old
male and female C57BL/6J mice were injected with 10 pL of PRV-152 (10° pfu/mL) in the pancreas and with 10 uL PRV-614 (10° pfu/mL) in the liver. Five days after injection,
nodose and dorsal root ganglia were harvested for imaging and morphometric analysis. A. Schematic of the experimental design. B. Representative images of nodose ganglia
derived from male (left panel) and female (right panel) mice displaying GFP, RFP and merged signals. C. Representative images of dorsal root ganglia derived from male (left panel)
and female (right panel) mice displaying GFP, RFP and merged signals. D. Quantification of the percentage of GFP™, RFP* and GFP*RFP™ double-positive cells in left nodose
ganglia (LNG). E. Quantification of the percentage of GFP™, RFP™ and GFP"RFP™ double-positive cells in right nodose ganglia (RNG). F. Quantification of the percentage of GFP™,
RFP* and GFPTRFP™ double-positive cells in LNG and RNG. G. Quantification of the percentage of GFP*, RFP™ and GFP™RFP™ double-positive cells in dorsal root ganglia. Data
represent mean + SEM. Student’s ttest: *p < 0.05 (n = 7—8).

studies, our morphometric studies revealed that the percentage of peri-
islet CGRP™ sensory terminals is increased in male pancreases when
compared to those derived from females (Figure 2A,B). To determine
whether this enhanced peri-islet sensory innervation in males is secondary
to the action of gonadal hormones, we compared the abundance of peri-
islet CGRP™ sensory neurons among control males, orchidectomized
males and females. As observed in six-week-old mice, peri-islet sensory
innervation was more abundant in six-month-old males than in age-
matched females; although the overall density of afferents innervating
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islets is slightly lower in the aging mice (Figure 2C,D). Interestingly, male
mice that underwent gonadectomy had lower peri-islet CGRP™ sensory
axonal endings when compared to control sham-operated mice. The
percentage of peri-islet sensory terminals in gonadectomized male mice
was comparable to that observed in age-maiched female mice
(Figure 2C,D). Together, these studies demonstrate a sex difference in the
density of peri-islet sensory innervation. This feature was observed at a
young age and was maintained via the action of male gonadal hormones
throughout adulthood.
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Figure 2: Male sex hormones regulate the density of peri-islet sensory innervation in adulthood. The pancreas from six-week-old male and female C57BL/6J mice were
co-stained with insulin (red) and CGRP (green) antibodies. A. Representative confocal images of pancreatic islets from male (upper) and female (lower) mice. B. Quantification of the
peri-islet CGRP™ axon terminals in A. The pancreas from six-month-old control male, orchidectomized male and control female C57BL/6J mice were co-stained as describe above.
Data represent mean + SEM. Student’s t-test: *p < 0.05 (n = 5). C. Representative confocal images of pancreatic islets from male (to panel), orchidectomized male (middle panel)
and female (bottom panel) mice. D. Quantification of the peri-islet CGRP™ axon terminals in C. Data represent mean + SEM. One-way ANOVA with Tukey’s multiple-comparisons
test: *p < 0.01 and **p < 0.01 (n = 6) vs male group.
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3.3. Male sex hormones influence sensory neuromodulation of -
cell activity and glucose clearance

To investigate the role of sex hormones in sensory modulation of post-
absorptive glucose levels and GSIS, we used the capsaicin-induced
chemodenervation paradigm and gonadectomized (GNX) mouse
models. Briefly, 10-week-old male and female mice were subjected to
bilateral orchidectomy and ovariectomy, respectively. Sham surgeries
were performed for control mice (SHM). Seven days after surgery, vehicle
or capsaicin (50 mg/kg) was subcutaneously injected in SHM and GNX
mice on three consecutive days into the scruff of the neck. Glucose (GTT)
and insulin (ITT) tolerance tests, and GSIS assays were conducted over
three weeks after chemodenervation (Figure 3A). Consistent with our
recent studies [10], ablation of sensory neurons in male mice improved
insulin secretion and glucose clearance without altering insulin sensitivity
(Figure 3B—D). No significant differences in glucose-induced insulin
release, glucose excursion and insulin sensitivity were observed in
sensory denervated age-matched female mice (Figure 3H—J). Interest-
ingly, male mice that underwent orchidectomy before capsaicin treat-
ment did not display improvement in GSIS and glucose tolerance after
sensory denervation (Figure 3E,G). Similar to SHM mice, insulin sensitivity
was unaffected in capsaicin-versus vehicle-treated GNX male mice
(Figure 3F). Finally, ovariectomized female capsaicin- and vehicle-treated
mice displayed similar GSIS, glucose clearance, and insulin sensitivity
(Figures 3K-M). Collectively, these data suggest that gonadal hormones
play an integral role in the sensory neuromodulation of -cell activity in
male but not female mice.

3.4. Sex chromosome complement contributes to sex differences
in sensory-islet crosstalk

We reason that if the male-female difference observed in the sensory
control of insulin release [10] is due—partially—to intrinsic properties
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encoded by the sex chromosome complement, co-culture systems
using components derived from same- or opposite-sex mice should
reveal sexually dimorphic functions. To test this hypothesis, we
developed an acute primary co-culture model comprising pancreatic
islets and DRG sensory neurons. Using transwell-insert systems, we
conducted GSIS studies on primary male and female mouse islets
cultured alone or in the presence of sensory neurons derived from
same- or opposite-sex mice. Because islets and sensory neurons
required distinct primary culture conditions, they were cultured
separately after isolation and then co-cultured in HEPES media for the
insulin secretion assays. All GSIS studies were performed in serum-
free HEPES media. Islet-neuron co-cultures were incubated in
5.5 mM glucose-containing HEPES media for 60 min (basal secretion)
and then in 16.5 mM glucose for an additional 60 min (stimulated
secretion). Basal and stimulated insulin release was normalized to total
insulin content. Consistent with the loss-of-function in vivo data [10],
male islets co-cultured with male DRG neurons exhibited blunted GSIS
when compared to male islets cultured alone. Interestingly, basal in-
sulin secretion is higher in male islets co-cultured with same-sex DRG
neurons (Figure 4A,B). Conversely, female islets cultured with female
DRG neurons exhibited normal responses; both basal and stimulated
insulin secretions were identical to the ones observed when islets
were cultured alone (Figure 4C,D). As expected [9,11,12,24,34], fe-
male islets exhibit a qualitatively superior GSIS when compared to age-
matched male islets (Figure 4B,D). To determine whether this sex
difference in sensory-islet intercommunication lies within islets or
sensory neurons, we conducted opposite-sex co-culture experiments
where islets from one sex were co-cultured with DRG neurons from the
other sex. In these experimental settings, male islets displayed a
moderate increase in basal insulin secretion when co-cultured with
female DRG neurons (Figure 4E,F); this increase was less pronounced
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Figure 3: Male sex hormones influence sensory neuromodulation of 3-cell activity and glucose clearance. Ten-week-old male and female C57BL/6J mice were subjected
to gonadectomy (or sham surgery) and then subcutaneously injected with vehicle or capsaicin (50 mg/kg) on three consecutive days into the scruff of the neck. Seven days after
sensory chemodenervation, metabolic phenotyping was performed. A. Schematic of the experimental design. B. GTT, C. ITT and D. GSIS in sham male mice. E. GTT, F. ITT and G.
GSIS in orchidectomized male mice. H. GTT, L. ITT and J. GSIS in sham female mice. K. GTT, L. ITT and M. GSIS in ovariectomized female mice. Data represent mean + SEM.

*p < 0.05, **p < 0.01 (n = 6—7 per group).
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Figure 4: Cell-autonomous factor(s) regulate the sexually dimorphic sensory-islet crosstalk. DRG neurons were harvested from three-week-old C57BL/6J mice, seeded at
the density of 5 x 10 cells/well and co-cultured with fifty size-matched islets derived from eight-week-old C57BL/6J mice. GSIS was conducted as described in the “Methods”
section. A-B. Schematic of the experimental design and quantification of GSIS for male islets co-cultured with male DRG neurons. G-D. Schematic of the experimental design and
quantification of GSIS for female islets co-cultured with female DRG neurons. E-F. Schematic of the experimental design and quantification of GSIS for male islets co-cultured with
female DRG neurons. G-H. Schematic of the experimental design and quantification of GSIS for female islets co-cultured with male DRG neurons. Data represent mean + SEM.

*p < 0.05 (n = 5—7 per group).

than the one observed in male—male co-culture (Figure 4A,B). How-
ever, when the same co-culture was challenged with high glucose
concentrations, the GSIS was not affected (Figure 4E,F). As opposed to
male DRG neurons (Figure 4A,B), sensory neurons harvested from
female mice did not have a suppressive effect on GSIS in male
pancreatic islets (Figure 4E,F). Finally, DRG neurons derived from male
mice strongly enhanced basal insulin secretion in female islets
(Figure 4G,H). In contrast to male pancreatic islets (Figure 4A,B), GSIS
was not affected when female islets were co-incubated with male
sensory neurons (Figure 4G,H). Together, these co-culture paradigms
suggest the potential existence of somatic intrinsic (in B cells) and
extrinsic (in DRG neurons) factors that regulate GSIS differently in
males and females.

4. DISCUSSION

Males and females display phenotypic differences in the regulation of
energy balance [1,23], including the control of food intake [35,36],
energy expenditure [37,38], body weight gain [22,39], body composition
[40,41], insulin secretion [9,12,24,34], and insulin action [42,43]. Some
of these sex differences are driven by neuronal networks/conduits and
implicate gonadal hormones [35,44] and sex chromosome effects [45].
We recently demonstrated that the pancreatic [-cell function has a
sensory component that operates in a sexually dimorphic manner [10].
Herein we report the biological underpinnings of this male-female di-
chotomy. First, retrograde viral labeling revealed a higher number of
pancreas-projecting DRG and NG neurons in post-weaned males than
females. Second, gonadectomy studies uncovered a major role for male
sex hormones in the density of peri-islet afferents and the sensory
modulation of insulin secretion and glucose excursion. Finally, same-
and opposite-sex co-culture paradigms unmasked the existence of
potential sex chromosome complement-encoded molecules that regu-
late B-cell activity, distinctively, in males and females.

Our studies reported an increase in the abundance of sensory neurons
in the male versus female pancreas, which highlights a previously

unknown sex-biased structural aspect of the neuronal regulation of the
pancreas physiology. Along with the reported inhibitory role of sensory
neurons in insulin secretion [10,46], this observation supports further
the physiological role of pancreas-projecting afferent neurons in the
negative-feedback control of insulin secretion and provides new bio-
logical insight into the generally observed higher GSIS in females [24].
Intriguingly, some sensory neurons bifurcate to innervate both the liver
and pancreas. This “convergence/divergence” pattern allows the same
neuron to receive/emit information from/to multiple viscera. Such
neuronal networks might facilitate organ—organ crosstalk indepen-
dently of circulating biomolecules and central inputs as recently re-
ported for the regulation of adaptive islet B-cell regeneration by liver
neuronal mechanisms [47,48]. Why are males subject to a stronger
sensory-regulated GSIS than females? A possible explanation may lie
within a biological need to adjusting the strict dependence of the brain
on glucose as the main source of energy [49] with the size difference
between male and female brains [50]. Males have larger brains than
females and, therefore, likely require built-in mechanisms to favor
routing higher amounts of glucose to the brain for its optimal func-
tioning. The excessive sensory wiring of the male pancreas may exert
strengthened negative feedback that impairs glucose-induced insulin
release. This physiological deficiency in GSIS reduces insulin-
dependent glucose uptake in peripheral metabolic tissues and accel-
erates insulin-independent glucose transport to the brain. This sparing
effect is consistent with the recently reported idea that physiologically
deficient GSIS plays a critical role in the brain distribution of dietary
glucose [51]. From the clinical perspective, it is conceivable that the
extensive innervation of the pancreas predisposes men to common
pancreatic disorders—diabetes and pancreatic cancer are more
prevalent in men than in women [22,23,52,53]. Alterations in the
activity of the pancreas-innervating neurons have been associated with
the development of type 1 diabetes [54—56]. Moreover, the density of
pancreas-projecting DRG neurons is increased in the tumor microen-
vironment [57] where they support tumor growth [58]. In accordance
with their tumor growth-enhancing capabilities, experimental ablation
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of DRG sensory neurons slows the initiation and progression of
pancreatic ductal carcinoma [59].

A major finding revealed by our studies is that the sensory control of
islet B-cell function is sensitive to male gonadal sex hormones. This
suggests a physiological role for gonadal-sensory-islet crosstalk in
the regulation of insulin secretion and post-absorptive glucose levels
in males. The lack of male sex hormones dampens the insulinotropic
action of sensory chemodenervation and indicates antagonistic action
of sex hormones in the sensory modulation of islet B cells. Several
theories can be postulated as to how testosterone may interact with
capsaicin-sensitive pancreatic sensory neurons. First, testosterone
interacts directly with the transient receptor potential melastatin 8
(TRPMS8) [60,61], which is known to exhibit reciprocal interactions
with TRPV1; the capsaicin receptor [62]. These TRPV1/TRPM8 in-
teractions could occur on the same neurons or involve two inde-
pendent TRPM8 and TRPV1 pancreatic neuronal subsets. Second, it
is also possible that testosterone acts on TRPM8-expressing sensory
afferents that innervate non-pancreatic tissues. In agreement with
this scenario, genetic ablation of the frpm8 gene results in decreased
GSIS secondary to enhanced insulin clearance; an effect that is
associated with the loss of the activity of TRPM8-expressing neurons
innervating the hepatic portal vein [63]. Additional studies are war-
ranted to elucidate the physiological interactions between testos-
terone and TRPV1-expressing sensory afferents and their roles in the
regulation of islet B-cell function and glucose clearance. Third,
testosterone may modulate the number of peripheral neurons in
adulthood [64,65] as occurring in the brain during neonatal testos-
terone surge [3]. Ablation of male gonads would lower the density of
sensory neurons in the male pancreas, which would abolish their
suppressive effect on glucose-induced insulin release. The absence
of an extra beneficial capsaicin effect in gonadectomized males
might be a consequence of an already altered sensory innervation
within the pancreas after testosterone depletion. The notion that
hormones regulate adult organ innervation is not limited to testos-
terone. Recent studies reported a role for leptin signaling in the wiring
of the pancreas and adipose tissue [66,67].

Beyond the action of circulating sex steroid hormones, we revealed
that sensory modulation of basal and glucose-induced insulin release
might be regulated by cell-autonomous factors encoded by sex
chromosomes (XX or XY) and/or epistatic interactions of the latter
with the autosomes. We demonstrated that female islets exhibit
superior GSIS when compared to their male counterparts in vitro. This
finding is consistent with data from other studies [9,12,24,34] and
highlights further the possible existence of islet sex-specific mole-
cules that regulate insulin release differently in males and females
[68]. Interestingly, male but not female islets exhibited higher basal
insulin secretion but blunted GSIS when co-cultured with same-sex
sensory neurons. These observations allude to the commonly
encountered impairment of islet B-cell function in insulin resis-
tance—high basal insulin secretion but modest/poor GSIS [69,70]—
and suggest a plausible link between increased islet innervation in
insulin resistance settings [71,72] and the maladaptive B-cell func-
tion in such metabolically demanding conditions [73,74]. The ca-
pacity of sensory neurons to blunt GSIS was observed only in males.

I
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metabolically challenged conditions [71,72], our studies highlight a
possible sexually dimorphic role for islet-projecting sensory neurons
in the development of obesity-associated type 2 diabetes [22,23]. A
major caveat, however, in our studies is that our experiments do not
determine the proportional contribution of sex-hormone dependent
versus potentially sex-chromosome dependent events in the sensory-
mediated regulation of B-cell activity. It is important to mention that
while our in vitro studies (Figure 4) are suggestive of sex chromo-
some effects, they do not exclude the potential epigenetic action of
neonatal testosterone that would give rise to phenotypic differences
between sexes in adulthood [75,76]. Equally important, we do not
rule out potential de novo synthesis of steroids in neurons nor in islet
B cells [14,77,78] as contributors to the seemingly in vitro hormone-
independent effects. Future studies that combine the use of the FCG
paradigm [6] along with sensory secretome/epigenome will be useful
to deconstruct such biological insights.

In summary, we demonstrated that the sex-biased sensory modulation
of islet B-cell activity results from potential neurodevelopmental ori-
gins, sex hormone-dependent mechanisms and possibly the action of
cell-autonomous factors encoded by the sex chromosome comple-
ment. The identification of these sex-specific islet- and sensory-
derived molecules mediating sensory modulation of pancreatic 3
cells will be useful for the currently ongoing efforts gearing toward
developing novel B-cell-centered preventive and/or therapeutic mea-
sures to counter diabetes.
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