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Abstract

Pathological examination is the gold standard for breast cancer diagnosis. The recognition

of histopathological images of breast cancer has attracted a lot of attention in the field of

medical image processing. In this paper, on the base of the Bioimaging 2015 dataset, a two-

stage nuclei segmentation strategy, that is, a method of watershed segmentation based on

histopathological images after stain separation, is proposed to make the dataset recognized

to be the carcinoma and non-carcinoma recognition. Firstly, stain separation is performed

on breast cancer histopathological images. Then the marker-based watershed segmenta-

tion method is used for images obtained from stain separation to achieve the nuclei segmen-

tation target. Next, the completed local binary pattern is used to extract texture features

from the nuclei regions (images after nuclei segmentation), and color features were

extracted by using the color auto-correlation method on the stain-separated images. Finally,

the two kinds of features were fused and the support vector machine was used for carci-

noma and non-carcinoma recognition. The experimental results show that the two-stage

nuclei segmentation strategy proposed in this paper has significant advantages in the recog-

nition of carcinoma and non-carcinoma on breast cancer histopathological images, and the

recognition accuracy arrives at 91.67%. The proposed method is also applied to the ICIAR

2018 dataset to realize the automatic recognition of carcinoma and non-carcinoma, and the

recognition accuracy arrives at 92.50%.

1 Introduction

In recent years, the incidence and mortality of global cancer have been rising continuously,

which seriously threatens human life and health. Breast cancer is one of the cancers with the

highest mortality for females in the world [1]. One of the most obvious changes in the latest

global cancer data in 2020 is the rapid increase in the number of new cases of breast cancer,

which has replaced lung cancer to be the world’s leading cancer [2]. Breast cancer pathological

examination is considered to be the gold standard for breast cancer diagnosis. The recognition
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of histopathological images of breast cancer has attracted a lot of attention in the field of medi-

cal image processing. Nowadays the breast cancer diagnosis mainly depends on the priori

knowledge and diagnostic experience of pathologists. During the diagnosis process, the

essence of abnormal tissues cannot be recognized sometimes, and even false detection and

missed detection may occur. Therefore, researchers assist doctors in processing and analyzing

medical images through imaging, medical images processing technology and computer analy-

sis and calculation, that is, computer aided diagnosis (CAD) system.

With the advancement of CAD technology, machine learning has been widely used in the

diagnosis of breast cancer [3–6]. Effective feature extraction is the key to histopathological

images recognition, but the realization of the automatic recognition of breast cancer histopath-

ological images is a challenging task to due to the characteristics of histopathological images.

At present, the traditional methods used for breast cancer histopathological images recogni-

tion mainly consist of the artificial feature extraction methods and deep learning methods [7–

10].

The traditional artificial feature extraction methods require manually designing the region

of interest in the images, and the features are extracted and then the extracted features are

needed to be selected. In [11], a breast cancer histopathological images dataset called BreaKHis

was proposed by Spanhol et al. for preforming the benign and malignant classification of

tumors by six different extracted features: completed local binary pattern(CLBP), gray level

co-occurrence matrix (GLCM), local binary pattern (LBP), local phase quantization (LPQ),

parameter-free threshold adjacency statistics (PFTAS) and one keypoint descriptor named

Oriented FAST and Rotated BRIEF (ORB) features, and four kinds of different classifiers:

1-nearest neighbor (1-NN), quadratic linear analysis (QDA), random forests (RF) and support

vector machine (SVM). In [12], Belsare et al. firstly used the spatial color texture image seg-

mentation method to segment the images, then extracted the features: GLCM, graph running

length matrix and Euler number, and used linear discriminant analysis (LDA), to perform the

classification of the breast cancer histopathological images. Reis et al. combined multi-scale

basic image features and LBP features with random decision trees to make the maturity of the

stroma in the breast tissue be classified [13]. Chan et al. applied fractal dimension features to

breast cancer detection [14]. Hao et al. extracted three-channel features of 10 feature descrip-

tors on the BreaKHis dataset to classify breast cancer histopathological images [15].

Deep learning methods have also been widely used in breast cancer histopathological

images recognition. Araújo et al. used Convolutional Neural Network (CNN) and CNN com-

bined with SVM for the binary classification based on the Bioimaging 2015 dataset [16]. Wang

et al. classified the ICIAR 2018 dataset into four categories through the VGG16 network and

the transfer learning [17]. Spanhol et al. also adopted AlexNet for breast cancer classification

based on BreaKHis and achieved better results than the machine learning model trained with

hand-extracted texture descriptors [18]. Saini et al. firstly used deep convolution generation

adversarial network to augment the data of benign samples, and then used the improved

VGG16 to extract the features of different pooling layers, and SVM was used to classify breast

cancer histopathological images [19]. Roy et al. used convolutional neural networks to auto-

matically classify breast cancer histopathological images [20]. Brancati et al. fine-tuned ResNet

and tested the model on the ICIAR 2018 and Bioimaging 2015 datasets [21]. Rakhlin et al.

used several deep neural network models and gradient enhanced tree classifiers to carry out

classification research on ICIAR 2018 dataset [22]. Kassani et al. proposed a method of auto-

matic binary classification of breast cancer histopathological images based on integrated deep

learning [23]. Alom et al. proposed the Inception Recurrent Residual Convolutional Neural

Network (IRRCNN) model and applied it to the classification of the BreaKHis and Bioimaging

2015 datasets [24].
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Besides the commonly used artificial feature extraction methods and deep learning meth-

ods, many scholars have also applied multi-instance learning and sparse representation meth-

ods to recognize the breast cancer histopathological images. Sudharshan et al. used a multi-

instance learning method to classify the BreaKHis dataset into benign and malignant catego-

ries [25]. A new multi-channel histopathological image simultaneous sparse model was pro-

posed by Srinivas et al. and was applied to solve a new optimization problem based on

simultaneous sparseness for performing breast cancer histopathological images classification

[26]. Li et al. proposed the combination of the discriminative feature learning and the multi-

channel joint sparse representation based on mutual information for classifying benign and

malignant tumors at 40× magnification on the BreaKHis dataset [27]. In addition, the distribu-

tion, size and morphology, and aggregation density of cell nuclei are the important informa-

tion of breast cancer histopathological images. Therefore, the researches on the cell nuclei

segmentation and the cell morphology are the significant importance for breast cancer histo-

pathological images recognition. Kumar et al. proposed a framework for automatic detection

and classification of cancer from microscopic biopsy images, which includes cell segmentation,

feature extraction, and classification [28]. Kowal et al. used four different clustering methods

and the adaptive gray thresholds to segment cell nuclei, and then extracted 42 morphological,

topological and texture features for breast cancer benign and malignant classification [29].

Zheng et al. used the blob detection method to detect the nucleus whose location was deter-

mined by use of the local maximum, and used the sparse autoencoding to extract features of

the nucleus slice for the recognition of benign and malignant breast tumors [30]. Anuranjeeta

et al. extracted the shape and morphological features of cells for breast cancer classification

and recognition [31]. Pang et al. trained CNN using gradient descent technology to solve the

problem of cell nuclei segmentation for histopathological images [32].

For the problems of under-segmentation and over-segmentation in the process of histo-

pathological images segmentation, a two-stage nuclei segmentation strategy, that is, a method

of watershed segmentation based on histopathological images after stain separation, is pro-

posed on the base of the Bioimaging 2015 dataset in this paper to make the dataset recognized

to be the carcinoma and non-carcinoma recognition. Firstly, stain separation is performed on

breast cancer histopathological images. Then the marker-based watershed segmentation

method is used for images obtained from stain separation to achieve the nuclei segmentation

target. Next, the completed local binary pattern was used to extract texture features from the

nuclei regions (images after nuclei segmentation), and color features were extracted by using

the color auto-correlation method on the stain-separated images. Finally, the two kinds of fea-

tures were fused and the support vector machine was used for carcinoma and non-carcinoma

recognition. The experimental results show that the two-stage nuclei segmentation strategy

proposed in this paper has significant advantages in the recognition of carcinoma and non-

carcinoma on breast cancer histopathological images, and the recognition accuracy arrives at

91.67%. The proposed method is also applied to the ICIAR 2018 dataset to realize the auto-

matic recognition of carcinoma and non-carcinoma, and the recognition accuracy arrives at

92.50%. Fig 1 shows the framework of breast cancer histopathological images recognition

based on the two-stage nuclei segmentation strategy proposed in this paper.

In this paper, an effective automatic computer-aided diagnosis technique is proposed for

the segmentation and recognition of breast cancer histopathological images. This work makes

the significant contributions to the realization of an interactive system for nuclei segmentation

and cancer recognition, as follows:

1. A two-stage nuclei segmentation strategy is proposed for nuclei segmentation of histopa-

thology images. It is a challenging task to achieve nuclei segmentation in histopathology
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images with similar foreground and complex background. The proposed method not only

effectively avoids the under-segmentation and over-segmentation problems, but also pro-

vides good cancer detection performance with less algorithm complexity and faster running

speed.

2. Based on the two-stage nuclei segmentation strategy, a breast cancer histopathology image

recognition model for cancer detection is proposed. This model is performed on two differ-

ent modes: patches-wise and image-wise. Cancer can be effectively identified by extracting

low-dimensional features based on nuclei segmentation, and it has good cancer recognition

performance on two kinds of different datasets, which has wide applicability and can

replace deep learning methods to some extent. The method can provide a diagnostic review

technique to reduce human error for pathologists.

The rest of the paper is organized as follows: in Section 2, a two-stage nuclei segmentation

strategy was proposed. In Section 3, the feature extraction methods were introduced in detail.

Section 4 is the experimental results and Section 5 is the discussion and conclusion.

2 The proposed two-stage nuclei segmentation strategy

Due to the characteristics of histopathological image, it is a challenging task to perform the

automatic classification of the histopathological images of breast cancer. The overlapping of

cells, uneven color distribution and subtle differences between images have brought the great

difficulties to the classification of breast cancer histopathological images [33]. The effective

and sufficient nuclei segmentation of histopathological images can improve the classification

Fig 1. The framework of breast cancer histopathological images recognition based on the two-stage nuclei

segmentation strategy proposed in this paper.

https://doi.org/10.1371/journal.pone.0266973.g001
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performance. However, in histopathological images, the diversity, the density and the overlap

of nuclei pose the great challenges for the nuclei segmentation task of histopathological images

[34]. In order to fully segment the nuclei, get more effective features, and prevent the under-

segmentation and the over-segmentation, a two-stage nuclei segmentation strategy is proposed

in this paper: stain separation is firstly conducted on the breast cancer histopathological

images to obtain the foreground images, then the nuclei are segmented by the watershed seg-

mentation method on the image after stain separation, thus the obtain images have a better

degree of segmentation and more effective information.

2.1 Stain separation

The stain separations of histopathological images are helpful for pathologists and CAD system.

Separation techniques used for natural images may cause changes in the structural characteris-

tics of stained tissues in histopathological images and produce undesirable color distortions.

The method commonly used in Hematoxylin and Eosin (H&E) image stain separation is real-

ized by converting the RGB space to the optical density. Since the stain separation is an estima-

tion of the density map of each stain, the relationship between the RGB color and the stain

density of each pixel needs to be considered: the stained tissue will weaken the light in a certain

spectrum according to the type and the amount of the absorbed stain. In this paper, the stain

separation method based on the Sparse Non-negative Matrix Factorization (SNMF) frame-

work proposed in [35] was used for breast cancer histopathological images stain separation.

Let I 2 Rm×n be the matrix of the RGB intensities, where m = 3 is the number of the RGB

channels, and n is the total number of image pixels. And let I0 be the illuminating light inten-

sity on the sample (usually 255 for 8 bit images). Then the relative optical density V can be

expressed to be as follows [36]:

V ¼ log
I0

I
: ð1Þ

Let V = WH, W 2 Rm×r be the stain color appearance matrix whose columns represent the

color basis of each stain such that r is the number of stains, and H 2 Rr×n be the stain density

maps, whose rows represent the concentration of each stain. Therefore, for an given observa-

tion matrix V, the stain color appearance matrix W and stain density map matrix H need to be

obtained from solving the following problem:

min
W;H

1

2
kV � WHk2

F;W;H � 0: ð2Þ

Since this problem (2) is a non-convex optimization problem where the local optimum is

obtained instead of the global optimum, an undesirable coloring vector is obtained. Therefore,

Vahadane et al. [35] proposed a sparse non-negative matrix factorization (SNMF) framework

where a sparseness constraint is added into Eq (2) and thus the Eq (2) is become to be as fol-

lows:

min
W;H

1

2
kV � WHk2

F þ l
Xr

j¼1

kHðj; :Þk 1;W;H � 0; kWð:; jÞk2

2
¼ 1; ð3Þ

Where k�kF denotes the F-norm of a matrix, and λ = 0.2 is the sparsity and regularization

parameter, and j indicates the type of stains (j = 1, 2, . . ., r). For the H&E images, r = 2. The

LARS-LASSO algorithm [37] can be applied to solve the Eq (3), then W and H are obtained,

and then the stain separations of H&E images are preformed. Fig 2 shows the stain separation

results of the images on the Bioimaging 2015 dataset using the above method: stain separation.
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2.2 Nuclei segmentation

Nuclei segmentation is a basic but challenging task in the histopathological image analysis.

Compared with the segmentation of independent nucleus, the segmentation of overlapping

and adherent nuclei is a key of histopathological image segmentation in recent years. The mor-

phological changes of the nuclei are considered to be the important information for many dis-

eases. The distribution, size and density of nuclei reflect the pathological changes of breast

cancer, which are the important basis for judging carcinoma and non-carcinoma. The com-

mon segmentation methods consist of the threshold segmentation, the edge detection, the

active contour, the k-means clustering segmentation and the watershed segmentation. In this

paper, the watershed segmentation is used to segment the nuclei of breast cancer histopatho-

logical images obtained from stain separation.

Watershed algorithm is an image segmentation algorithm based on mathematical morphol-

ogy. The image is regarded to be a topological landform, where each pixel represents the alti-

tude of the point, each local minimum and its affected area are called catchment basin, and the

boundary forms a watershed. The watershed segmentation algorithm is applied to extract the

pixels based on the similarity between the pixels. For the extraction and segmentation of cell

nuclei, each pixel value in the histopathological images is regarded to be the altitude of a pixel

Fig 2. Stain separation results of breast cancer histopathological images. (a) Original image, (b) Fore ground image of stain separation, (c) Back

ground image of stain separation.

https://doi.org/10.1371/journal.pone.0266973.g002
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the in the watershed algorithm. The commonly watershed algorithms include watershed seg-

mentation based on distance transformation, gradient-based watershed segmentation, and

marker-based watershed segmentation.

Since over-segmentation is prone to exist in the watershed algorithm, the noise or other

interference factors on the images will also affect the watershed segmentation for histopatho-

logical images. In order to solve the over-segmentation problem, the marker-based watershed

segmentation algorithm is selected in this paper. The marker-based watershed segmentation

algorithm is applied to perform the watershed segmentation on the gradient image of the origi-

nal image rather than indirectly on the original image, which ensure the integrity of the edge

information of the target object as far as possible and avoid over-segmentation of histopatho-

logical images. Therefore, in order to reduce the influence of noise and other interference fac-

tors on nuclei segmentation in the breast cancer histopathological images, the marker-based

watershed segmentation is applied into the breast cancer histopathological images obtained

from the stain separation in this paper.

2.3 Two-stage nuclei segmentation strategy based on stain separation and

watershed algorithm

The detection of visually salient image regions [38] is very useful for image segmentation.

Therefore, the Frequency-tuned salient region detection method is applied into the original

marker-based watershed segmentation algorithm for the sake of the segmentation perfor-

mance improvement. The method exploits feature of color and luminance and outputs full res-

olution saliency maps with well-defined boundaries of salient objects. With the sensation of

image segmentation, the noise in the corners of the image is removed before segmentation.

The steps of the two-stage segmentation strategy based on the stain separation and the

watershed algorithm proposed in this paper are as shown in Fig 3. And Fig 4 is the flowchart of

the proposed two-stage nuclei segmentation method. Fig 5 shows salient region detection, the

gradient amplitude image, the marked image, and the final segmentation results obtained by

applying the proposed two-stage nuclei segmentation strategy into the breast cancer histopath-

ological images.

The proposed two-stage segmentation strategy based on stain separation and watershed

algorithm in this paper is compared with four different segmentation methods: k-means clus-

tering segmentation, Ostu threshold segmentation (maximum between-cluster variance

method), minimum error threshold segmentation, and iterative threshold segmentation. In

addition, the watershed segmentation directly used for the original image is compared with

the proposed segmentation method. The comparing results on breast cancer histopathological

images are shown in Fig 6. Fig 6a is the original image, where the red marked area is the nuclei

with adhesion and overlapping, and Fig 6b is the fore ground image obtained from stain sepa-

ration. By comparison and observation from Fig 6, the Ostu threshold segmentation and the

iterative threshold segmentation have the worst performance, but fail to accurately segment

the nucleus, as shown in Fig 6d and 6e, respectively; the k-means clustering segmentation and

the minimum error threshold segmentation method can accurately segment the nuclei, but for

some nuclei with overlapping and adhesion in histopathological images, the edges cannot be

accurately segmented, and there is still adhesion and overlapping in the segmented image, as

marked to be the red cycles in Fig 6c and 6f, respectively; the proposed two-stage segmentation

strategy can not only completely and fully segment the nucleus, but also performs well on the

nuclei that are adhered and overlapped, as marked to be the red cycles in Fig 6h. The image

obtained by the watershed segmentation directly used for the original image has more noise
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and over-segmentation phenomenon and the segmentation effect is far inferior to the pro-

posed segmentation method, shown in Fig 6g.

2.4 Computational complexity

The complexity of the two-stage nuclei segmentation strategy method mainly depends on the

implementation processes of the stain separation and the marker-based watershed segmenta-

tion algorithm. The algorithm complexities of the stain separation and the segmentation pro-

cess are analyzed respectively.

2.4.1 The complexity of stain separation. As already introduced in Section 2.1, the

SNMF framework is used in the process of stain separation, and sparse constraints is added to

obtain a LASSO problem, which is solved by the LARS-LASSO algorithm. Therefore, the com-

plexity of the stain separation process mainly depends on the calculation of the LARS-LASSO

algorithm. LASSO is a constrained version of Ordinary Least Squares (OLS). Let x1, x2, . . ., xm
be n-dimensional vectors, A 2 Rn×m, and y be an n-dimensional vector. Then the model of

lasso is as follows:

min
x

1

2
ky � Axk2

2
þ lkxk

1
: ð4Þ

In response to this problem, LARS algorithm proposed by Efron [37] is a more prudent

method of single variable selection, whose complexity is equivalent to that of OLS. The entire

sequence of steps in the LARS algorithm with m< n variables requires O(m3 + nm2) computa-

tions. For the lasso, costing at most O(m2) operations per downdate. Therefore, the complexity

of stain separation is O(m3 + (n + 1)m2).

Fig 3. The steps of the two-stage segmentation strategy.

https://doi.org/10.1371/journal.pone.0266973.g003
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2.4.2 The complexity of the segmentation process. The Frequency-tuned salient region

detection method is applied into the original marker-based watershed segmentation algorithm

for the sake of detecting salient image regions [38]. The computational complexity of this

method is O(N), where N is the scale of the algorithm. In the segmentation process, with the

corner denoising operation performed, computational complexity of the overall segmentation

process proposed in this paper is O(N2).

In addition, in order to show the time complexity more clearly, we counted the running

time of 10 breast cancer histopathological images in the process of stain separation and seg-

mentation respectively, and the image size is 512×512. Completed 10 experiments to obtain

the average time, and obtained the processing time of each image in the process of stain sepa-

ration and segmentation. The results show that the stain separation and segmentation

process of each image takes about 10.99s and 0.89s, respectively. Therefore, the method pro-

posed in this paper is a simple and feasible method that does not depend on hardware

equipment.

Fig 4. Flowchart of the proposed two-stage nuclei segmentation method.

https://doi.org/10.1371/journal.pone.0266973.g004
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3 Feature extraction

In the image recognition, a lot of redundant information exists in the original image, which

seriously affects the classification accuracy of the image. It is crucial for image recognition to

choose an appropriate feature extraction method. The effective information is extracted, and

the dimension of the feature is reduced at the same time, which avoids the disaster of dimen-

sion. The common methods of the extracting texture features include gray-level co-occurrence

matrix, Tamura feature, wavelet transform, Gabor feature, Completed Local Binary Pattern

(CLBP), etc. [39–42]. The common methods of the extracting color features include color his-

tograms, color moments, and color auto-correlogram. In this paper, the CLBP method is used

to extract the texture features of the breast cancer histopathological images obtained from

nuclei segmentation, and the color auto-correlogram is used to extract the color features of the

fore ground image of the breast cancer histopathological images obtained from stain

separation.

Fig 5. Visualization of two-stage nuclei segmentation. (a) Stain separation image, (b) Salient Region Detection, (c) Gradient amplitude image, (d)

Marked image, (e) Nuclei segmentation image.

https://doi.org/10.1371/journal.pone.0266973.g005
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Fig 6. Results of different segmentation methods. (a) Original image, (b) Stain separation image, (c) k-means clustering segmentation, (d) Ostu

threshold segmentation, (e) Iterative threshold segmentation, (f) Minimum error threshold segmentation method, (g) Watershed segmentation directly

used for the original image, (h) Two-stage segmentation strategy.

https://doi.org/10.1371/journal.pone.0266973.g006
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3.1 The central gray of Completed Local Binary Pattern (CLBP)

CLBP is a variant of Local Binary Pattern (LBP). The local area of the CLBP operator is repre-

sented by its center pixel and the sign-magnitude transformation of local difference. After

global thresholding, the central pixel is encoded by binary string, thus CLBP is called to be the

central gray of complete local binary pattern (CLBP_C). Meantime, the sign-magnitude trans-

formation of local difference is decomposed into two complementary structural components:

difference sign CLBP-Sign (CLBP_S) and difference magnitude CLBP-Magnitude (CLBP_M).

For a pixel (xc, yc) in the image, the components CLBP_C, CLBP_S and CLBP_M are to be as

follows:

CLBP CP;R xc; ycð Þ ¼ s gc � gNð Þ

CLBP SP;R xc; ycð Þ ¼
XP� 1

p¼0

sðgp � gcÞ2
p sðxÞ ¼

(
1; x � 0

0; x < 0

CLBP MP;R xc; ycð Þ ¼
XP� 1

p¼0

sðDp � DcÞ2
p

;

8
>>>>>>>><

>>>>>>>>:

ð5Þ

where P is the number of sampling points in the neighborhood of the center pixel, R is the

radius of the neighborhood, gc is the gray value of the center pixel, gN ¼ 1

N

XN� 1

n¼0

gn represents the

mean gray value about gc when the center point is constantly moving, N is the number of

windows, gp is the gray value of the pixel adjacent to the center pixel, Dp = |gp − gc|, and

Dc ¼
1

P

XP� 1

p¼0

gp � gc represents the mean magnitude.

In Eq (5), CLBP_SP,R(xc, yc) is equivalent to the traditional LBP operator, which describes

the difference sign feature of the local window; CLBP_MP,R(xc, yc) describes the difference

magnitude characteristics of the local window; and CLBP_CP,R(xc, yc) is the gray level informa-

tion reflected by the pixel at the center.

3.2 Color auto-correlogram

The color features are the basic visual features of color images. Compared with other visual fea-

tures, they are less dependent on the direction, size, and viewing angle of the image, and are

related to the objects or scenes contained in the image. The color histogram describes the pro-

portion of different colors in the entire image, but cannot describe the objects in the image.

The color moment generally has only 9 components (3 color components, 3 low-order

moments on each component), and the feature dimension is small, which makes it difficult to

completely describe the color information of the image. The color auto-correlogram is

obtained from the color correlogram. The color correlogram can not only reflect the propor-

tion of the number of pixels of a certain color in the entire image in an image, but also reflect

the spatial correlation between different color pairs [43]. For image I, let Ic(i) be the all pixels of

color c(i), then the color correlogram can be written as:

rðkÞcðiÞ; cðjÞ ¼ Pr½jp1 � p2j ¼ k� p1 2 IcðiÞ; p2 2 IcðjÞ; ð6Þ

Where |p1 − p2| represents the distance between p1 and p2, Pr is the calculation of probability.

That is, the color correlogram can be regarded as a table indexed by a color pair<i, j>, the k-

th component of<i, j> represents the probability that the distance between the pixel with

color c(i) and the pixel with color c(j) is equal to k. If the correlation between any colors in the
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image is considered, the color correlogram of the image will be very complicated and huge. If

only considers the spatial relationship between pixels with the same color is only considered,

the color correlogram is to be the color auto-correlogram.

Due to the limitations of color histograms and color moments, color auto-correlogram is

used to describe the color features of breast cancer histopathological images in this paper. In

this paper, CLBP is applied to extract the texture features of the image obtained from nuclei

segmentation. Let P = 8, R = 1, then, get the 118-dimensional feature vector. The method of

color auto-correlogram is used to extract the 128-dimensional feature vector as the color fea-

ture of the breast cancer histopathological image obtained from stain separation. The above

two features are cascaded and input into SVM for breast cancer histopathological images

recognition.

4 Experimental results

4.1 Dataset

The breast cancer histopathological image data used in this paper is the Bioimaging Challenge

2015 Breast Histology Dataset [16]. All images in this dataset are digitized under the same

acquisition conditions, with a magnification of 200× and a pixel size of 0.42 μm × 0.42 μm
(2048 × 1536 pixels). The images are stained with Hematoxylin and Eosin (H&E). Due to the

characteristics of hematoxylin and eosin, the protein in the histopathological images will be

stained pink by eosin, and hematoxylin will stain the cell nuclei blue-purple. All images are

divided into four categories: normal, benign, in situ and invasive. Normal and benign tissues

can be categories as non-carcinoma, and in situ carcinoma and invasive carcinoma can be cat-

egories as carcinoma, as shown in Fig 7. The images were labeled by two experienced patholo-

gists, and the images with disagreements between the pathologists were discarded. The dataset

consists of a training set of 249 images and a test set of 36 images (where 16 images have the

increased ambiguity, called the extended test data). Table 1 shows the distribution of the data-

set. Fig 8 shows the segmentation results of the proposed segmentation method for the com-

plete image.

4.2 Experimental setup

In this paper, all the algorithms were performed under Matlab R2019a on a computer with a

Windows 10 64-bit Professional platform and 8 GB RAM.

A series of pre-processing on the breast cancer histopathological images in the Bioimaging

2015 dataset. The original images are scaled by 0.5 times to obtain the images with a size of

1024 × 768. Then, 20 image patches are randomly cropped with a size of 512 × 512 from each

image after scaling. If the number of cropped image patches is too small, it is difficult to ensure

that the patches contain complete image information, and if the number of cropped image

patches is too large, it may contain redundant information, so we choose to crop 20 image

patches, which ensures that the patches can contain enough information and avoid redundant

information. These two steps not only preserve the effective information of the original

images, but also augments the dataset reasonably. And random cropping the images reduces

the contingency of the experimental results.

The SVM with radial basis kernel function is used to be the classifier to make the tumors

classified into non-carcinoma and carcinoma, where the penalty parameter c is 2 and the ker-

nel function parameter g is 1. The image patches and the whole image are studied separately in

the experiments. The image labels are obtained by majority voting, that is, for each test image,

if more than 10 image patches are classified to be non-carcinoma, the image is classified to be

non-carcinoma, otherwise it is classified to be carcinoma. In addition to the classification
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accuracy, the sensitivity, specificity, precision and F1_score are also taken to be the metrics of

evaluating the classification performance for patch-wise and image-wise. The sensitivity repre-

sents the probability that carcinoma samples are correctly diagnosed in all carcinoma samples,

the specificity represents the probability that non-carcinoma samples are correctly diagnosed

in all non-carcinoma samples, and the precision represents the probability of correctly diag-

nosed carcinoma samples in samples that are diagnosed as carcinoma, and F1_score is the har-

monic average of the sensitivity and the accuracy, which it is used to measure the balance of

Fig 7. Examples of Bioimaging 2015 dataset. (a) Normal; (b) Benign; (c) In situ; (d) Invasive.

https://doi.org/10.1371/journal.pone.0266973.g007

Table 1. Distribution of various histopathological images in Bioimaging 2015 dataset.

Category Training data Test data

Original test data Extended test data

Non-carcinoma Normal 55 5 4

Benign 69 5 4

Carcinoma In situ 63 5 4

Invasive 62 5 4

Total 249 20 16

https://doi.org/10.1371/journal.pone.0266973.t001
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the two metrics. The formulas of the evaluation metrics are as follows [44].

Acc ¼
TPþ TN

TP þ FPþ TN þ FN
; ð7Þ

Se ¼
TP

TP þ FN
; ð8Þ

Fig 8. Segmentation results of sample images in bioimaging 2015 dataset based on two-stage nuclei segmentation strategy. (a) the original image,

(b) the stain separation image, and (c) the segmented image.

https://doi.org/10.1371/journal.pone.0266973.g008
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Sp ¼
TN

TN þ FP
; ð9Þ

Pr ¼
TP

TP þ FP
; ð10Þ

F1 score ¼
2� TP

2� TP þ FPþ FN
: ð11Þ

where true positive (TP) represents the number of carcinoma samples classified as carcinoma,

true negative (TN) represents the number of non-carcinoma samples classified as non-carci-

noma, false positive (FP) represents the number of non-carcinoma samples incorrectly classi-

fied as carcinoma, and false negative (FN) represents the number of carcinoma samples mis-

classified as non-carcinoma.

4.3 Experimental results

4.3.1 Comparison of different color feature methods. To get the best color features of

breast cancer histopathological image for classification, the color histogram, the color moment

and the color auto-correlogram are used to extract the corresponding color features before

and after stain separation, and the classification performances of different color features are

compared. For convenience, color histogram is abbreviated as Color-Hist, color moment is

abbreviated as Color-Mome, and color auto-correlogram is abbreviated as Color-Auto-Corr,

the color features and their abbreviations are shown in Table 2. The comparable results of the

patch-wise and the image-wise are shown in Tables 3 and 4.

The experimental results from Tables 3 and 4 show that the color histogram features per-

form the best for breast cancer images without stain separation. However, color auto-correlo-

gram features obtain the best performance after stain separation. From Tables 3 and 4, it is

also observed that when the color auto-correlogram method is used to extract the color fea-

tures of the breast cancer image obtained from stain separation, the classification accuracy, the

sensitivity, the specificity and the precision and F1_score at the patch-wise are 75.97%, 68.33%,

Table 2. Color features and abbreviations.

Methods Abbreviations

color histogram Color-Hist

color moment Color-Mome

color auto-correlogram Color-Auto-Corr

https://doi.org/10.1371/journal.pone.0266973.t002

Table 3. Comparison of different color feature methods at patch-wise.

Image type Features Accuracy Sensitivity Specificity Precision F1_score

Original images Color-Hist 71.81% 87.50% 56.11% 66.60% 75.63%

Original images Color-Mome 65.28% 81.39% 49.17% 61.55% 70.10%

Original images Color-Auto-Corr 60.83% 51.67% 70.00% 63.27% 56.88%

Stain separation images Color-Hist 66.53% 74.72% 58.33% 64.20% 69.06%

Stain separation images Color-Mome 64.86% 83.61% 46.11% 60.81% 70.41%

Stain separation images Color-Auto-Corr 75.97% 68.33% 83.61% 80.66% 73.99%

https://doi.org/10.1371/journal.pone.0266973.t003
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83.61%, 80.66% and 73.99%, respectively, and those at the image-wise are 88.89%, 77.78%,

100%, 100% and 87.50%, respectively.

Therefore, the color auto-correlogram features after the stain separation are chosen to be

fused with the CLBP texture features after nuclei segmentation, which are regarded to be the

input of SVM for final classification of breast cancer histopathological images. It should be

noted that the original images mentioned in this section all refer to image patches with a size

of 512 × 512 obtained by random cropping, which are relative to the stain separated images

and the nuclei segmentation images.

4.3.2 Comparison of image segmentation results under different conditions. To verify

the effectiveness of the two-stage nuclei segmentation strategy proposed in this paper for the

classification of breast cancer histopathological images, the CLBP texture features are extracted

from the original images indirectly, the images obtained by the watershed segmentation on the

original images, and the nuclei segmentation images obtained by the two-stage nuclei segmen-

tation strategy on the original images, respectively. The fused features indicate the fusion of

the CLBP texture features and the color auto-correlogram features. The compared results of

CLBP features and the fused features are shown in Tables 5 and 6 at the patch-wise and at the

image-wise, respectively, where the watershed segmentation on the original images is abbrevi-

ated as watershed segmentation.

From Tables 5 and 6, the experimental results show that the classification accuracy of the

two-stage nuclei segmentation strategy proposed in this paper is better at the patch-wise and

the image-wise. The fused features of CLBP features extracted from nuclei segmentation image

obtained by the two-stage nuclei segmentation strategy and the color auto-correlogram

Table 4. Comparison of different color feature methods at image-wise.

Image type Features Accuracy Sensitivity Specificity Precision F1_score

Original images Color-Hist 75.00% 88.89% 61.11% 69.57% 78.05%

Original images Color-Mome 66.67% 83.33% 50.00% 62.50% 71.43%

Original images Color-Auto-Corr 66.67% 61.11% 72.22% 68.75% 64.71%

Stain separation images Color-Hist 63.89% 77.78% 50.00% 60.87% 68.29%

Stain separation images Color-Mome 69.44% 83.33% 55.56% 65.22% 73.17%

Stain separation images Color-Auto-Corr 88.89% 77.78% 100.00% 100.00% 87.50%

https://doi.org/10.1371/journal.pone.0266973.t004

Table 5. Comparison of image segmentation results under different conditions at patch-wise.

Image type Features Accuracy Sensitivity Specificity Precision F1_score

Original images CLBP 72.08% 60.28% 83.89% 78.91% 68.35%

Watershed segmentation CLBP 73.33% 63.89% 82.78% 78.77% 70.55%

Two-stage nuclei segmentation strategy CLBP 75.00% 74.44% 75.56% 75.28% 74.86%

Two-stage nuclei segmentation strategy Fused features 82.22% 72.22% 92.22% 90.28% 80.25%

https://doi.org/10.1371/journal.pone.0266973.t005

Table 6. Comparison of image segmentation results under different conditions at image-wise.

Image type Features Accuracy Sensitivity Specificity Precision F1_score

Original images CLBP 75.00% 61.11% 88.89% 84.62% 70.97%

Watershed segmentation CLBP 75.00% 61.11% 88.89% 84.62% 70.97%

Two-stage nuclei segmentation strategy CLBP 77.78% 72.23% 83.33% 81.25% 76.48%

Two-stage nuclei segmentation strategy Fused features 91.67% 83.33% 100.00% 100.00% 90.91%

https://doi.org/10.1371/journal.pone.0266973.t006
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features after stain separation perform better than the other image types. From Tables 5 and 6,

we also observe that the classification accuracy, the sensitivity, the specificity and the precision

and F1_score at the patch-wise are 82.22%, 72.22%, 92.22%, 90.28% and 80.25%, respectively,

and those at the image-wise are 91.67%, 83.33%, 100%, 100% and F1_score is 90.91%,

respectively.

4.3.3 Comparison of different segmentation methods. To verify the validation of the

two-stage nuclear segmentation strategy proposed for breast cancer histopathological images

in this paper, the k-means clustering segmentation, Ostu threshold segmentation, minimum

error threshold segmentation method and iterative threshold segmentation are employed to be

compared on the Bioimaging 2015 dataset for performing the classifications of breast tumors

to be non-carcinoma and carcinoma. For convenience, k-means clustering segmentation is

abbreviated as k-means, Ostu threshold segmentation is abbreviated as Ostu, and minimum

error threshold segmentation method is abbreviated as Min-Error, and iterative threshold seg-

mentation is abbreviated as Iter, the segmentation methods and their abbreviations are shown

in Table 7. All the comparable methods have the same experimental conditions. For every seg-

mentation method, two kinds of different feature extractions are adopted to perform the classi-

fications of the breast histopathological images, which are the corresponding classification

experiments: the classification on the CLBP features extracted after the nuclei segmentation,

and the classification on the fused features of CLBP features and color auto-correlogram fea-

tures. Thus the experimental results are shown in Tables 8 and 9.

From Tables 8 and 9, it observed that the proposed two-stage nuclei segmentation strategy

has obvious advantages over the other four compared segmentation methods both at the

patch-wise and the image-wise and k-means clustering segmentation has better performance

than the other three segmentation methods. It is worth noting that these segmentation meth-

ods have better classification results on fused features than those of CLBP features extracted

from nuclei segmentation images. We also observe from Tables 8 and 9 that the classification

accuracy, the sensitivity, the specificity and the precision and F1_score at the patch-wise are

Table 7. Segmentation methods and abbreviation.

Methods Abbreviations

k-means clustering segmentation k-means

Ostu threshold segmentation Ostu

iterative threshold segmentation Iter

minimum error threshold segmentation Min-Error

https://doi.org/10.1371/journal.pone.0266973.t007

Table 8. Comparison of different segmentation methods at patch-wise.

Segmentation methods Features Accuracy Sensitivity Specificity Precision F1_score

k-means CLBP 72.92% 77.22% 68.61% 71.10% 74.03%

Ostu CLBP 68.75% 57.22% 80.28% 74.37% 64.68%

Min-Error CLBP 66.39% 64.72% 68.06% 66.95% 65.82%

Iter CLBP 67.92% 59.72% 76.11% 71.43% 65.05%

The proposed CLBP 75.00% 74.44% 75.56% 75.28% 74.86%

k-means Fused features 74.72% 64.44% 85.00% 81.12% 71.83%

Ostu Fused features 71.39% 67.22% 75.56% 73.33% 70.14%

Min-Error Fused features 68.61% 64.17% 73.06% 70.43% 67.15%

Iter Fused features 70.28% 62.50% 78.06% 74.01% 67.77%

The proposed Fused features 82.22% 72.22% 92.22% 90.28% 80.25%

https://doi.org/10.1371/journal.pone.0266973.t008
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82.22%, 72.22%, 92.22%, 90.28% and 80.25%, respectively, and those at the image-wise are

91.67%, 83.33%, 100%, 100%, and 90.91%, respectively. In particular, at the image-wise, the

recognition rate is 91.67%, which indicates that 3 test images among 36 test images are incor-

rectly recognized, and the specificity is 100%, which indicates that all non-carcinoma images

were correctly recognized, and all the 3 images are the samples of carcinoma category misclas-

sified to be the non-carcinoma category. Fig 9 is the comparison of the classification perfor-

mances at the patch-wise and the image-wise with the fused features.

From Fig 9 we can see the advantages of the proposed method over other segmentation

methods more clearly and intuitively. Therefore, the two-stage nuclei segmentation strategy

proposed in this paper is superior to the other comparable segmentation methods. In order to

compare the recognition performance of the proposed method with other segmentation meth-

ods more intuitively, the ROC curves and AUC values of different methods are compared,

shown in Fig 10. From Fig 10, it can be seen that the proposed method significantly outper-

forms other methods in recognition performance whether it is patch-wise or image-wise.

4.3.4 Results on the ICIAR 2018 challenge dataset. We tested the proposed method on

the ICIAR 2018 dataset, which is an extended version of the Bioimaging 2015 dataset, with the

same image size and magnification as it [7]. ICIAR 2018 dataset consists of 400 breast histology

images for training purpose and a separate hidden test set consisting of 100 images. We tested

our method on this dataset by dividing the training set of this dataset, where we made 70% as

training set, 20% as validation set and 10% as test set. And the classification accuracy, the sensi-

tivity, the specificity and the precision and F1_score at the patch-wise are 84.38%, 81.50%,

87.25%, 86.47% and 83.91%, respectively, and those at the image-wise are 92.50%, 90.00%,

95.00%, 94.74%, and 92.31%, respectively. The results are shown in Table 10. This is the result

of a competitive advantage over existing methods. The ROC curves and AUC values of the

results are shown in Fig 11.

4.3.5 Comparison of the current methods and the proposed method. To further verify

the effectiveness of the two-stage nuclear segmentation strategy proposed in this paper, the

classification accuracy of the proposed method in this paper and the current methods for

breast cancer histopathological image classification at the image-wise are compared.

Table 11 shows the comparison of the classification performance of the proposed method

in this paper and the existing methods on the Bioimaging 2015 dataset. It is observed from

Table 11 that the proposed two-stage nuclei segmentation strategy method in this paper is sig-

nificantly better than the methods in [16, 21, 23] on the same data set, but does not perform as

well as the method in [24]. However, the related literatures are all using the deep learning

Table 9. Comparison of different segmentation methods at image-wise.

Segmentation methods Features Accuracy Sensitivity Specificity Precision F1_score

k-means CLBP 77.78% 66.67% 88.89% 85.71 75.00%

Ostu CLBP 72.22% 61.11% 83.33% 78.57% 68.75%

Min-Error CLBP 69.44% 66.67% 72.22% 70.59% 68.57%

Iter CLBP 69.44% 61.11% 77.78% 73.33% 66.67%

The proposed CLBP 77.78% 72.23% 83.33% 81.25% 76.48%

k-means Fused features 83.33% 88.89% 77.78% 80.00% 84.21%

Ostu Fused features 75.00% 72.22% 77.78% 76.47% 74.29%

Min-Error Fused features 72.22% 72.22% 72.22% 72.22% 72.22%

Iter Fused features 77.78% 72.22% 83.33% 81.25% 76.47%

The proposed Fused features 91.67% 83.33% 100.00% 100.00% 90.91%

https://doi.org/10.1371/journal.pone.0266973.t009
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algorithm, and the advantage of the deep learning algorithm is that it can get higher recogni-

tion accuracy, but the disadvantage is that a large number of labeled breast cancer histopatho-

logical images are required. Optimizing a large number of parameters also leads to a lot of

time spent in the experiment. The method in this paper has good performance in realizing the

recognition of carcinoma and non-carcinoma breast cancer histopathological images, and has

the competitive ability in carcinoma and non-carcinoma recognition, can effectively replace

the deep learning algorithm to a certain extent in breast cancer histopathology image

recognition.

Fig 9. Comparison of the classification performance at the patch-wise and the image-wise on fused features. (a)

Comparison of different segmentation methods at patch-wise, (b) Comparison of different segmentation methods at

image-wise.

https://doi.org/10.1371/journal.pone.0266973.g009
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5 Evaluation metrics of segmentation

In this paper, the Dice coefficient and Haus Dorff distance are used as evaluation metrics to

measure the quality of the segmentation results. The Dice coefficient reflect more regional

information and the Haus Dorff distance reflects more edge information. The calculation

Fig 10. ROC curves of different segmentation methods. (a) ROC curves of different segmentation methods at patch-

wise, (b) ROC curves of different segmentation methods at image-wise.

https://doi.org/10.1371/journal.pone.0266973.g010
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methods of the evaluation metrics are shown in formulas (12) and (13).

D ¼
2� X \ Y
X þ Y

ð12Þ

where D is Dice coefficient, X is the prediction result and Y is Ground-truth.

HðX;YÞ ¼ maxðhðX;YÞ; hðY;XÞÞ ð13Þ

where H is Haus Dorff distance, hðX;YÞ ¼ max
x2X

n
min
y2Y
kx � yk

o
, hðY;XÞ ¼

max
y2Y

n
min
x2X
ky � xk

o
. Since the Bioimaging 2015 dataset is a classification challenge dataset, it

mainly involves classification research and is not a dataset dedicated to segmentation, so

Ground-truth is not included in the dataset. Therefore, we perform binarization processing

under the same parameters for all images through threshold segmentation, try to approximate

the obtained binary images as Ground-truth, and calculate the Dice coefficient and the Haus

Dorff distance to evaluate the performance of the proposed segmentation method. When cal-

culating the Dice coefficient, we average the Dice coefficients of all images, and take the maxi-

mum value among the Dice coefficients of each category.

As described in Section 4, k-means and our proposed method outperform the other compa-

rable methods. Therefore, in this section, we take k-means and out proposed method to be

compared by use of the Dice coefficient and the Haus Dorff distance. The results are shown in

Table 12.

The results show that the Dice coefficient of the proposed method is greater than that of the

k-means cluster segmentation method, and the Haus Dorff distance is smaller than that of the

k-means cluster segmentation method, which shows that the method proposed in this paper is

superior to the k-means cluster segmentation method in terms of segmentation performance.

But the value of the Dice coefficient is not very good, which may be caused by the fact that we

do not have the real Ground-truth, but replace the Ground-truth with the binary image under

the same parameter, and this approximate method of replacing the Ground-truth only It can

be used as a reference to a certain extent, and cannot fully evaluate the segmentation

performance.

6 Discussion and conclusion

The nuclei segmentation of histopathological images is of great significance for cancer diagno-

sis, grading and prognosis. The application of morphological standards in visual classification

improves the accuracy of CAD systems and reduces human diagnosis errors. In this paper, a

two-stage nuclei segmentation strategy, that is, a method of watershed segmentation based on

histopathological images after stain separation, is proposed to make the dataset recognized to

be the carcinoma and non-carcinoma recognition on the Bioimaging 2015 dataset. Compared

with k-means clustering segmentation, Ostu threshold segmentation, minimum error thresh-

old segmentation and iterative threshold segmentation, the proposed two-stage nuclei segmen-

tation strategy performed the best and has the classification accuracy 91.67%, the sensitivity

Table 10. Results on the ICIAR 2018 challenge dataset.

Image type Accuracy Sensitivity Specificity Precision F1_score

Patch-wise 84.38% 81.50% 87.25% 86.47% 83.91%

Image-wise 92.50% 90.00% 95.00% 94.74% 92.31%

https://doi.org/10.1371/journal.pone.0266973.t010
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83.33%, the specificity 100%, the accuracy rate 100% and F1_score 90.91%. In addition, com-

pared with the current classification methods of breast cancer histopathological images, the

proposed two-stage nuclei segmentation strategy method in this paper is also competitive and

shows better classification performance. It is worth noting that those images with darker color

and clearer imaging have better stain separation effect and better results of image

Fig 11. ROC curves of ICIAR 2018 challenge dataset. (a) ROC curves of the result at patch-wise, (b) ROC curves of

the result at patch-wise.

https://doi.org/10.1371/journal.pone.0266973.g011
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segmentation. Therefore, our proposed method in this paper is affected by the image itself to a

certain extent, such as the color depth and the clarity of the image.

In the future work, we will explore better nuclei detection and position methods to improve

the effect of nuclear segmentation for histopathological images. And we will explore better fea-

ture extraction and fusion methods to further improve the classification performance of breast

cancer histopathological images.
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