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A B S T R A C T   

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the outbreak of the 2019 
coronavirus (COVID-19) disease, which greatly challenges the global economy and health. Simple and sensitive 
diagnosis of COVID-19 at the early stage is important to prevent the spread of pandemics. Herein, we have 
proposed a target-triggered cascade signal amplification in this work for sensitive analysis of SARS-CoV-2 RNA. 
Specifically, the presence of SARS-CoV-2 RNA can trigger the catalytic hairpin assembly to generate plenty of 
DNA duplexes with free 3′-OH termini, which can be recognized and catalyzed by the terminal deoxynucleotidyl 
transferase (TdT) to generate long strand DNA. The prolonged DNA can absorb substantial Ru(NH3)6 

3+ mole-
cules via electrostatic interaction and produce an enhanced current response. The incorporation of catalytic 
hairpin assembly and TdT-mediated polymerization effectively lowers the detection limit to 45 fM, with a wide 
linear range from 0.1 pM to 3000 pM. Moreover, the proposed strategy possesses excellent selectivity to 
distinguish target RNA with single-base mismatched, three-base mismatched, and random sequences. Notably, 
the proposed electrochemical biosensor can be applied to analyze targets in complex circumstances containing 
10% saliva, which implies its high stability and anti-interference. Moreover, the proposed strategy has been 
successfully applied to SARS CoV-2 RNA detection in clinical samples and may have the potential to be cultivated 
as an effective tool for COVID-19 diagnosis.   

1. Introduction 

The outbreak of coronavirus disease 2019 (COVID-19) aroused by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
caused large-scale infections and deaths, posing a significant threat to 
global healthcare systems [1]. Although the mortality has been largely 
controlled due to the popularization of vaccines and extensive experi-
ence of medical staff, SARS-CoV-2 continues its prevalence due to its 
high contagiousness [2,3]. Coordinating accurate diagnosis, timely 
isolation, and appropriate therapy is an effective method to control the 
pandemic. Among them, proper diagnosis using sensitive, 
conveniently-operated, and accessible technologies is the premise for 
isolation and therapy [4,5]. Quantitative reverse transcription poly-
merase chain reaction (qRT-PCR) has been recognized as the current 
gold standard for SARS-CoV-2 detection for its robust analytical 

performance [6–8]. However, it meets some technical drawbacks, such 
as long assay time, high-cost instruments, and involvement of trained 
personnel. Moreover, some studies have revealed that qRT-PCR analysis 
may provide false-negative results, and many patients are not diagnosed 
until multiple repeated swab sampling and detection [9,10]. Therefore, 
it is still in urgent need to solve the current dilemma by proposing 
sensitive and selective methods for SARS-CoV-2 detection. 

As a kind of viable alternative method for the diagnosis, many 
biosensor-based assays for SARS-CoV-2 detection have been proposed, 
such as colorimetric biosensors [11,12], fluorescent biosensors [13,14], 
localized surface plasmon resonance (LSPR) based biosensors [15,16], 
electrochemical biosensors [2,4], etc. Among these, electrochemical 
biosensors have provided an alternative way for viruses detection due to 
the advantages of rapid response, low-cost instruments, convenient 
operation, user-friendlliness, and suitable for miniaturization [17–20]. 
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For example, we have designed an electrochemical biosensor for the 
detection of SARS-CoV-2 spike S1 protein via an aptamer-functionalized 
biomimetic nanochannel, which can rapidly detect the SARS-CoV-2 viral 
particles in one step without other reagents [2]. Song et al. [21] have 
proposed an antifouling electrochemical biosensor for SARS-CoV-2 
detection by introducing the polymerized polyaniline nanowires and 
elaborate designed inverted Y-peptides, which can successfully detect 
SARS-CoV-2 at a low concentration of 3.5 fM. Lu et al. [22] have inte-
grated the loop probe-mediated isothermal amplification strategy with 
electrochemical technology to analyze the SARS-CoV-2 in one-pot to 
avoid cross-contamination, which realizes fast readout within 30–40 
min, with an ultra-low detection limit of 1 copy/μL. Nonetheless, among 
these methods, the cost and convenience may be sacrificed because of 
either the involvement of the design of probes modified with additional 
electroactive labels or the complex synthesis procedure of 
nanomaterials. 

Catalytic hairpin assembly (CHA), a typical non-enzymatic nucleic 
acid circuit, has been deemed as a high-sensitivity tool for signal 
amplification with low background [23–26], which is suitable for the 
detection and quantification of nucleic acids target [27]. In this paper, 
we report a target-triggered cascade signal amplification strategy for the 
SARS-CoV-2 Rdrp gene detection via integrating the CHA and extraor-
dinary polymerization ability of terminal deoxynucleotidyl transferase 
(TdT). TdT is a kind of template-free DNA polymerase which is able to 
elongate the single strand DNA by catalyzing the addition of deoxy-
nucleotides to the free 3′ termini of DNA [28]. In this work, the 
well-designed hairpins are modified on the gold electrode via forming an 
Au–S bond on the 3-termini, so it is unable to be extended by the TdT. In 
the presence of the SARS-CoV-2 RNA, the CHA reaction can proceed 
successfully to generate a large number of DNA duplexes with free 3’ 
–OH termini on the electrode surface. With the addition of TdT, DNA 
strands can be polymerized and generate long strands to absorb the 
electrochemical molecules, Ru(NH3)6 

3+. So, an electrochemical 
biosensor can be fabricated for the sensitive assay of SARS-CoV-2 RNA. 
The proposed biosensor has also been applied for the detection of 
SARS-CoV-2 RNA in clinical samples and succeeded in distinguishing 
COVID-19 patients from normal individuals. 

2. Experimental section 

2.1. Materials 

All customized DNA strands used in this research were synthesized 
and purified by Invitrogen Biotechnology Co, Ltd. (Shanghai, China). 
The oligonucleotides sequences were designed by ourselves with the 
assistance of Nucleic Acid Package (NUPACK), and the sequences were 
listed in Table S1. The terminal deoxynucleotidyl transferase (TdT) 
enzyme and deoxyribonucleotides mixture (dNTPs) were purchased 
from Beyotime Biotechnology (Shanghai, China). Hexaamminer-
uthenium (III) chloride (Ru(NH3)6Cl3) was ordered from Solarbio Life 
Sciences Co., Ltd (Beijing, China). 6-Mercapto-1-hexanol (MCH), N,N, 
N′,N′-Tetramethylethylenediamine (TEMED), ammonium persulfate 
(APS), and Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) were 
supplied by Sigma-Aldrich (Shanghai, China). All reagents were of 
analytical grades. The experimental water was purified by a Millipore 
water purification system. 

2.2. Preparation of the modified electrodes 

The Au electrode was pretreated in accordance with the previous 
protocol with modification [29]. Firstly, the Au electrode was succes-
sively polished with alumina powder of 1.0 μm, 0.3 μm, and 0.05 μm, 
and then sonicated in ethanol and distilled water for 5 min. Next, the Au 
electrode was immersed in piranha solution (H2SO4: H2O2 = 3:1, v/v) 
for 30 min. Subsequently, the Au electrode was electrochemically 
cleaned in 0.5 M H2SO4 solution until a stable cyclic voltammetry curve 

appeared. After being rinsed with distilled water and dried with nitro-
gen, a clean Au electrode with a mirror-like surface was prepared. Before 
immobilization on the prepared Au electrode surface, the HP1 was 
treated with 10 mM TCEP to reduce the S–S bonds. Then 10 μL of DNA 
immobilization solution (10 mM Tris-HCl, 1.0 mM EDTA, and 1.0 M 
NaCl, pH 7.4) containing 0.5 μM HP1 was dropped on the electrode and 
incubated for 2 h at 37 ◦C, followed by incubating with 1 mM MCH 
solution for 30 min at 37 ◦C to avoid the nonspecific adsorption. 

2.3. SARS-CoV-2 RNA detection 

Firstly, 10 μL of hybridization buffer containing 0.5 μM HP2 and 
target were added to the electrode and incubated for 2 h at 37 ◦C. After 
rinsing three times with distilled water, 10 μL of the mixture of dNTP (1 
mM), TdT (10 U), and TdT reaction buffer were added and incubated for 
1 h at 37 ◦C. Finally, the electrode was immersed in 5 mL 10 mM Tris- 
HCl buffer containing 5 μM Ru(NH3)6 

3+ for 15 min and ready for the 
following electrochemical detection. 

2.4. Electrochemical measurements 

Electrochemical impedance spectra (EIS) and differential pulse vol-
tammetry (DPV) measurements were performed on a CHI660C electro-
chemical workstation (CH Instruments, USA) with a three-electrode 
system. EIS was measured in solution including 5 mM [Fe(CN)6]3-/4- and 
1 M KCl and DPV was carried out in 10 mM Tris-HCl buffer containing 5 
μM Ru(NH3)6 

3+. The detailed parameter settings are as follows: bias 
potential, 0.224 V; amplitude, 5 mV; frequency range, 0.1 Hz to 10 kHz 
for EIS, amplitude, 50 mV; pulse width, 0.05 s; scan range 0 to − 0.45 V 
for DPV. 

2.5. Clinical sample analysis 

For the laboratory testing, the clinical samples were collected and 
provided by the Second Hospital of Nanjing. The research was approved 
by the scientific ethical committee of the Second Hospital of Nanjing and 
Nanjing University (Project Number: 2020-LS-ky003), and informed 
consent was obtained in all cases. Total RNA was extracted from the 
oropharyngeal swab samples with a Nucleic Acid Isolation Kit (Magnetic 
Beads) from Bioperfectus Technologies (Taizhou, China) in accordance 
with the instructions and then stored in − 80 ◦C for further use. Taking1 
μL of extracted RNA for further analysis according to the above- 
mentioned protocol. 

2.6. Electrophoresis experiment 

The 10% polyacrylamide gel electrophoresis (PAGE) is conducted in 
1 × TBE buffer, 10% APS and TEMED. For the analysis of the feasibility 
of CHA, 1 μM HP1 and HP2 are incubated with or without 100 nM target 
DNA for 2 h at 37 ◦C. Thereafter, the above samples are injected into 
10% PAGE and conducted for 60 min at 100 V. Finally, the gel elec-
trophoresis image is observed through Gel Imaging System. 

3. Results and discussion 

3.1. Principle of the proposed biosensor 

Scheme 1 illustrates the mechanism of the target-triggered cascade 
signal amplification for electrochemical assay of SARS-CoV-2 RNA. We 
have selected a 26-nucleotide sequence from the SARS-CoV-2 RdRp gene 
located in the ORF1ab region as the target [15], which can distinguish 
SARS-CoV-2 from other coronaviruses with high specificity [30,31]. The 
designed hairpin HP1 and HP2, which exist complementary sequences, 
can maintain independent stable structures separately, because their 
complementary sequences are blocked in their stems, respectively. 
Firstly, the HP1 containing a thiol group at the 3′-termini has been 
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assembled on the electrode as a sensing layer by forming the Au–S bond. 
In this state, TdT-induced DNA polymerization cannot be initiated on 
the electrode surface because of the lack of free 3′-OH termini, thus only 
a low signal can be detected. However, after addition of target RNA, the 
RNA sequence can hybridize with the exposed toehold domain (6-base) 
of HP1 and generate the H1/RNA duplex by initiating the first branch 
migration, accompanied with the exposure of the other single-stranded 
toehold domain (8-base), which can further hybridize with HP2. Then, 
the second branch migration reaction is successfully initiated to form the 
HP1/HP2 duplex, along with the release of the target. The free target can 
circularly unfold another HP1 and trigger the multicycle hybridization 
between HP1 and HP2, producing amounts of HP1/HP2 duplexes on the 
electrode. Moreover, the surface-hybridized HP2 with free 3′-OH can be 
recognized by TdT enzyme to generate long-strand DNA in a dNTP pool. 
Consequently, a large number of electrochemical signal molecules, Ru 
(NH3)6 

3+ can be attached to the negatively charged phosphate back-
bone of DNA through electrostatic interaction. Therefore, in the pres-
ence of a small amount of target RNA, many HP1/HP2 duplexes can be 
generated to introduce numerous Ru(NH3)6

3+ into the sensing system 
and obtain a significantly enhanced electrochemical signal for the 
detection of SARS-CoV-2. 

3.2. Feasibility verification of the principle 

We have first verified the feasibility of target induced assembly of the 
probe duplexes (HP1/HP2) via gel electrophoresis experiment. As a 
proof-of-concept, the hybridization reaction between capture probe HP1 
and catalytic probe HP2 has been blocked in the absence of the target, 
implying the stable hairpin structures of HP1 and HP2 (Fig. S1, lane 4). 
After the addition of the target, a distinct band of HP1/HP2 duplexes 
appears (lane 5), along with the band of HP1 (lane 2) and HP2 (lane 3) 
weakening, which confirms the target triggered catalytic assembly of 
HP1 and HP2. Then, the stepwise modification of the working electrode 
has been investigated by electrochemical impedance spectroscopy (EIS) 
with [Fe(CN)6]3-/4- redox couple. As depicted in Fig. 1A, the bare Au 
electrode shows almost a straight line (curve a) indicating a low electron 
transfer resistance. After modifying with HP1 and MCH, a semicircle 
appears (curve b), which can be explained by the hindering effect of 
negatively charged phosphate skeleton on interfacial electron transfer. 
The semicircular diameter increases with the addition of the target RNA 
and HP2 (curve c), indicating that the CHA reaction is successfully 
triggered and resulting HP1/HP2 duplexes enhance electronegativity 
and steric hindrance. Moreover, a larger diameter is observed with the 
addition of TdT, since the free 3′-OH of HP2 can be catalyzed by TdT and 

generates a long single strand, which may further hinder the electron 
transfer on the electrode. Afterward, differential pulse voltammetry 
(DPV) has been applied to investigate the feasibility of the proposed 
biosensor. As illustrated in Fig. 1B, a low electrochemical response is 
observed without SARS-CoV-2 RNA (curve a). However, in the presence 
of the SARS-CoV-2 RNA (curve b), the current increases since the target 
can trigger the CHA reaction. Moreover, the incubation of TdT leads to a 
further enhancement of the electrochemical response (curve c), 
demonstrating TdT-induced polymerization for signal amplification. 
The results confirm the combination of CHA and TdT can achieve better 
performance for SARS-CoV-2 detection. 

3.3. Optimization of experimental conditions 

To achieve the best performance for SARS-CoV-2 RNA detection, 
some experimental parameters should be optimized. First, the incuba-
tion concentration of HP1 on the gold electrode has been optimized. As 
shown in Fig. S2A, the current response gradually enhances as the 
concentration of HP1 increases from 0.1 μM to 0.5 μM and arrives at a 
plateau thereafter. So, 0.5 μM has been selected as the optimal con-
centration of HP1. Then, the influence of the reaction time of CHA has 
been investigated. As depicted in Fig. S2B, with the extension of the 
reaction time, the current increases continuously and almost reaches a 
platform at 120 min. Therefore, 120 min has been selected as the best 
reaction time in the subsequent research. TdT reaction time may also 
affect the efficiency of the proposed method by affecting the length of 
single-strand DNA. So, the effect of TdT reaction time has also been 
investigated by gradually prolonging the incubation time. In Fig. S2C, 
with the augment of reaction time, the current increases and reaches a 
steady-state at the time of 60 min, which can be ascribed to the fact that 
the growing single-strand DNA may form secondary structures to hinder 
the catalysis of TdT [32]. Thus, 60 min is sufficient for the preparation of 
proposed biosensor. 

3.4. Analytical performances 

With the optimal experimental conditions, the efficiency of the 
proposed biosensor in Rdrp gene quantification has been further studied 
by recording the DPV signals. Fig. 2A reveals the changes in current 
intensity in responding to the different concentrations of SARS-CoV-2 
RNA. The current intensity enhances with the increased concentration 
of the target in the range from 0.1 pM to 3000 pM. Fig. 2B illustrates a 
linear relationship between DPV signals and the logarithm of the SARS- 
CoV-2 RNA concentration. The correlation equation is I (μA) = 1.462 lgc 

Scheme 1. Schematic diagram of the target-triggered signal amplification for sensitive electrochemical detection of SARS-CoV-2 RNA.  
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(pM) - 0.669 (R2 = 0.997) and the limit of detection (LOD) is calculated 
to be 45 fM according to 3σ rule, i.e., LOD = 3σ/k, where σ is the 
standard deviation of the blank, and k is the slope of the calibration plot. 
So, the LOD achieved in this work is better than other recently reported 
methods (Table S2). Moreover, we have further investigated the speci-
ficity by measuring the current signals in response to three irrelevant 
sequences including a single-base mismatched (SM) sequence, a three- 
base mismatched (TM) sequence, and a random sequence. As shown 
in Fig. 3A, the lower DPV signal is observed in responding to 500 pM 
random sequence group and the control group. Although the currents 
generated by the TM group and SM group are slightly higher, they are 
still far lower than that of the target group. The results indicate that the 
proposed biosensor has excellent selectivity towards SARS-CoV-2 RNA. 
Moreover, the relative standard deviation (RSD) is calculated as 1.52% 
by conducting six independent experiments for the detection of SARS- 
CoV-2 RNA at the concentration of 1000 pM, indicating remarkable 
reproducibility of the proposed method. 

3.5. Analytical performance in complex environment and clinical samples 

To investigate the analytical performance of the proposed electro-
chemical biosensor in complex biological circumstances, the SARS-CoV- 
2 RNA spiked in 10% saliva are tested to compare with those spiked in 
Tris-HCl. For the same concentration target, the current intensity in 10% 
saliva is almost the same as that in Tris-HCl, showing the stability and 

anti-interference of this biosensor in complex environment (Fig. 3B). 
Thereafter, we have verified the analytical performance of the pro-

posed biosensor on clinical specimens. In brief, isolation RNA from 
oropharyngeal swabs of five healthy individuals and five COVID-19 
patients for further test. As revealed in Fig. 4A, the measured current 
from the COVID-19 patient group is significantly higher than that from 
the healthy group. Additionally, the result of the scatterplot in Fig. 4B 
shows a distinguished difference between the COVID-19 patients and 
healthy individuals, demonstrating the potential clinical application of 
our method. 

4. Conclusion 

Overall, we have proposed a sensitive and conveniently-operated 
electrochemical biosensor for the detection of SARS-CoV-2 based on 
the help of the target-triggered cascade signal amplification strategy. In 
the proposed biosensor, the target sequence can serve as an efficient 
trigger for the following self-assembly reaction of the auxiliary hairpins, 
in which free 3′-OH can be introduced to the formed double-stranded 
DNA. Then, the DNA elongation mediated by TdT can lead to signifi-
cantly amplified signals. Thus, the biosensor shows high sensitivity for 
SARS-CoV-2 RNA detection and realizes a low detection limit of 45 fM. 
Moreover, the proposed method possesses excellent selectivity, good 
reproducibility, and high resistance in complex environments. It has also 
been successfully applied for the detection of SARS-CoV-2 RNA from the 

Fig. 1. (A) EIS measurements corresponding to the stepwise treatment of Au electrode. (a) bare Au electrode, (b) MCH/HP1/Au, (c) (HP2+target)/MCH/HP1/Au, 
(d) (TdT + HP2+target)/MCH/HP1/Au. (B) DPV signals under different reaction conditions: (a) TdT/MCH/HP1/Au incubated with Ru(NH3)6

3+, (b) (HP2+target)/ 
MCH/HP1/Au incubated with Ru(NH3)6

3+, (c) (TdT + HP2+target)/MCH/HP1/Au incubated with Ru(NH3)6
3+. The concentration of the target RNA is 1 nM. 

Fig. 2. The quantitative analysis for the detection of SARS-CoV-2 RNA. (A) The DPV signals corresponding to SARS-CoV-2 RNA with different concentrations. a–i: 0, 
0.1, 1, 5, 10, 100, 500, 1000, 3000 pM, respectively. (B) Linear relationship between the DPV signals and the logarithm of SARS-CoV-2 RNA concentration. Error bars 
indicate standard deviations (n = 3). 
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oropharyngeal swab samples, which can distinguish patients from 
healthy individuals, confirming the potential in clinical application. By 
virtue of being low-cost and user-friendly, the proposed biosensor may 
provide a new option for COVID-19 diagnosis to help control the 
outbreak and spread of the pandemic. 
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