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Abstract
Our ability to make sense of the auditory world results from neural processing
that begins in the ear, goes through multiple subcortical areas, and continues in
the cortex. The specific contribution of the auditory cortex to this chain of
processing is far from understood. Although many of the properties of neurons
in the auditory cortex resemble those of subcortical neurons, they show
somewhat more complex selectivity for sound features, which is likely to be
important for the analysis of natural sounds, such as speech, in real-life
listening conditions. Furthermore, recent work has shown that auditory cortical
processing is highly context-dependent, integrates auditory inputs with other
sensory and motor signals, depends on experience, and is shaped by cognitive
demands, such as attention. Thus, in addition to being the locus for more
complex sound selectivity, the auditory cortex is increasingly understood to be
an integral part of the network of brain regions responsible for prediction,
auditory perceptual decision-making, and learning. In this review, we focus on
three key areas that are contributing to this understanding: the sound features
that are preferentially represented by cortical neurons, the spatial organization
of those preferences, and the cognitive roles of the auditory cortex.
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Introduction
Our seemingly effortless ability to localize, distinguish, and  
recognize a vast array of natural sounds, including speech and 
music, results from the neural processing that begins in the 
inner ear and continues through a complex sequence of subcor-
tical and cortical brain areas. Many aspects of hearing—such as 
computation of the cues that enable sound sources to be local-
ized or their pitch to be extracted—rely on the processing that 
takes place in the brainstem and other subcortical structures. It 
is widely thought to be the case, however, that the auditory cor-
tex plays a critical role in the perception of complex sounds.  
Although this partly reflects the emergence of response prop-
erties, such as sensitivity to combinations of sound features, it 
is striking how similar many of the properties of neurons in the  
primary auditory cortex (A1) are to those of subcortical neurons1. 
Equally important is the growing realization that auditory cor-
tical processing, in particular, is highly context-dependent and 
integrates auditory (and other sensory) inputs with informa-
tion about an individual’s current internal state, including their 
arousal level, focus of attention, and motor planning, as well as 
their past experience2. The auditory cortex is therefore an integral 
part of the network of brain regions responsible for generating 
meaning from sounds, auditory perceptual decision-making, and  
learning.

In this review, we focus on three key areas of auditory cortical 
processing where there has been progress in the last few years. 
First, we consider what sound features A1 neurons represent,  
highlighting recent attempts to improve receptive field models that 
can predict the responses of neurons to natural sounds. Second, 
we examine the distribution of those stimulus preferences within 
A1 and across the hierarchy of auditory cortical areas, focusing 
on the extent to which this conforms to canonical principles of  
columnar organization and functional specialization that are the 
hallmark of visual and somatosensory processing. Finally, we  
look at the cognitive role of auditory cortex, highlighting its  
involvement in prediction, learning, and decision making.

Spectrotemporal receptive fields
The tuning properties of sensory neurons are defined by their  
receptive fields, which describe the stimulus features to which they 
are most responsive. Reflecting the spectral analysis that begins 
in the inner ear, auditory neurons are most commonly character-
ized by their sensitivity to sound frequency. The spectrotemporal  
receptive field3,4 (STRF) is the dominant computational tool for 
characterizing the responses of auditory neurons. Most widely 
used as part of a linear-nonlinear (LN) model, an STRF comprises 
a set of coefficients that describe how the response of the neuron  
at each moment in time can be modelled as a linear weighted 
sum of the recent history of the stimulus power in different  
spectral channels. Owing to their simplicity, STRFs can be  
reliably estimated by using randomly chosen structured stimuli, 
such as ripples5–7, and relatively small amounts of data. They 
can then be used, in combination with a static output nonlinear-
ity, to describe and predict neural responses to arbitrary sounds8,  
making them invaluable tools in understanding the computa-
tional roles of single neurons and whole neuronal populations.  
However, STRFs do not accurately capture the full complexity of 
the behavior of auditory neurons; for example, multiple studies 

have shown that there are differences between STRFs estimated 
by using standard synthetic stimuli and those estimated by using  
natural sounds9–11, suggesting that these models systematically fail 
to fully describe neural responses to complex stimuli.

Multiple stimulus dimensions
Standard STRF models contain a single receptive field—one set 
of spectrotemporal weighting coefficients that describes a single 
time-varying spectral pattern to which the neuron is sensitive.  
There is no reason, however, to believe that the spectrotemporal 
selectivity of auditory neurons is so simple. Artificial neural 
networks are built on the principle that arbitrarily complex  
computations can be constructed from simple neuron-like  
computing elements, and cortical neurons are likely to have 
similarly complex selectivity based on nonlinear combination 
of the responses of afferent neurons with simpler selectivity.  
Capturing this complexity requires STRF models that nonlin-
early combine the responses of neurons to multiple stimulus  
dimensions.

With a maximally informative dimensions approach, it has been 
found that multiple stimulus dimensions are required to describe 
the responses of neurons in A112,13, whereas a similar approach  
requires only a single dimension to describe most neurons in 
the inferior colliculus (IC) in the midbrain14. This suggests that  
neuronal complexity is higher in the cortex and that this com-
plexity can be captured by nonlinear combination of the 
responses of multiple simpler units, a finding that also applies to  
high-level neurons in songbirds15,16. Two recent articles have  
successfully shown that neural networks are an effective way to 
model these interactions. Harper et al.17 used a two-layer percep-
tron to describe the behavior of neurons in ferret auditory cor-
tex, and Kozlov and Gentner16 used a similar network to describe  
high-level auditory neurons in the starling. To achieve this, 
both studies used neural networks of intermediate complex-
ity, thus avoiding an explosion in the number of parameters that 
must be fitted. They also used careful regularization—where the 
model is optimized subject to a penalty on parameter values.  
Regularization effectively reduces the number of parameters 
that must be fitted, meaning that models can be fitted accu-
rately using smaller datasets18. This approach enabled both stud-
ies to show that auditory neurons can be better described by a 
model which takes into account the tuning of multiple affer-
ent neurons (hidden units), suggesting that the selectivity of  
individual neurons is the result of a combination of information 
about multiple stimulus dimensions.

Other studies using synthetic stimuli also indicate that cortical 
neurons integrate different sound features, including frequency,  
spectral bandwidth, level, amplitude modulation over time, and 
spatial location19,20. By using an online optimization procedure 
(see earlier work by deCharms et al.21) to dynamically generate  
sounds that varied along these dimensions, the authors of these 
studies were able to efficiently search stimulus space and con-
strain their model within a few minutes of stimulus presentation. 
They also found that individual neurons multiplex information  
about multiple stimulus dimensions and that neuronal responses 
to multidimensional stimuli could not be predicted simply from 
responses to low-dimensional stimuli.
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Taken together, these studies suggest that the successor of the  
STRF will be a model that allows multiple STRF-like elements 
to be combined in nonlinear ways. The development of such  
models will require large datasets that include neuronal responses 
to complex, natural stimuli.

Dynamic changes in tuning
Static multidimensional models capture complex selectivity for 
the recent spectral structure of sounds. However, several stud-
ies have highlighted the importance of dynamic changes in the  
response properties of auditory cortical neurons22–26. Most real-
life soundscapes are characterized by constant changes in the  
statistics of the sounds that reach the ears. Neurons rapidly adapt 
to stimulus statistics—for example, stimulus probability, con-
trast, and correlation structure—and adjust their sensitivity in  
response to behavioral requirements27–29. This can produce rep-
resentations that are invariant to some changes in sound features  
and robustly selective for other features30.

Several authors have incorporated such adaptation by adding a 
nonlinear input stage to the standard LN model25,31–33. Willmore 
et al.33 explicitly incorporated the behavior of afferent neurons  
into a model of A1 spectrotemporal tuning. In both the auditory 
nerve34 and IC35, dynamic coding occurs in the form of adap-
tation to mean sound level. When the mean sound level is high, 
neurons shift their dynamic ranges upwards, so that neuronal  
responses are relatively invariant to changes in background  
level. Because these structures are precursors of the auditory  
cortex, it makes sense to incorporate IC adaptation into the  
input stage of a model of auditory cortex and Willmore et al.33 
found that this improved the performance of their model of  
cortical neurons.

Neurons in the A1 of the ferret show compensatory adapta-
tion to sound contrast (that is, the variance of the sound level  
distribution)24,36. When the contrast of the input to a given  
neuron is high, the gain of the neuron is reduced, thereby  
making it relatively insensitive to changes in sound level. When 
the contrast of the input is low, the gain of the neuron rises,  
increasing its sensitivity. This adaptive coding therefore tends 
to compensate for changes in sound contrast. Adaptation to the  
mean and variance of sound level is specifically beneficial for 
the representation of dynamic sounds against a background of  
constant noise. If the noise is statistically stationary (that is, the 
mean and variance are fixed), then the effect of adaptation is to 
minimize the responses of cortical neurons to the background.  
Thus, the neuronal responses depend mainly on the dynamic 
foreground sound and are relatively invariant to its contrast. This 
enables cortical neurons to represent complex sounds using a  
code that is relatively robust to the presence of background  
noise. Similar noise robustness has been shown independently in 
the songbird37 and in decoding studies applied to populations of 
mammalian cortical neural responses30,38.

Normative models
To fully understand how sounds are represented by neurons in 
the auditory cortex, we need to ask why this particular repre-
sentation has been selected, whether by evolution or by devel-
opmental processes. One approach to addressing this question 
is to build normative computational models. Normative models 

embody certain constraints that are hypothesized to be impor-
tant for determining the neural representation. By building  
normative models and comparing their representations with real 
physiological representations, it is possible to test hypotheses 
about which constraints determine the structure of the neu-
ral codes used in the brain. For example, Olshausen and Field39 
built a neural network and trained it to produce a sparse, gen-
erative representation of natural visual scenes. Once trained, the  
network’s units exhibited receptive fields with many similarities 
to those found in neurons in the primary visual cortex (V1), 
suggesting that V1 itself may be optimized to produce sparse  
representations of natural visual scenes.

Carlson et al.40 trained a neural network so that it produced a 
sparse, generative representation of natural auditory stimuli. They 
found that the model learned STRFs whose spectral structure  
resembled that of real neurons in the auditory system, suggest-
ing that the auditory system may be optimized for sparse repre-
sentation. Carlin and Elhilali41 showed that optimizing model 
neural responses to produce a code based on sustained firing 
rates also revealed feature preferences similar to those of auditory  
neurons. Recently, Singer et al.42 observed that the temporal  
structure of the STRFs in sparse coding models (which  
generally have envelopes that are symmetrical in time) is very  
different from those of real neurons in both V1 and A1, where  
neurons are typically most selective for recent stimulation and 
have envelopes that decay into the past. These authors trained  
networks to predict the immediate future of either natural visual 
or auditory stimuli and found that the networks developed  
receptive fields that closely matched those of real visual and 
auditory cortical neurons, including their asymmetric temporal 
envelopes (Figure 1). This suggests that neurons in these areas  
may be optimized to predict the immediate future of sensory 
stimulation. Such a representation may be advantageous for  
acting efficiently in the world using neurons, which introduce  
inevitable delays in information transmission.

As discussed above, STRFs do not provide a complete descrip-
tion of the stimulus preferences of auditory neurons. It is  
therefore important to extend the normative approach into more 
complex models in order to generate hypotheses about what 
nonlinear combinations of features we might expect to find in 
the auditory system. To address this question, Młynarski and  
McDermott43 trained a hierarchical, generative neural network 
to represent natural sounds and found that some units in the  
second layer of the model developed sensitivity to combina-
tions of elementary sound features but that others developed  
opponency between sound features. By providing insights into 
how different parameters interact to determine their response  
properties, these modelling approaches can generate testable 
hypotheses about the possible roles played by auditory neurons  
at different levels of the processing hierarchy.

Origin of auditory cortical tuning properties
The receptive field properties of auditory cortical neurons are 
derived from their ascending thalamic inputs and are shaped by 
recurrent synaptic interactions between excitatory neurons as 
well as by local inhibitory inputs. The importance of ascending  
inputs in determining the functional organization of the auditory 
pathway is illustrated by the presence of tonotopic maps at each 
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Figure 1. Neuronal selectivity in the auditory cortex is optimized to represent sound features in the recent sensory past that best 
predict immediate future inputs. A feedforward artificial neural network was trained to predict the immediate future of natural sounds 
(represented as cochleagrams describing the spectral content over time) from their recent past. This temporal prediction model developed 
spectrotemporal receptive fields that closely matched those of real auditory cortical neurons. A similar correspondence was found between 
the receptive fields produced when the model was trained to predict the next few video frames in clips of natural scenes and the receptive 
field properties of neurons in primary visual cortex. Model nomenclature: sj, hidden unit output; ui, input—the past; vk, target output—the true 
future; v^k, output—the predicted future; wji, input weights (analogous to cortical receptive fields); wkj, output weights. Reprinted from Singer 
et al.42.

processing level, which have their origin in the decomposition 
of sounds into their individual frequencies along the length of 
the cochlea in the inner ear. The presence of tonotopic maps in 
the cortex can be demonstrated by using a variety of methods,  
including the use of functional brain imaging in humans44.  
However, this is a relatively coarse approach and the much 
finer spatial resolution provided by in vivo two-photon calcium  
imaging suggests that the spatial organization varies across the  
layers of A1 and that frequency tuning in the main thalamor-
ecipient layer 4 is more homogenous than in the upper cortical  
layers45. Whilst this laminar transformation is consistent with 
a possible integration of inputs in the superficial layers, which 
might contribute to the emergence of sensitivity to multiple 
sound features, it turns out that the thalamic input map to A1 is  
surprisingly imprecise46. The significance of this for the genera-
tion of cortical response properties remains to be investigated, but 
heterogeneity in the frequency selectivity of ascending inputs  
might provide a substrate for the contextual modulation of  
cortical response properties.

In the last few years, progress has been made in determin-
ing how the local circuitry of excitatory and inhibitory neurons 

contributes to auditory cortical response properties47–50. For  
example, both parvalbumin-expressing and somatostatin- 
expressing inhibitory interneurons in layers 2/3 have been  
implicated in regulating the frequency selectivity of A1  
neurons48,50, while manipulating the activity of parvalbumin-
expressing neurons, the most common type of cortical interneu-
ron, has been shown to alter the behavioral performance of 
mice on tasks that rely on their ability to discriminate different  
sound frequencies49. Furthermore, local inhibitory interneurons 
are involved in mediating the way A1 responses change accord-
ing to the recent history of stimulation51–54, and it is likely that 
dynamic interactions between different cell types are responsible 
for much of the context-dependent modulation that character-
izes the way sounds are processed in the auditory cortex. Thus, 
in addition to being present at subcortical levels, adaptive cod-
ing of auditory information can arise de novo from local circuit  
interactions in the cortex.

Beyond tonotopy
A tonotopic representation is defined by a systematic variation 
in the frequency selectivity of the neurons from low to high val-
ues. A long-standing and controversial question regarding the 
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functional organization of A1 and other brain areas that contain 
frequency maps is how neuronal sensitivity to other stimulus fea-
tures is represented across the isofrequency axes. In the visual  
cortex of carnivores and primates, neuronal preferences for  
different stimulus features—orientation, spatial frequency and 
eye of stimulation—are overlaid so that they are all represented  
at each location within a two-dimensional map of the visual  
field55. In a similar vein, functional magnetic resonance  
imaging (fMRI) studies in humans56 and macaque monkeys57 
have revealed that core auditory fields, including A1, contain a  
gradient in sensitivity to the rate of amplitude modulation, which 
is arranged orthogonally to the tonotopic map. In other words, 
a temporal map seems to exist within the cortical representation  
of each sound frequency.

By contrast, analysis of the activity of large samples of neu-
rons within the upper layers of mouse auditory cortex has failed 
to provide evidence for such topography. Instead, neurons  
displaying similar frequency tuning bandwidth58, preferred 
sound level58, and sensitivity to changes in sound level59 or to 
differences in level between the ears60—an important cue to  
localizing sound sources—form intermingled clusters across  
the auditory cortex. Within the isofrequency domain, clearer  
evidence for segregated processing modules with distinct spectral  
integration properties or preferences for other sound features 
has been obtained in monkeys61 and cats62. It therefore remains 
possible that the more diffuse spatial arrangement observed 
in mice may be a general property of sensory cortex in this  
species63 or more generally of animals with relatively small 
brains. Although multiple, interleaved processing modules for  
behaviorally relevant sound features may exist to varying  
degrees in different species, our understanding of how they map 
onto the tonotopic organization of A1 or other auditory areas is  
far from complete.

Vertical clustering of neurons with similar tuning properties 
also represents a potentially important aspect of the functional  
organization of the cerebral cortex. Compared with other sensory 
systems, there has been less focus on the columnar organization 
of auditory cortex. As previously mentioned, there is evidence 
for layer-specific differences in the frequency representation 
in auditory cortex45 and this has been shown to extend to other  
response properties64,65. At the same time, ensemble activity 
within putative cortical columns may play a role in representing  
auditory information66,67.

Representing sound features in multiple cortical areas
As with other sensory modalities, the auditory cortex is subdi-
vided into a number of separate areas, which can be distinguished  
on the basis of their connections, response properties, and (to 
some extent) the auditory perceptual deficits that result from  
localized damage. That these areas are organized hierarchi-
cally is clearly illustrated by neuroimaging evidence in humans  
for the involvement of sequential cortical regions in transform-
ing the spectral features of speech into its semantic content68,69.  
Furthermore, by training a neural network model on speech and 
music tasks, Kell et al.70 found that the best performing model 
architecture separated speech and music into separate path-
ways, in keeping with fMRI responses in human non-A171.  

Neuroimaging evidence in monkeys also suggests that analysis 
of auditory motion may involve different pathways from those  
engaged during the processing of static spatial information72. In 
both human and non-human primates, the concept of distinct  
ventral and dorsal processing streams is widely accepted. 
These were initially assigned to “what” and “where” functions,  
respectively, but their precise functions, and the extent to which 
they interact, continue to be debated73–76.

Evidence for a division of labor among the multiple areas 
that comprise the auditory cortex extends to other species, as  
illustrated, for example, by the finding that anatomically seg-
regated regions of mouse auditory cortex can be distinguished  
by differences in the frequency selectivity of the neurons and in 
their sensitivity to frequency-modulated sweeps77. Nevertheless, 
the question of whether a particular aspect of auditory percep-
tion is localized to one or more of those areas is, in some ways,  
ill posed. Given the extensive subcortical processing that takes 
place and the growing evidence for multidimensional receptive 
field properties in early cortical areas19,20,78, it is likely that neu-
rons convey information about multiple sound attributes. Indeed, 
recent neuroimaging studies have demonstrated widespread 
areas of activation in response to variations in spatial79 or  
non-spatial80 parameters, adding to earlier electrophysiological 
recordings which indicated that sensitivity to pitch, timbre, and 
location is distributed across several cortical areas81.

Decoding auditory cortical activity
Even where different sound features are apparently encoded 
by the same cortical regions, differences in the evoked activity  
patterns may enable them to be distinguished. For example,  
auditory cortical neurons can unambiguously represent more 
than one stimulus parameter by independently modulating their 
spike rates within distinct time windows78. Furthermore, a recent 
fMRI study demonstrated that although variations in pitch or  
timbre—two key aspects of sound identity—activate largely  
overlapping cortical areas, they can be distinguished by using 
multivoxel pattern analysis80. Studies like these hint at how the  
brain might solve the problem of perceptual invariance— 
recognizing, for example, the melody of a familiar tune even 
when it is played on different musical instruments irrespective of  
where they are located.

This type of approach is part of a growing trend to investi-
gate the decoding or reconstruction of sound features from the  
measured responses of populations of neurons (or other  
multidimensional measures of brain activity, such as fMRI voxel  
responses82 or electroencephalography signals). Indeed, Yildiz 
et al.83 found that a normative decoding model of auditory  
cortex described neuronal response dynamics better than some 
classic encoding models that define the relationship between 
the stimulus and the neural response. It is therefore possible 
that the responses of populations of cortical neurons can be 
more accurately understood in terms of decoding rather than  
encoding.

The application of decoding techniques has provided valuable 
insights into how neural representations change under differ-
ent sensory conditions, such as in the presence of background  
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noise30,38,84,85, or when specific stimuli are selectively attended86–89. 
They can also help to identify the size of the neural  
populations within the cortex from which auditory informa-
tion needs to be read out in order to account for behavior90–92 and 
the way in which stimulus features are represented there. For  
example, evidence from electrophysiological93,94, two-photon 
calcium imaging60 and fMRI95,96 studies is all consistent with an  
opponent-channel model in which the location of sounds in 
the horizontal plane, at least based on interaural level differ-
ences, is decoded from the relative activity of contralaterally and  
ipsilaterally tuned neurons within each hemisphere. Furthermore, 
based on the accuracy with which spectrotemporal modula-
tions in a range of natural sounds could be reconstructed from  
high-resolution fMRI signals, Santoro et al.97 concluded that 
even early stages of the human auditory cortex may be optimized  
for processing speech and voices.

Auditory scene analysis
Separating a sound source of interest from a dynamic mixture of 
potentially competing sounds is a fundamental function of the  
auditory system. In order to perceptually isolate a sound source 
as a distinct auditory object98, its constituent acoustic features like  
pitch, timbre, intensity, and location need to be individually 
analyzed and then grouped together to form a coherent percep-
tual representation. Although neural computations underlying 
scene analysis have been demonstrated at different subcortical  
levels99–101, the cortex is the hub where stimulus-driven feature 
segregation and top-down attentional selection mechanisms  
converge102. Indeed, several recent studies suggest a critical role 
for the auditory cortex in forming stable perceptual representa-
tions based on grouping and segregation of spectral, spatial, and  
temporal regularities in the acoustic environment103–115.

Whilst cortical spike-based accounts of auditory segregation 
of narrowband signals rely on mechanisms of tonotopicity,  
adaptation, and forward suppression116, recent work has  
highlighted the importance of temporal coherence113,117–119 
and oscillatory sampling120–122 in driving dynamic segregation 
of attended broadband stimuli. Results from human electro- 
corticography experiments suggest that low-level auditory  
cortex encodes spectrotemporal features of selectively attended  
speech86,87. Speech representations derived from high-gamma  
(75- to 150-Hz) local field potential activity in non-A1 of  
subjects listening to two speakers talking simultaneously 
are dominated by the spectrotemporal features of which-
ever speaker attention is drawn to86. Moreover, the attention-
modulated responses were found to predict the accuracy with 
which target words were correctly detected in the two-speaker 
speech mixture, revealing a neural correlate of “cocktail party”  
listening86. Attentional modulation of the representation of  
multiple speech sources increases along the cortical hierarchy114, 
and a similar finding has been reported for the emergence of 
task-dependent spectrotemporal tuning in neurons in ferret  
cortex123.

Prediction
The predictability of sounds plays an important role in processing 
natural sound sequences like speech and music124. A prominent  
generative model of perception is based on the concept of  

predictive coding; that is, the brain learns to minimize the  
prediction error between internal predictions of sensory input 
and the external sensory input125,126. This model has been success-
fully applied to explain the encoding of pitch in a hierarchical  
fashion in distributed areas of the auditory cortex127. Further-
more, distinct oscillatory signatures for the key variables of  
predictive coding models, including surprise, prediction error, 
prediction change, and prediction precision, have all been  
demonstrated in the auditory cortex128. Most of the work in this 
area at the level of individual neurons has focused on stimulus- 
specific adaptation, a phenomenon in which particular sounds 
elicit stronger responses when they are rarely encountered than  
when they are common22. Recent work has indicated that A1 
neurons exhibit deviance or surprise sensitivity129 and encode  
prediction error124 and that prediction error signals increase 
along the auditory pathway130. Furthermore, the auditory cortex  
encodes predictions for not only “what” kind of sensory event is  
to occur but also “when” it may occur131.

Behavioral engagement and auditory decision-making
Further evidence for dynamic processing in the auditory cortex 
has been obtained from studies demonstrating that engage-
ment in auditory tasks modulates both spontaneous132,133 and  
sound-evoked92,133–135 activity, as well as correlations between 
the activity of different neurons92,136, in ways that enhance  
behavioral performance. Furthermore, changes in task reward 
structure can alter A1 responses to otherwise identical sounds28,  
and other studies suggest that the auditory cortex is part of the 
network of brain regions involved in maintaining perceptual  
representations during memory-based tasks137,138. Although 
the source of these modulatory signals is not yet fully under-
stood, accumulating evidence suggests the involvement of 
top-down inputs from areas such as the parietal and frontal  
cortices88,139–141 as well as the neuromodulatory systems dis-
cussed in the next section. In addition, inputs from motor cortex 
have been shown to suppress both spontaneous and evoked  
activity in the auditory cortex during movement142,143.

The notion of the auditory cortex as a high-level cognitive 
processor is also supported by investigations into perceptual  
decision-making. Traditionally, decision making is a function  
that has been attributed to parietal and frontal cortex in associa-
tion with subcortical structures like the basal ganglia. However,  
recent work suggests that the auditory cortex not only encodes 
physical attributes of task-relevant stimuli but also repre-
sents behavioral choice and decision-related signals92,144–146.  
Tsunada et al.147 provided direct evidence for a role for auditory 
cortex in decision making: they found that micro-stimulation 
of the anterolateral but not the mediolateral belt region of the  
macaque auditory cortex biased behavioral responses toward 
the choice associated with the preferred sound frequency of the  
neurons at the site of stimulation.

The auditory cortex and learning
An ability to learn and remember features in complex acoustic 
scenes is crucial for adaptive behavior, and plasticity of sound 
processing in the auditory cortex is an integral part of the circuitry 
responsible for these essential functions. Robust learning often 
occurs without conscious awareness and persists for a long time. 
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Agus et al.148 demonstrated that human participants can rapidly 
learn to detect a particular token of repeated white noise and  
remember the same pattern for weeks149 in a completely  
unsupervised fashion. Functional brain imaging experiments 
have implicated the auditory cortex as well as the hippocampus 
in encoding memory representations for such complex scenes. 
The underlying mechanisms of this rapid formation of robust  
acoustic memories are not clear, but recent psychoacoustical 
experiments suggest a computation based on encoding summary  
statistics150.

Recognition of structure in complex sequences based on pas-
sive exposure is also imperative for acquiring knowledge of the  
various rules manifest in speech and language151. Electro-
physiological recordings from songbird forebrain areas that  
correspond to the mammalian auditory cortex have revealed evi-
dence for statistical learning, expressed as a decrease in the spike 
rate for familiar versus novel sequences152. Following passive 
learning with sequences of nonsense speech sounds that con-
tained an artificial grammar structure, exposure to violations in 
this sequence activated homologous cortical areas153 and modu-
lated hierarchically nested low-frequency phase and high-gamma 
amplitude coupling in the auditory cortex in a very similar way in  
humans and monkeys154. Interestingly, this form of oscillatory 
coupling is thought to underlie speech processing in the 
human auditory cortex155, suggesting that it may represent an  
evolutionarily conserved strategy for analyzing sound sequences.

Not all learning, however, occurs without supervision, and rein-
forcement in the form of reward or punishment is also key for 
successful learning outcomes. As in other sensory modalities,  
training can produce improvements in auditory detection 
and discrimination abilities, including linguistic and musical  
abilities156. A number of studies have reported that auditory  
perceptual learning is associated with changes in the stimulus- 
encoding response properties of A1 neurons157. This often  
entails an expansion in the representation of the stimuli on 
which subjects are trained, and the extent of the representational 
plasticity is thought to encode both the behavioral importance 
of these stimuli and the strength of the associative memory158.  
Nevertheless, there have been few attempts to show that A1  
plasticity is required for auditory perceptual learning. Indeed,  
training-induced changes in the functional organization of A1 have 
been found to disappear over time, even though improvements 
in behavioral performance are retained159,160. However, a recent  
study in which gerbils were trained on an amplitude-modulation 
detection task found both a close correlation between the  
magnitude and time course of cortical and behavioral plasticity 
and that inactivation of the auditory cortex reduced learning  
without affecting detection thresholds161. Cortical inactivation 
has also been shown to impair training-dependent adaptation to 
altered spatial cues resulting from plugging of one ear162. This is  
consistent with physiological evidence that the encoding of 
different spatial cues in the auditory cortex is experience- 
dependent, changing in ways that can explain the recov-
ery of localization accuracy following exposure to abnormal  
inputs94,163,164.

The alterations in cortical response properties that accom-
pany perceptual learning are likely driven by top-down inputs 
that determine which stimulus features to attend to165. Several 

neuromodulatory systems, including the cholinergic basal  
forebrain166,167 and the noradrenergic locus coeruleus168,169, 
play an important role in auditory processing and plasticity 
and appear to provide reinforcement signals and information 
about behavioral context to auditory cortex. It has recently 
been shown that cholinergic inputs primarily target inhibitory 
interneurons in the auditory cortex170,171, which suggests a  
possible basis by which the balance of cortical excitation and  
inhibition is transiently altered during learning172.

Although its involvement in learning is probably one of the  
most important functions of the auditory cortex, there is grow-
ing evidence for a specific role for its outputs to other brain areas. 
For instance, selective strengthening of auditory corticostriatal  
synapses has been observed over the course of learning an  
auditory discrimination task173, while the integrity of A1 neurons 
that project to the IC is required for adaptation to hearing loss 
in one ear174. Indeed, it is likely that descending corticofugal  
pathways play a more general role in auditory learning175,176 as  
well as other aspects of auditory perception and behavior177–180.

Conclusions
The studies outlined in this article show how neurons in the  
auditory cortex encode sounds in ways that are directly relevant to  
behavior. Auditory cortical processing depends not only on the 
sounds themselves but also on the individual’s internal state, 
such as the level of arousal, and the sensory and behavioral  
context in which sounds are detected. Therefore, to understand 
how cortical neurons process specific sound features, we have to 
consider the complexity of the auditory scene and the presence 
of other sensory cues as well as factors such as motor activity,  
experience, and attention. Indeed, the auditory cortex seems to 
play a particularly important role in learning and in constructing 
memory-dependent perceptual representations of the auditory  
world.

We are now beginning to understand the computations performed 
by auditory cortical neurons as well as the role of long-range 
inputs and local cortical circuits, including the participation of  
specific cell types, in those computations. Research over the last 
few years has also provided insights into the way information  
flows within and between different auditory cortical areas as 
well as the complex interplay between the auditory cortex and 
other brain areas. In particular, through its extensive network of  
descending projections, cortical activity can influence almost 
every subcortical processing stage in the auditory pathway, 
but we are only beginning to understand how those pathways  
contribute to auditory function. Further progress in this field  
will require the application of coordinated computational and 
experimental approaches, including the increased use of methods 
for measuring, manipulating, and decoding activity patterns from 
populations of neurons.
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