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Abstract: Raw meats are sometimes contaminated with Campylobacter species from animal faeces,
and meats have repeatedly been implicated in foodborne infections. This study evaluated the
prevalence, virulence genes, antimicrobial susceptibility patterns, and resistance gene determinants
in Campylobacter species isolated from retailed meat carcasses. A total of 248 raw meat samples were
collected from butcheries, supermarkets, and open markets; processed for enrichment in Bolton
broth; and incubated at 42 ◦C for 48 h in 10% CO2. Thereafter, the broths were streaked on modified
charcoal cefoperazone deoxycholate agar (mCCDA) plates and incubated at the same conditions and
for the same amount of time. After incubation, colonies were isolated and confirmed by Polymerase
chain reaction using specific oligonucleotide sequences used for the identification of the genus
Campylobacter, species, and their virulence markers. The patterns of antimicrobial resistance profiles
of the identified isolates were studied by disk diffusion method against 12 antibiotics, and relevant
resistance genes were assessed by PCR. From culture, 845 presumptive Campylobacter isolates were
obtained, of which 240 (28.4%) were identified as genus Campylobacter. These were then characterised
into four species, of which C. coli had the highest prevalence rate (22.08%), followed by C. jejuni
(16.66%) and C. fetus (3.73%). The virulence genes detected included iam (43.14%), cadF (37.25%), cdtB
(23.53%), flgR (18.63%), and flaA (1.96%), and some of the isolates co-harboured two to four virulence
genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter
isolates was against clindamycin (100%), and the lowest level of resistance was observed against
imipenem (23.33%). The frequency of resistance genes detected included catll (91.78%), tetA (68.82%),
gyra (61.76%), ampC (55%), aac(3)-IIa (aacC2)a (40.98%), tetM (38.71%), ermB (18.29%), tetB (12.90%),
and tetK (2.15%). There is a high incidence of Campylobacter species in meat carcasses, suggesting
these to be a reservoir of campylobacteriosis agents in this community, and as such, consumption of
undercooked meats in this community is a potential health risk to consumers.
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1. Introduction

In the last decade, there has been a global upsurge in the rate of Campylobacter infections [1,2],
and Campylobacter has emerged as one of the most significant bacteria of public health importance [3].
Globally, Campylobacter infection is a significant zoonosis, considered to be the leading cause of bacterial
foodborne infection [4]. This zoonotic infection is of great public health concern [5], with meats known
as the major risk factor [6] due to consumption of undercooked poultry or red meats [7]. Worldwide,
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consumption of meats and their products is increasing, and this may be connected to meats’ high
protein content and the recommendations of healthy nutrition [8]. Meat is one of the most nutritious
food items and a regular component of the human diet. Moreover, countless products, such as burgers
and sausages, are products from meat, and as a result of the central role that meats occupy in human
nutrition, their hygienic value is very essential for public health, as consumption of poor-quality meats
may cause infections [9]. Infections arising from consumption of contaminated undercooked meats or
food remain a global threat to public health [10]. Foodborne disease is a major public health problem
due to its increasing incidence worldwide [11–13] and its huge burden of morbidity and mortality
caused by bacterial infections [14]. Campylobacter is among the regular foodborne bacteria pathogens
that are responsible for most foodborne disease outbreaks [15–17].

Worldwide, Campylobacter is among the major pathogens that cause bacterial gastroenteritis [18].
Such bacteria are microaerophilic bacteria with respiratory-type metabolism [19], and several species
are known to cause infections [20], with C. coli, C. lari, and C. jejuni being the most common species
implicated in human infections [21]. Other species, such as C. upsaliensis, C. concisus, C. fetus, and
C. ureolyticus, have also been reported to be implicated in human gastrointestinal infections and
periodontitis [22]. The Campylobacter infectious dose is about 500 colony forming unit/g depending
on the physical conditions of the individual or age [23], and the infection is caused by the virulence
mechanisms that are involved in toxin production, flagellar motility, adhesion, and invasion of epithelial
cells [24]. In general, the burden of Campylobacter foodborne disease remains significantly high across
the world [25], and regular monitoring and examination of meats are necessary to maintain food safety
standards [26].

Foodborne disease outbreak is defined as a food poisoning occurrence involving more than two
persons epidemiologically connected to a common food source [27]. The shocking listeriosis outbreak
that happened recently in South Africa, which took over 218 lives, highlights the importance of good
food safety practices and food monitoring [28]. It is commonly accepted that the actual occurrence
rate of foodborne disease is obviously higher than the documented data due to limited surveillance
capacity and under-reporting, particularly in developing countries [29]. Campylobacter infection is
an infection that is labelled “self-limiting”, which rarely requires antimicrobial treatment [30,31].
Nevertheless, antimicrobial treatment is needed in persisting or severe campylobacteriosis cases,
immunocompromised patients, and cases of extragastrointestinal symptoms [32,33]. The antibiotics
employed in the treatment of severe Campylobacter infections include azithromycin and erythromycin,
ciprofloxacin, and tetracyclines [34]. Alternative drugs of choice for systemic campylobacteriosis
treatment include gentamicin and ampicillin [35]. However, there are regular reports on the increasing
rate of Campylobacter resistance to currently used antibiotics, including macrolides, quinolones, and
fluoroquinolones, which represent a significant threat to public health that is of global concern [36].
In this paper, we report on the prevalence, virulence markers, and antimicrobial resistance of
Campylobacter species in retailed fresh meat carcasses in two district municipalities in the Eastern
Cape Province of South Africa as part of our larger study on reservoirs of antibiotic resistance in
the environment.

2. Materials and Methods

2.1. Ethical Clearance

Ethical clearance was applied for on behalf of the study and granted by the University of Fort
Harr Alice, South Africa research ethics committee with certificate reference no. OKO021IGW01.

2.2. Study Area

The samples were collected in Chris Hani and Amathole District Municipalities, Eastern Cape,
South Africa, with geographical coordinates 31.8743◦ S, 26.7968◦ E and 32.5842◦ S, 27.3616◦ E,
respectively, and Figure 1 is a map showing the study areas.
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Figure 1. Map of Chris Hani and Amathole District Municipalities in the Eastern Cape Province, South 
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from different retail markets, open markets, and butcheries in different locations and towns in Chris 
Hani and Amathole District Municipalities, Eastern Cape, South Africa. All the meat samples were 
aseptically packed into separate sterile plastic bags to prevent cross contamination and were 
transported to the laboratory for analysis in a cooler box with ice packs within six hours of collection.  

2.4. Microbiological Analysis of the Meat Samples 

The meat samples were analysed following ISO 10,272 guidelines for isolation and identification 
of Campylobacter species [37,38]. Briefly, 25 g portions of the meat samples were homogenised in 245 
mL of buffered peptone water (M614-500G, (Vadhani, Mumbai, India)). Thereafter, 10 mL of the 
homogenate was added into 90 mL of Bolton selective enrichment broth (1.00068.0500 Merck), to 
which Bolton broth selective supplement (1.00079.0010 Merck) with 5% (v/v) defibrinated horse blood 
(JMS, Singapore) was added, and the resulting mixture was incubated at 42 °C for 48 h under 
microaerophilic conditions in 10% CO2 in an HF151UV CO2 incubator. After the 48 h incubation 
period, a loopful of the inoculum from the enriched broth was streaked on modified charcoal 
cefoperazone deoxycholate agar (mCCDA) plates containing antibiotic selective supplement (CCDA 
selective supplement 1.00071.0010) and incubated under the same conditions and for the same 
amount of time stated above. Thereafter, colonies suspected to be Campylobacter based on colony 
morphology were picked and re-streaked onto blood agar base plates supplemented with 7% (v/v) 
defibrinated horse blood, and the plates were incubated under the same conditions and for the same 
amount of time. 

2.5. DNA Extraction 

Template DNA for PCR assay was extracted following the process described by Sierra-Arguello 
et al. [39] with slight modification. Briefly, colonies isolated from the blood agar plates were grown 
in 5 mL of Tryptone Soya Broth (TSB) for 48 h at 42 °C under microaerobic conditions in a 10% CO2 

incubator. After incubation, 1 mL of the broth was centrifuged at 12,800 rpm for 5 min, and the cells 
were suspended in 400 µL of sterile distilled water in sterile 1.5 mL Eppendorf tubes. The suspensions 
were boiled for 10 min at 100 °C in a heating block and allowed to cool, after which the suspensions 

Figure 1. Map of Chris Hani and Amathole District Municipalities in the Eastern Cape Province,
South Africa.

2.3. Sample Collection

A total number of 258 meat samples (mutton, chicken, turkey, beef, and pork) were purchased from
different retail markets, open markets, and butcheries in different locations and towns in Chris Hani and
Amathole District Municipalities, Eastern Cape, South Africa. All the meat samples were aseptically
packed into separate sterile plastic bags to prevent cross contamination and were transported to the
laboratory for analysis in a cooler box with ice packs within six hours of collection.

2.4. Microbiological Analysis of the Meat Samples

The meat samples were analysed following ISO 10,272 guidelines for isolation and identification
of Campylobacter species [37,38]. Briefly, 25 g portions of the meat samples were homogenised in
245 mL of buffered peptone water (M614-500G, (Vadhani, Mumbai, India)). Thereafter, 10 mL of the
homogenate was added into 90 mL of Bolton selective enrichment broth (1.00068.0500 Merck), to which
Bolton broth selective supplement (1.00079.0010 Merck) with 5% (v/v) defibrinated horse blood (JMS,
Singapore) was added, and the resulting mixture was incubated at 42 ◦C for 48 h under microaerophilic
conditions in 10% CO2 in an HF151UV CO2 incubator. After the 48 h incubation period, a loopful of the
inoculum from the enriched broth was streaked on modified charcoal cefoperazone deoxycholate agar
(mCCDA) plates containing antibiotic selective supplement (CCDA selective supplement 1.00071.0010)
and incubated under the same conditions and for the same amount of time stated above. Thereafter,
colonies suspected to be Campylobacter based on colony morphology were picked and re-streaked onto
blood agar base plates supplemented with 7% (v/v) defibrinated horse blood, and the plates were
incubated under the same conditions and for the same amount of time.

2.5. DNA Extraction

Template DNA for PCR assay was extracted following the process described by
Sierra-Arguello et al. [39] with slight modification. Briefly, colonies isolated from the blood agar plates
were grown in 5 mL of Tryptone Soya Broth (TSB) for 48 h at 42 ◦C under microaerobic conditions in
a 10% CO2 incubator. After incubation, 1 mL of the broth was centrifuged at 12,800 rpm for 5 min,
and the cells were suspended in 400 µL of sterile distilled water in sterile 1.5 mL Eppendorf tubes.
The suspensions were boiled for 10 min at 100 ◦C in a heating block and allowed to cool, after which
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the suspensions were centrifuged at 12,800 rpm for 5 min and the supernatants were collected and
stored at −20 ◦C until ready for use.

2.6. Molecular Identification of the Genus Campylobacter

A 439 bp part of the 16S rRNA gene was amplified using primer CAM220
F-GGTGTAGGATGAGACTATATA and CAM659 R-TTCCATCTGCCTCTCCC as reported by
Moreno et al. [40]. A singleplex PCR assay was carried out in a 25 µL reaction volume (5 µL of
the DNA, 12.5 µL master mix, 2 µL of primer, and 5.5 µL of nuclear free water), and the PCR cycling
conditions were set at initial denaturation (95 ◦C for 5 min), followed by 33-cycle (94 ◦C for 1 min,
58 ◦C for 1 min, and 72 ◦C for 2 min), and the final extension was set at 72 ◦C for 2 min. Verification
of the amplified PCR products was carried out by resolving them in 1.5% agarose gel stained with
ethidium bromide at 135 volts for 30 min, which was detected under a short-wavelength UV light
source; C. jejuni ATCC 33.560 was used as the positive control.

2.7. Molecular Classification of Campylobacter Species

PCR amplification was further carried out to delineate the isolates to the species level for the
detection of C. lari, C. fetus, C. jejuni, and C. coli. The primer sets used for the detection of these species
are as reported by Yamazaki-Matsune et al. [41].

2.8. Molecular Detection of Virulence Genes

The identified Campylobacter species were further screened for the presence of invasion genes (ciaB
and iam), adherence genes (flaA and cadF), a toxin gene (cdtB) and flagella synthesis, and a modification
gene (flgR). The primer sets for the detection of cdtB, flaA and cadF genes were used as reported by
Modi et al. [24], iam gene [42], ciaB gene [43] and flgR) gene [44].

2.9. Phenotypic Determination of Antimicrobial Resistance

Patterns of antimicrobial resistance of the identified Campylobacter species isolated from
different meat types were studied using the Kirby–Bauer disk diffusion method according to
Clinical and Laboratory Standard Institute (CLSI) 45] guidelines. The isolates were tested against
12 antibiotics regularly used in human and veterinary practices, comprising nine antimicrobial
families, including tetracycline/doxycycline (30 µg), tetracycline (30 µg); penicillins/ampicillin
(10 µg); macrolids/azithromycin (15 µg), erythromycin (15 µg); aminoglycoside/gentamicin (10 µg);
lincomycin/clindamycin (2 µg); phenicols/chloramphenicol (30 µg); fluoroquinolones/ciprofloxacin
(5 µg), levofloxacin (5 µg); cephalosporin/ceftriaxone (30 µg); and carbapenems/imipenem (10 µg).
Briefly, 50 µL of the glycerol stock was suspended in 5 mL of Tryptone Soy Broth and incubated at
42 ◦C for 48 h in 10% CO2 in a CO2 incubator. After incubation, the broths were suspended in sterile
normal saline solution, followed by adjustment of turbidity to 0.5 McFarland standard. The solutions
were evenly spread using sterile cotton swabs on Müller Hinton agar plates supplemented with
5% defibrinated horse blood. After drying, antibiotic discs were dispensed using a disc-dispensing
apparatus, and the plates were incubated at 42 ◦C for 24 h in a 10% CO2 incubator. C. jejuni
(ATCC 33560) and C. fetus (ATCC 27374) were used as reference strains. The inhibition zones for
tetracycline, doxycycline, ciprofloxacin, and erythromycin were interpreted following CLSI [45]
breakpoints for Campylobacter. As there are no breakpoints available for ampicillin, azithromycin,
gentamicin, clindamycin, chloramphenicol, levofloxacin, ceftriaxone, and imipenem for Campylobacter,
the breakpoints established by CLSI [45] for Enterobacteriaceae were used for the interpretation of results.

2.10. Multiple Antibiotic Resistance (MAR) Index

For the determination of the multiple antibiotic resistance (MAR) index, the formula MAR = x/y,
stated by Krumperman [46], was adopted where x = is the number of antibiotics to which the test
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isolate showed resistance and y = is the total number of antibiotics to which the test isolate has been
evaluated for susceptibility.

2.11. Genotypic Assessment of Antibiotic Resistance Genes

Molecular screening of resistance genes was carried out on important resistance genes by both
simplex and multiplex PCR assays on the isolates, which showed phenotypic resistance to the test
antibiotics. The primer sets used for the detection of tetA, tetB, tetC and tetD genes were used as
reported by Ng et al. [47], tetK and tetM genes [48], gyrA gene [49], ermB gene [50], catI and catII
genes [51], (aac(3)-IIa (aacC2)a gene [52] and IMI, KPC, VIM and blaOXA-48-lik genes [53]. Verification
of the amplified PCR products was carried out as stated above.

3. Results

3.1. Molecular confirmation of Campylobacter species

In the effort to isolate and detect Campylobacter species in meat samples, including pork, mutton,
mutton offals, beef, beef offals, turkey, chicken, and chicken offals; the samples were subjected to
both traditional culture and PCR techniques. From culture, a total of 845 presumptive isolates were
obtained, of which 28.40% (208/845) were identified as belonging to the genus Campylobacter by PCR
assay, of which 32.5% (208/640) were obtained from retail markets, 15.17% (22/145) from butcheries,
and 16.67% (10/60) from open markets. The detailed results of the number of isolates from various
meat types are shown in Table 1, while Figure 2 shows a representative gel image of the PCR confirmed
genus Campylobacter.

Table 1. Number of Campylobacter isolates identified in various meat types.

Meat Types No. of Samples No. of Presumptive
Campylobacter Isolates

No. of Isolates
Identified as Genus

Campylobacter

Turkey 11 16 5 (31.25%)
Pork 35 131 33 (25.19%)

Mutton 22 9 4 (44.44%)
Mutton offals (heart) 2 6 0

Beef 27 89 30 (33.71%)
Beef offals (intestine,

kidney, and liver) 31 126 39 (30.95%)

Chicken 68 300 81 (27%)
Chicken offals (liver,
gizzard, and heart) 52 165 48 (29.09%)
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The 240 isolates identified as belonging to the genus Campylobacter were further delineated into 
four Campylobacter species by PCR technique: 53 (22.08%) isolates were identified as C. coli, 40 
(16.66%) as C. jejuni, and 9 (3.75%) as C. fetus, whereas C. lari was not detected. A summary of the 
numbers of Campylobacter species identified in the meat types is shown in Table 2, while Figures 3 
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marker (100 bp); lane 1: positive control (C. jejuni ATCC 33560); lane 2: negative control; and lanes
3−11: positive Campylobacter isolates (439 bp).
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3.2. Molecular Characterisation of Campylobacter Species

The 240 isolates identified as belonging to the genus Campylobacter were further delineated into
four Campylobacter species by PCR technique: 53 (22.08%) isolates were identified as C. coli, 40 (16.66%)
as C. jejuni, and 9 (3.75%) as C. fetus, whereas C. lari was not detected. A summary of the numbers
of Campylobacter species identified in the meat types is shown in Table 2, while Figures 3 and 4 are
representative gel electrophoresis images of PCR-confirmed C. jejuni, C. coli, and C. fetus, respectively.

Table 2. Summary of Campylobacter species identified in the meat types.

Meat
Typologies C. jejuni C. coli C. lari C. fetus

No. of Campylobacter
Species Detected in the

Meat Types

Pork 4 9 0 3 16
Beef 3 0 0 2 5

Beef offals 10 15 0 1 26
Chicken 9 16 0 2 27

Chicken offals 14 5 0 1 20
Mutton 0 0 0 0 0

Mutton offals 0 3 0 0 3
Turkey 0 5 0 0 5
Total 40 53 0 9 102
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3.3. Molecular Detection of Virulence Genes

Among the 102 isolates characterised as C. coli, C. fetus, and C. jejuni; the presence of six virulence
genes (iam, cdtB, ciaB, cadF, flgR, and flaA) were assessed by PCR. The virulence genes detected included
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iam (43.14%), cadF (37.25%), cdtB (23.53%), flgR (18.63%), and flaA (1.96%), and the detailed results are
shown in Table 3. Moreover, 26 (25.49%) isolates co-harboured two virulence genes, 9 (8.82%) isolates
co-harboured three virulence genes, and three (3.94%) isolates co-harboured four different virulence
genes, and the patterns of distribution of the virulence makers co-harboured in the isolates are shown
in Table 4, while Figures 5 and 6 are gel electrophoresis images of PCR-confirmed cadF, iam, flgR, cdtB,
and flaA genes.

Table 3. Percentage distribution pattern of detected virulence genes in the identified
Campylobacter species.

Virulence Genes
Screened

Campylobacter Species
C. jejuni (%) C. coli (%) C. fetus (%)

iam 7 (6.86) 35 (34.31) 2 (1.96)
cadF 4 (3.92) 34 (33.33) 0
flgR 11 (10.78) 8 (7.84) 0
cdtB 6 (5.88) 17 (16.67) 1(0.98)
flaA 0 2 (1.96) 0
ciaB 0 0 0

Table 4. Patterns of occurrence of multiple virulence genes in the identified species.

Pattern of Multiple Virulence
Genes

Number of Campylobacter Species Total
NumberC. coli C. fetus C. jejuni -

1 iam, cadF 16 - 1 - 17
2 iam, flgR 2 - - - 2
3 iam, cdtB 1 - - - 1
4 cadF, flgR - - 1 - 1
5 cadF, cdtB 4 - - - 4
6 flgR, cdtB 1 - - - 1
7 iam, cadF, flaA 1 - - - 1
8 iam, cadF, cdtB 7 - - - 7
9 cadF, cdtB, flgR 1 - - - 1

10 iam, cadF, flgR, cdtB 2 - 1 - 3
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Figure 5. Image (A) is a representative gel picture of the PCR-confirmed cadF, iam, and flgR genes. Lane
M: molecular marker (100 bp); lane 1: negative control; lanes 2–8: positive Campylobacter isolates that
harboured the cadF gene (400 bp); lanes 9–14: positive Campylobacter isolates that harboured the iam
gene (519 bp); lanes 15–20: positive Campylobacter isolates that harboured the flgR gene (390 bp); and
(B) is a gel image of the PCR-confirmed cdtB gene. Lane M: DNA ladder (100bp); lanes 1–10: positive
Campylobacter isolates that harboured the cdtB gene (495 bp).
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Figure 6. Gel image of the PCR-confirmed flaA gene. Lane M: DNA ladder (1 kb); lane 1: negative
control; lanes 2–3: positive Campylobacter isolates that harboured the flaA gene (1723 kb).

3.4. Antibiotic Phenotypic Characteristics of the Identified Campylobacter Species

A total of 240 PCR-confirmed genus Campylobacter isolates were profiled for their possible
phenotypic resistance against 12 antibiotics belonging to nine antimicrobial families. Astonishingly, all
the isolates displayed the highest phenotypic resistance against clindamycin (100%). The Campylobacter
isolates recovered from meat carcasses also displayed high phenotypic resistance against ampicillin
(97.08%), tetracycline (94.17%), doxycycline (93.75%), erythromycin (87.03%), azithromycin (84.58%),
ceftriaxone (83.75%), ciprofloxacin (76.25%), chloramphenicol (71.67%), gentamicin (64.58%), and
levofloxacin (54.58%), and the lowest level of resistance was observed against imipenem (23.33%).
Table 5 shows the detailed phenotypic resistance patterns observed in the isolates tested against
the antibiotics, while Figure 7 is the interpreted antimicrobial susceptibility result according to
CLSI [45] guidelines.
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Figure 7. Antimicrobial susceptibility patterns of Campylobacter isolates recovered from meat
carcasses sold in Eastern Cape, South Africa. Levofloxacin (LEV), ciprofloxacin (CIP), azithromycin
(ATH), imipenem (IMI), ampicillin (AP), clindamycin (CD), tetracycline (TET), ceftriaxone (CRO),
chloramphenicol (C), erythromycin (E), gentamicin (GM), and doxycycline (DXT).
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Table 5. Antibiotic resistance patterns of Campylobacter isolates isolated from meat carcasses.

No Multiple Antimicrobial Resistance Profile No of Isolates
Total MAR IndexC. coli C. jejuni C. fetus

1 C-CD-AP 1 - - 1 0.25
2 C-E-ATH-CD-AP 1 - - 1 0.42
3 CRO-C-E-CD-AP - - 1 1 0.42
4 E-ATH-CD-T-DXT-AP - 1 - 1 0.5
5 LEV-CRO-CIP-ATH-CD-AP - - 1 1 0.5
6 CRO-C-CIP-E-ATH-CD-AP - 1 - 1 0.58
7 CRO-E-ATH-CD-T-DXT-AP - 1 - 1 0.58
8 CRO-C-CIP-E-ATH-CD-AP - 1 - 1 0.58
9 C-E-ATH-CD-T-DXT-AP 1 - - 1 0.58
10 LEV-CRO-C-CIP-E-ATH-CD-AP 1 - - 1 0.67
11 CRO-C-E-ATH-T-GM-DXT-AP 1 - - 1 0.67
12 CRO-C-E-ATH-CD-T-DXT-AP 1 1 - 2 0.67
13 CRO-CIP-E-ATH-CD-T-DXT-AP 1 1 - 2 0.67
14 CRO-E-ATH-CD-T-GM-DXT-AP - 1 - 1 0.75
15 CRO-C-CIP-E-ATH-CD-T-DXT-AP - - 1 1 0.75
16 CRO-CIP-E-ATH-IMI-CD-T-DXT-AP - - 1 1 0.75
17 LEV-CRO-CIP-E-ATH-CD-T-DXT-AP - 1 - 1 0.75
18 CRO-C-CIP-ATH-CD-T-GM-DXT-AP 1 - - 1 0.75
19 LEV-CRO-C-CIP-E-ATH-CD-T-DXT 1 - - 1 0.75
20 CRO-C-E-ATH-CD-T-GM-DXT-AP 2 1 3 0.75
21 LEV-CRO-C-CIP-E-ATH-CD-T-AP - - 1 1 0.75
41 LEV-CRO-C-CIP-E-ATH-CD-GM-DXT-AP - 1 - 1 0.83
22 LEV-CRO-C-CIP-E-ATH-CD-T-DXT-AP 6 8 - 14 0.83
23 LEV-CRO-CIP-E-ATH-CD-T-GM-DXT-AP 1 - - 1 0.83
24 CRO-C-CIP-E-ATH-CD-T-GM-DXT-AP - 1 - 1 0.83
25 LEV-CRO-CIP-E-ATH-CD-T-GM-DXT-AP - 1 - 1 0.83
26 LEV-CRO-C-CIP-E-ATH-CD-T-GM-DXT-AP 8 8 - 16 0.92
27 CRO-C-CIP-E-ATH-IMI-CD-T-GM-DXT-AP - 1 - 1 0.92
28 LEV-CRO-C-CIP-E-ATH-IMI-CD-GM-DXT-AP - 1 - 1 0.92
29 LEV-CRO-C-CIP-E-ATH-IMI-CD-T-GM-DXT-AP 14 3 - 17 1

3.5. Assessment of Resistance Determinants

The resistance genes screened among the phenotypic resistant-Campylobacter isolates are listed in
Table S3, and the choice for the selection of these genes was centred on their high phenotypic resistance
rates. Thus, 12 antibiotic resistance genes were screened for probable detection of resistance genes
among the identified Campylobacter species and also to determine the pattern of occurrence of multiple
resistance genes in the isolates. From the PCR results obtained, the order of the frequency level of
the resistance genes detected was as follows: catll (91.78%), tetA (68.82%), gyra (61.76%), ampC (55%),
aac(3)-IIa (aacC2)a (40.98%), tetM (38.71%), ermB (18.29%), tetB (12.90%), and tetK (2.15%). In contrast,
the IMI, KPC, VIM, blaOXA-48-like, catl, tetC, tetD, and tetK genes were not detected. Figures 8 and 9 are
representative gel images of the amplified PCR products of the assessed antibiotic resistance genes.
Similarly, the patterns of the level of detected multiple resistance genes are shown in Table 6.
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The resistance genes screened among the phenotypic resistant-Campylobacter isolates are listed 
in Table S3, and the choice for the selection of these genes was centred on their high phenotypic 
resistance rates. Thus, 12 antibiotic resistance genes were screened for probable detection of resistance 
genes among the identified Campylobacter species and also to determine the pattern of occurrence of 
multiple resistance genes in the isolates. From the PCR results obtained, the order of the frequency 
level of the resistance genes detected was as follows: catll (91.78%), tetA (68.82%), gyra (61.76%), ampC 
(55%), aac(3)-IIa (aacC2)a (40.98%), tetM (38.71%), ermB (18.29%), tetB (12.90%), and tetK (2.15%). In 
contrast, the IMI, KPC, VIM, blaOXA-48-like, catl, tetC, tetD, and tetK genes were not detected. Figures 
8 and 9 are representative gel images of the amplified PCR products of the assessed antibiotic 
resistance genes. Similarly, the patterns of the level of detected multiple resistance genes are shown 
in Table 6. 

 

Figure 8. A representative gel image of various amplified antimicrobial resistance genes of 
Campylobacter isolates. Lanes M: DNA ladder (100 bp); lane 1: negative control; lane 2: tetM gene (158 
bp); lane 3: aac(3)-IIa (aacC2)a gene (740 bp); lane 4: gyrA gene (441 bp); lane 5: ermB gene (320 bp); lane 
6: tetA gene (201 bp) and tetB gene (359 bp); and lane 7: ampC gene (530 bp). 

Figure 8. A representative gel image of various amplified antimicrobial resistance genes of Campylobacter
isolates. Lanes M: DNA ladder (100 bp); lane 1: negative control; lane 2: tetM gene (158 bp); lane 3:
aac(3)-IIa (aacC2)a gene (740 bp); lane 4: gyrA gene (441 bp); lane 5: ermB gene (320 bp); lane 6: tetA
gene (201 bp) and tetB gene (359 bp); and lane 7: ampC gene (530 bp).
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Figure 9. Gel image of the PCR-confirmed catll gene. Lane M: DNA ladder (100 bp); lane 1: negative
control; and lanes 2–9, Campylobacter isolates that harboured the catll gene (543 bp).

Table 6. Distribution and pattern of multiple antibiotic resistance of Campylobacter species isolated from
meat carcasses.

No Distribution Pattern of Antibiotic Resistance
Determinants

No of Isolates
TotalC. coli C. jejuni C. fetus

1 tetA, catII 1 - 3 4
2 tetM, catII 2 - - 2
3 ampC, catII 1 - - 1
4 catII, ermB 1 - - 1
5 tetA, ampC - - 1 1
6 tetA, catII, gyra - - 1 1
7 tetA, tetB, ampC - 1 - 1
8 tetA, ampC, catII 2 2 - 4
9 tetA, catII, ermB 1 - - 1
10 tetM, ampC, catII 1 - - 1
11 tetA, tetK, aac(3)-IIa (aacC2)a - 1 - 1
12 ampC, catII, aac(3)-IIa (aacC2)a - 1 - 1
13 tetM, catII, aac(3)-IIa (aacC2)a 2 - - 2
14 tetA, ampC, catII, gyrA 2 1 1 4
15 tetA, ampC, catII, ermB - 2 - 2
16 tetA, tetM, catII, ermB 2 - - 2
17 tetA, tetB, ampC, gyrA - 1 - 1
18 tetA, tetB, ampC, catII 1 1 - 2
19 tetA, tetM, tetK, catII - 1 - 1
20 tetA, catII, ermB, gyrA - 1 - 1
21 tetA, tetB, catII, ermB 1 - - 1
22 tetA, tetM, ampC, catII 1 - - 1
23 tetA, tetM, ampC, gyrA 1 - - 1
24 tetM, ampC, catII, gyrA 1 - - 1
25 tetM, catII, gyrA, aac(3)-IIa (aacC2)a 1 - - 1
26 tetM, ampC, gyrA, aac(3)-IIa (aacC2)a 1 - - 1
27 tetA, ampC, catII, aac(3)-IIa (aacC2)a 1 3 - 4
28 tetA, tetM, ampC, catII, gyrA 3 1 - 4
29 tetA, tetB, tetM, catII, gyrA 1 - - 1
30 tetA, tetB, ampC, catII, gyrA - 3 - 3
31 tetA, ampC, catII, ermB, gyrA - 2 - 2
32 tetA, tetM, ampC, catII, aac(3)-IIa (aacC2)a 1 - - 1
33 tetA, tetM, catII, gyrA, aac(3)-IIa (aacC2)a 1 - - 1
34 tetM, ampC, catII, gyrA, aac(3)-IIa (aacC2)a 1 - - 1
35 tetA, ampC, catII, gyrA, aac(3)-IIa (aacC2)a 1 2 - 3
36 tetA, tetM, ampC, catII, ermB, gyrA 2 1 - 3
37 tetA, tetB, tetM, ampC, catII, ermB 1 - - 1
38 tetA, tetM, ampC, catII, gyrA, aac(3)-IIa (aacC2)a - 1 - 1
39 tetA, tetB, tetK, ampC, ermB, aac(3)-IIa (aacC2)a - 1 - 1
40 tetA, tetB, ampC, catII, gyrA, aac(3)-IIa (aacC2)a - 1 - 1
41 tetA, tetM, ampC, catII, gyrA, aac(3)-IIa (aacC2)a 2 - - 2
42 tetA, tetM, ampC, ermB, gyrA, aac(3)-IIa (aacC2)a - 1 - 1
42 tetA, tetM, ampC, catII, gyrA, aac(3)-IIa (aacC2)a 1 1 - 2
43 tetA, tetM, ampC, catII, ermB, gyrA, aac(3)-IIa (aacC2)a - 1 - 1
44 tetA, tetB, tetM, ampC, catII, gyrA, aac(3)-IIa (aacC2)a 1 - - 1
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4. Discussion

Reports on the prevalence, virulence marker, and antimicrobial resistance genes in Campylobacter
isolates recovered from retailed meat samples are well documented in some parts of the world,
but limited information is available in some provinces in South Africa, particularly in the Eastern
Cape Province. Hence, this study aimed to address the prevalence and characterise the identified
Campylobacter species, virulence genes, and resistance genes in Campylobacter isolates recovered from
meat carcasses. Campylobacter species are major bacteria foodborne enteropathogens that are regularly
spread to humans through the consumption of contaminated food including meats [54]. In this study,
a high rate of Campylobacter was detected in 240 (28.40%) isolates from meat carcasses, and this gives
valuable insight into the possible risks of foodborne infection to humans. Studies carried out in
Italy by Stella et al. [55], in Malaysia [56], in China [57], in France [58], and in South Korea [59] also
detected Campylobacter in meat samples with detection rates of 34.10%, 50.9%, 48.9%, 76%, and 31.67%,
respectively, and our findings are in line with their reports. Other studies carried out in Spain by
García-Sánchez et al. [60], in Pakistan by Nisar et al. [3], in Yangzhou, China by Zou et al. [61], and in
Northern Poland by Andrzejewska et al. [62] also detected Campylobacter in meat samples, and these
results are also akin with their reports. According to Seliwiorstow et al. [63], different sampling sources
make an impact on the occurrence rates of Campylobacter, which indicate the risk factors associated with
handling. The occurrence rates of Campylobacter detected in the different market sources are in the order
of 32.5% (retail markets), 16.67% (open markets), and 15.17% (butcheries). The highest occurrence rates
of the genus Campylobacter were also detected in isolates from mutton (44.4%), followed by beef (34%),
turkey (31.3%), beef offals (31%), chicken offals (29%), chicken (27%), and pork (25.2%). The occurrence
rate of Campylobacter in mutton samples was much higher than that in other meat types, and this result
is in agreement with the report of Maktabi et al. [64].

In the present study, the high detection rate of Campylobacter was observed in isolates from beef
carcasses, and this result also corroborates the reports of Kashoma et al. [65] and Premarathne et al. [66].
The high rates of Campylobacter detection in turkey samples observed in this study also support those
reported by Noormohamed and Fakhr [67] in Oklahoma, USA (17%), and Szosland-Fałtyn et al. in
Poland (47.37%) [68]. The 240 isolates identified belonging to the genus Campylobacter were then
characterised into four species, of which 53 (22.08%) were identified as C. coli, 40 (16.66%) as C. jejuni,
and 9 (3.73%) as C. fetus, whereas C. lari was not detected. Higher rates of C. coli and C. jejuni were
detected than other Campylobacter species, and our findings corroborate the report of Hodges et al. [69],
Ocejo et al. [70], Sulaiman et al. [71], and Vinueza-Burgos et al. [72]. In contrast, a low prevalence rate
of C. fetus was detected, and this finding is also in agreement with the report of Sinulingga et al. [56].
C. coli and C. jejuni are known to cause infection in humans, but from the first report of Campylobacter
infection to date, Campylobacter pathogenesis has not been clearly understood. Though, what has
been clear about Campylobacter infections and has been proposed as virulence determinants includes
Campylobacter’s invasive capability, adherence to intestinal mucosa, ability to produce toxins, and
flagella-mediated motility [73]. Thus, the presence of these specific genes associated with Campylobacter
invasion, adhesion, toxin production, and colonisation are all essential for the process of infection, and
the mechanism by which they cause disease in humans is assumed to be multifactorial [74]. From the
PCR results of the virulence gene assessed, most Campylobacter species were detected to harbour a high
proportion of cadF, flaA, and iam genes responsible for colonisation, invasion, and adherence, and our
results corroborate the report of Abu-Madi et al. [75]. The iam gene had the highest occurrence rate
of 43.14% (Table 3) among the various virulence genes screened, and our results also corroborate the
report of Redondo et al. [76].

Similarly, the high occurrence rate of the cadF (37.25%) gene and the lower prevalence of the flaA
(1.96%) gene were detected in the Campylobacter isolates from meat samples, and these results are akin
with the reports of Andrzejewska et al. [77] and Ripabelli et al. [78]. Our results also corroborated the
report of Chukwu et al. [74], who also detected the cadF gene in Campylobacter strains isolated from
water and paediatric stools. The ciaB gene was screened for but was not detected, and our findings are
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contrary to the reports of Melo et al. [79], Melo et al. [80], and Zhong et al. [81] who reported high
detection rates of the ciaB gene in meats and in retailed food samples. Another virulence gene screened
for was the cdtB gene, and the presence and expression of any of the cdt genes (cdtA, cdtB, and cdtC) are
essential for the efficient activity of the CDT toxin. In this study, the cdtB gene was observed to be
widespread among the Campylobacter species, with C. coli strains revealed to have a higher prevalence
rate of cdtB than C. jejuni and C. fetus (Table 3), and our results are not in agreement with the reports of
Wieczorek et al. [82] and Reddy and Zishiri [83], which reported a higher prevalence rate of the cdtB
gene in C. jejuni than in the C. coli strain. Multiple virulence genes were also detected in both C. coli
and C. jejuni with C. coli observed to harbour more virulence genes than C. jejuni, and these results
are in contrast with the reports of Lim et al. [84] and Zhang et al. [85]. Campylobacter isolates have
also been reported by Han et al. [86] to co-harbour more than three virulence genes, and our findings
corroborate this report. Virulence genes in the Campylobacter genome are known to be implicated in
human infection, and Campylobacter pathogenicity may be strengthened by the expression of a single
virulence gene or multiple virulence genes that are enough to establish infection in the host [80].

The dissemination of virulence-associated genes in the identified Campylobacter strains isolated
from meats showed a potential risk to humans and an impending risk of outbreak of Campylobacter
infection if appropriate measures are not put into place. From the antimicrobial susceptibility testing
result, a total of 78 antibiotic resistance profiles were generated among the 102 Campylobacter isolates
characterised as C. coli, C. jejuni, and C. fetus, and 76.47% were resistant to more than two antimicrobial
families and were classified as multi-drugs resistant strains (Table 5). The most common observed
resistant profile was LEV-CRO-C-CIP-E-ATH-IMI-CD-T-GM-DXT-AP, which was common among
C. coli and C. jejuni strains. The isolates displayed high phenotypic resistance to tetracycline (94.17%),
erythromycin (87.03%), ampicillin (97.08%), and ciprofloxacin (76.25%). In Brazil, studies have shown
that there is a high prevalence of quinolones (72.2%), tetracycline (43%), erythromycin (38.9%), and
ampicillin (26.9%) resistance in Campylobacter in circulation [87,88]. In Bolivia, Argentina, Chile, and
Peru, many Campylobacter strains are resistant to quinolones (47–78%) as well as tetracycline (40.8–65.9%
in Argentina and Bolivia), erythromycin (58.6% to 61.4% in Bolivia and Chile), and ampicillin (47.2% in
Argentina) [89]. The value of the MAR index is 0.2, and the MAR index is a good risk assessment tool
used to distinguish high- and low-risk areas where antibiotics are overused [90]. The MAR indices of
the isolates were calculated, and 77.83% were found to have a MAR index greater than 0.2, while 17
isolates had MAR indices of 1.0 (Table 5). A MAR index value of greater than 0.2 indicates a high-risk
source of contamination where antibiotics are often used, and based on our results, most isolates had
MAR indices of greater than 0.2, confirming that there is high selective pressure and high antibiotic use
in these areas.

Because the effectiveness of antibiotic resistance might be compromised in the treatment of
infections, antimicrobial resistance genes were screened. Multiple antibiotic resistance genes were
highly detected in most of the isolates (Table 6), and this is in agreement with the multiple phenotypic
resistance profiles displayed by the isolates (Table 5). Multiple resistance genes in the Campylobacter
isolates were detected, and our results are in agreement with the reports of Chukwu et al. [74] and
Wieczorek et al. [91]. There was a high rate of detection of resistance genes in chloramphenicol (catll
(91.78%)), tetracycline (tetA (68.82%)), ciprofloxacin (gyra (61.76%)), ampicillin (ampC (55%)), gentamycin
(aac(3)-IIa (aacC2)a (40.98%)), and tetracycline (tetM (38.71%) in the Campylobacter isolates. In this study,
the high detection rate of resistance genes in tetracycline/ciprofloxacin-Campylobacter isolates was
responsible for its phenotypic resistance, and this is in line with the report of Nguyen et al. [92]. A high
rate of the gyra gene was also detected in the Campylobacter isolates recovered from meat carcasses,
and our results are also in agreement with the report of Du et al. [93]. The results from the study of
Rahimi et al. [94] show that Campylobacter isolates recovered from meat carcasses were all susceptible
to chloramphenicol and gentamycin, and our results are contrary to their report. The implications in
antimicrobial resistance show a strong connection between the use of antibiotics in animal production,
veterinary medicine, and antibiotic-resistant Campylobacter isolates in humans [95], although the
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majority of the antibiotics used in the treatment of bacterial infections in humans are also used in
animals. Nevertheless, a One Health approach to addressing the issue of antibiotic resistance and the
spread of antibiotic-resistant bacteria includes plans to maintain and carry on with the efficiency of
current antibiotics by abolishing their inappropriate use and by preventing the spread of infection [96].
Another One Health approach in the prevention of human campylobacteriosis and the solution to the
spreading of antibiotic-resistant bacteria is to improve animal, environmental, and human health with
key components such as access to safe food, clean water, and hygiene [97]. In addition, recent One
Health approach in the prevention and spread of antimicrobial resistance have focused primarily on
the reduction of the use of antibiotics in food animals [98].

5. Conclusions

We investigated the prevalence rate, characterisation, distribution patterns of virulence genes,
antibiotic susceptibility patterns, and antibiotic resistance genes in Campylobacter species isolated
from meat carcasses obtained from butcheries, open markets, and supermarkets. High prevalence
rates of the genus Campylobacter and virulence markers were detected in meat samples obtained in
Chris Hani and Amathole District Municipalities, Eastern Cape, South Africa, and PCR assay is one
of the appropriate methods for the detection and characterisation of virulence genes and resistance
genes in bacteria species. The majority of the isolates showed resistance to the test antibiotics, and
multi-resistant isolates were also observed. In conclusion, there should be a continues surveillance of
the presence of these pathogens and antibiotic resistance genes in Campylobacter isolates, and awareness
of the impending risks associated with the consumption of undercooked, contaminated meats should
be increased.
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resistance genes.
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