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Secondary organic aerosol association with
cardiorespiratory disease mortality in the
United States
Havala O. T. Pye 1✉, Cavin K. Ward-Caviness 2, Ben N. Murphy 1, K. Wyat Appel1 & Karl M. Seltzer 3

Fine particle pollution, PM2.5, is associated with increased risk of death from cardiorespiratory

diseases. A multidecadal shift in the United States (U.S.) PM2.5 composition towards organic

aerosol as well as advances in predictive algorithms for secondary organic aerosol (SOA)

allows for novel examinations of the role of PM2.5 components on mortality. Here we show

SOA is strongly associated with county-level cardiorespiratory death rates in the U.S. inde-

pendent of the total PM2.5 mass association with the largest associations located in the

southeastern U.S. Compared to PM2.5, county-level variability in SOA across the U.S. is

associated with 3.5× greater per capita county-level cardiorespiratory mortality. On a per

mass basis, SOA is associated with a 6.5× higher rate of mortality than PM2.5, and biogenic

and anthropogenic carbon sources both play a role in the overall SOA association with

mortality. Our results suggest reducing the health impacts of PM2.5 requires consideration

of SOA.
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Ambient fine particulate matter, PM2.5, is estimated to be
responsible for up to 9 million deaths per year
worldwide1,2, including 15 deaths per 100,000 people in

the U.S3. Multiple studies show a link between exposure to PM2.5

and cardiovascular and respiratory (cardiorespiratory, CR) dis-
ease, hospital admissions, and mortality4–8. While less than ten
components of PM2.5 contribute significantly to mass, PM2.5

includes about 50 easily identifiable inorganic species9 and
potentially hundreds of thousands of individual organic
compounds10. Total PM2.5 mass has been more consistently
associated with adverse health outcomes than individual
components11, potentially due to limited access to composition in
historical epidemiological analyses.

Information on the role of specific sources of organic aerosol
(OA) in adverse health outcomes is even more limited than for
other components of PM2.5. Recent observations indicate that OA
can exceed the mass of other common PM2.5 components such as
sulfate12. Secondary organic aerosol (SOA) is produced from
reactions of anthropogenic and natural emissions throughout the
year13,14 and is a dominant component of total OA even in urban
locations15–17. While ambient PM2.5 concentrations are expected
to decline in the future as anthropogenic emissions are controlled,
adverse health effects persist below current U.S. air quality
standards18, and a relative increase in SOA could lead to
increased health impacts per unit mass19.

In the southeastern U.S., emissions of monoterpenes and iso-
prene from vegetation mix with anthropogenic pollutants like
nitrogen oxides (NOx) and other volatile organic compounds
(VOCs) to form SOA in high concentration13,20–22. Underlying
medical conditions like heart disease as well as CR disease mor-
tality are also higher in the Southeast than the rest of the U.S. as a
result of multiple socioeconomic and behavioral factors23. In
addition, higher rates of stroke mortality in the stroke belt24 have
persisted for decades25, and cardiovascular mortality rates have
been slower to decline in the Southeast than in other regions of
the U.S23. While previous air quality models struggled to repro-
duce measured organic carbon (OC), advances in algorithms for
SOA formation pathways (oxidation of monoterpenes13,22,
isoprene20,26, and anthropogenic volatile organic compounds27)
have essentially eliminated OC underestimates in the current
Community Multiscale Air Quality (CMAQ) model28,29.
Improved SOA estimates combined with multi-decadal reduc-
tions of particulate sulfate concentrations allow for an examina-
tion of the role of SOA in CR mortality not previously possible.
To the best of our knowledge, no epidemiological studies have
considered the association of SOA, as estimated by any of the
current generation of predictive algorithms, with health
outcomes.

In this work, we use year 2016 age-adjusted CR disease mor-
tality rate data from the Centers for Disease Control and Pre-
vention (CDC) and predicted PM2.5 in a cross-sectional
framework to associate county-level per capita mortality with
ambient PM2.5 and its components while adjusting for a broad
array of relevant confounders (see Methods section). We use
multiple linear regression to examine both the contiguous United
States as well as the southeastern U.S. for different granularity in
OA composition information.

Results
In 2016, CR disease in the U.S. was responsible for a county-level
median of 320 age-adjusted deaths per 100,000 in population
(2708 counties). The southeastern U.S. experienced a slightly
higher rate of 360 age-adjusted deaths per 100,000 in population
(646 counties) (Fig. 1a). The predicted county-wide, annual-
average U.S. PM2.5 concentration was 6.5 µg m−3 with OA the

most abundant major component at 2.9 µg m−3. Other major
PM2.5 components included a calcium (Ca)-iron (Fe)-silicon (Si)-
aluminum (Al)-rich dust, sulfate (SO4), ammonium and nitrate
(NH4NO3), elemental carbon- and potassium (K)-rich soot, and
chloride (Cl)-sodium (Na)-magnesium (Mg)-rich sea spray
aerosol (Fig. 2, see also the Supplementary Information).

PM2.5 SOA association with mortality. PM2.5, as well as multiple
PM2.5 components, were strongly associated with CR mortality
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Fig. 1 Cardiorespiratory disease mortality rates and secondary organic
aerosol concentrations. County-level, year 2016 (a) cardiovascular and
respiratory disease age-adjusted death rates (per 100,000 in population)
are from CDC and (b) PM2.5 secondary organic aerosol concentrations are
predicted by CMAQ. White in (a) indicates no death rate data while light
gray indicates low reported rates.

Fig. 2 Contiguous U.S. county-level average predicted concentration of
PM2.5 and its major components (bars) for 2016 (n= 2708 counties).
Major components include organic aerosol (OA), a calcium-iron-silicon-
aluminum rich aerosol (dust), sulfate (SO4), ammonium and nitrate
(NH4NO3), an elemental carbon and potassium rich aerosol (soot), and a
chloride-sodium-magnesium rich aerosol (sea spray). Inset in red are the
subcomponents of OA: SOA from anthropogenic VOCs (SOAAVOC), SOA
from biogenic VOCs (SOABVOC), and primary organic aerosol (POA). Error
bars represent ±1 IQR variation in the pollutant from the county-level
average. Points represent population-weighted concentrations.
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across the contiguous U.S. in 2016 (Fig. 3a). Variability in total
PM2.5 (estimated by the inter-quartile range (IQR)) was asso-
ciated with an increase of 3.7 (95% CI: 1.2–6.2) CR deaths per
100,000 people (Table 1), a 1.2% increase over the median CR
death rate observed. For the southeastern U.S., an IQR increase in
PM2.5 was associated with 9.1 (95% CI: 4.3–14) additional deaths
per 100,000 people or a 2.8% increase over the median observed
CR mortality. Associations of the CR death rate with IQR
increases in the six primary PM2.5 components ranged from −2.3
to 4.5 across the contiguous U.S. and from −5.1 to 18 per 100,000
people across the southeastern U.S. in single pollutant models
examining each component in a separate regression model with
identical confounder adjustment (see Methods section and Sup-
plementary Table 6).

An IQR increase in the OA component of PM2.5 in μg m−3 (see
Supplementary Table 1 for IQR values) was more strongly
associated with CR mortality than was total PM2.5. The initial

multipollutant (MP) model with six primary PM2.5 components
indicated OA had the largest association by magnitude (β= 13,
95% CI: 8.8–18, deaths per 100,000) for an IQR change in
concentration (Fig. 3b). Thus, an IQR increase in OA was
associated with a greater elevation in county-level CR death rates
than an IQR change in sulfate, ammonium and nitrate, sea spray,
dust, or soot. When OA was further divided into primary organic
aerosol (POA) and SOA (Fig. 3c), SOA (β= 13, 95% CI: 8.6–17,
deaths per 100,000) but not POA (β= 0.29, 95% CI: −2.6–3.2,
deaths per 100,000) was strongly associated with CR mortality.
Similar results were obtained for the southeastern U.S. with SOA
(β= 22, 95% CI: 13–31, deaths per 100,000 people) being more
strongly associated with CR mortality than any other component
and having a stronger association than observed in the entire U.S.
The number of per capita deaths associated with IQR variability
in SOA was 2.1 and 3.5 times larger than the number associated
with total PM2.5 in the Southeast and contiguous U.S.,
respectively.

Role of SOA beyond PM2.5 mass. To determine whether the
association between SOA and CR mortality was independent of
PM2.5 mass, additional models were adjusted for PM2.5 mass (SP-
adj) or used residuals (R) resulting from the regression of SOA on
PM2.5 mass as an exposure30 (see Methods section and Table 2).
In the SP-adj framework, IQR variability in SOA was positively
associated with mortality and had a larger regression coefficient
than sulfate, ammonium and nitrate, sea spray, dust, soot, and
POA as well as OA over both the contiguous and southeastern
U.S. This indicates the association between SOA and CR mor-
tality was not primarily driven by changes in total PM2.5. The
SOA component residual was also associated with increased CR
mortality rates across the U.S. and Southeast (Supplementary
Fig. 4).

SOA was also associated with higher CR mortality rates on a
1 µg m−3 mass basis. Across the contiguous U.S., SOA was
associated with 8.9 (95% CI: 6.0–12) additional deaths per
100,000 in population for a 1 µg m−3 increase in concentration
indicating about 6.5 × higher association than total PM2.5 (see
Table 1). In the southeastern U.S., SOA was associated with 27
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Fig. 3 Association of PM2.5 and its components with death rates across the contiguous U.S. (n= 2708 counties) in black and southeastern (SE) U.S.
(n= 646 counties) in red (open symbol) determined via regressed coefficients (β) from multiple linear regression and their 95% confidence intervals
(whiskers). Models forms (see Methods, Table 2) are a single pollutant (SP, circles) or multipollutant (triangles) (b) for PM2.5 components (MP) and
c with refinement of OA subcomponents (MP OA). Regressed coefficients correspond to IQR-normalized species concentrations (Supplementary Table 1)
in units of deaths per 100,000 in population. Horizontal gray lines are used to visually separate results for OA and its subcomponents (primary organic
aerosol, POA, and secondary organic aerosol, SOA) from the other components.

Table 1 Regression model coefficients (β) and their 95%
confidence intervals on a 1 µg m−3 and IQR-normalized basis
for total PM2.5 (SP model), OA (MP model), and SOA (MP
OA model) for the contiguous U.S. and southeastern U.S.
Concentration is population weighted at the county level.

β [95% CI] for
1 µgm−3

change in
pollutant

β [95% CI] for
IQR change in
pollutant

Average
concentration

IQR

(deaths
10−5 µg−1 m3)

(deaths 10−5) (µg m−3) (µg
m−3)

Contiguous U.S.
PM2.5 1.4 [0.5, 2.3] 3.7 [1.2, 6.2] 7.4 2.7
OA 8.1 [5.4, 11] 13 [8.8, 18] 3.2 1.6
SOA 8.9 [6.0, 12] 13 [8.6, 17] 2.3 1.4
Southeastern U.S.
PM2.5 9.1 [4.3, 14] 10 [5.0, 16] 7.9 1.1
OA 23 [13, 33] 22 [13, 32] 3.8 1.0
SOA 27 [16, 38] 22 [13, 31] 3.0 0.8
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(95% CI: 16–38) additional deaths per 100,000 in population for a
1 µg m−3 increase in concentration or about a 3.0× higher
association than PM2.5. A 1 µg m−3 change in SOA in the
southeastern U.S. also showed a 3.0× higher association with per
capita CR mortality than for nationwide conditions. For 1 µg m−3

of PM2.5, the association was 6.6× higher in the Southeast than
across the U.S.

Role of SOA subcomponents. A multipollutant model (MP
SOA) was used to estimate the health effects of SOA sub-
components including SOA from VOCs that were predominantly
biogenic in origin (SOABVOC) versus those that were anthro-
pogenic in origin (SOAAVOC). SOABVOC showed a positive
association with death rates across the U.S. (β= 10, 95% CI:
5.8–14, deaths per 100,000 people for the contiguous U.S. per IQR
change, IQR= 0.90 µg m−3) as well as in the southeastern U.S.
(β= 25, 95% CI: 16–33, deaths per 100,000 people per IQR
change; IQR= 0.72 µg m−3) (Fig. 4, MP SOA). Sensitivity models
on both the contiguous and southeastern U.S. domains showed
SOA from biogenic VOCs was associated with CR mortality even
after adjustment for total PM2.5, although the SOABVOC-CR
mortality association depended on the PM2.5 adjustment method
(Supplementary Fig. 4). Further subdivision of SOABVOC into
subcomponents representing the SOA from oxidation of terpenes
and isoprene also showed positive associations of each sub-
component with CR mortality; however, relationships varied
among model frameworks (Supplementary Figs. 4 and 5), and
terpene- versus isoprene-derived SOA may be difficult to robustly
separate due to correlation between them on a nationwide basis
(r= 0.79).

Anthropogenic-VOC derived SOA was slightly more abundant
than SOABVOC both nationwide (Fig. 2, inset) and in the
southeastern U.S. with locations near Los Angeles, Atlanta, New
York, and other cities showing local maximums in concentration.
Multipollutant model results indicated higher levels of anthro-
pogenic SOA were associated with higher county-level CR
mortality rates across the contiguous U.S. (β= 3.4, 95% CI:
0.29–6.4, deaths per 100,000 people per IQR change) but
indicated an inverse (β=−11, 95% CI: −21 to −1.4, deaths
per 100,000 people per IQR change) association with death rates
for the southeastern U.S. (Fig. 4, MP SOA). Sensitivity modeling
showed the region of interest (contiguous vs southeastern U.S.)
affected the direction of association for SOAAVOC.

Utility of observed OC. OC is the only routinely measured
indicator of organic PM2.5 at EPA Air Quality System (AQS) sites.
Predicted OC was highly correlated with OA and SOA from the
model (Pearson r= 0.97 or higher). Like OA, increases in model-
predicted OC for the contiguous U.S. (2708 counties), showed a
positive association with CR mortality (β= 2.3, 95% CI:
−1.1–5.6, deaths per 100,000 people per IQR change, IQR=
0.92 µg m−3). After considering the role of PM2.5 mass (SP-adj or
R model framework), the association of model-predicted OC with
CR mortality remained positive for the southeastern U.S. only.
Sub-setting the complete contiguous U.S. model-predicted OC
(n= 2708) to the AQS sites with data for 2016 (n= 232), resulted
in no association between predicted OC and increased CR mor-
tality rates (β=−1.3, 95% CI: −12–9.3, deaths per 100,000
people per IQR change, IQR= 1.2 µg m−3). Measured OC at
AQS sites indicated an association between observed OC and
county-level CR mortality rates across the U.S. (β= 4.1, 95% CI:
1.1–7.0, deaths per 100,000 people per IQR change, IQR= 1.2 µ
g m−3), suggesting, measured OC has greater power (smaller
confidence interval with larger magnitude association) than
modeled OC in a direct comparison.T
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Discussion
This work demonstrates a robust association between annual-
average SOA concentrations and county-level CR death rates in a
cross-sectional study. Associations were elevated in the south-
eastern U.S. as compared to the contiguous U.S. Not only was
SOA associated with higher CR death rates than other compo-
nents considered, it showed a larger association per unit mass
than total PM2.5. The role of SOA was separately distinguished
from that of total PM2.5 mass as indicated by single pollutant
adjusted for PM2.5 and component residual model results.

Laboratory experiments indicate a role for SOA in adverse
health outcomes. SOA exposure has been shown to result in lung
cell death31 and formation of reactive oxygen species that can lead
to adverse health effects32–35. Acellular assays of laboratory-
generated SOA from terpenes, isoprene, and aromatics show
oxidative potential that can approach that of ambient PM2.5 and
known hazardous air pollutants such as diesel exhaust
particles35–38. Continued atmospheric processing, including oxi-
dation of SOA or POA also leads to increased oxidative
potential35,39. In addition, exposure to isoprene-derived SOA has
been shown to modify gene expression in human airway epithelial
cells40. CR mortality associations with SOA in this work were not
driven by a single SOA subcomponent and a consensus on which
SOA systems drive redox reactivity as determined by dithio-
threitol acellular assays is also lacking34. However, Bates et al.35

indicate the highest oxidative potential for aromatic (pre-
dominantly anthropogenic) SOA followed by terpene then iso-
prene SOA. Combustion sources, like biomass burning and
vehicles which lead to both primary and secondary OA, are likely
a significant source of oxidative potential in urban areas41 and
have been linked with pediatric respiratory disease emergency
visits in the eastern U.S.42.

Anthropogenic SOA is more abundant than biogenic SOA and
POA in locations like the Northeast and California (Fig. 2 and
Supplementary Fig. 1j–l), but it did not have a higher association
with CR mortality when compared to other SOA subcomponents
and showed no association when analysis was restricted to the
southeastern U.S. Anthropogenic SOA model algorithms are

generally more empirical than for terpene and isoprene SOA
pathways. In addition, significantly less data is available from
urban atmospheres in the U.S. that could be used to better elu-
cidate chemical pathways of anthropogenic SOA. Therefore, the
mixed associations for anthropogenic SOA on U.S. vs south-
eastern U.S. domains should be revisited as model representations
continue to improve or as observational data sets for similar
analysis become available. Biogenic SOA was robustly associated
with higher CR mortality. While the ability to separate biogenic
SOA into further subcomponents may be limited due to corre-
lation, where correlation between the isoprene and monoterpene
SOA was lowest (in the Southeast, r= 0.54) both pollutants
showed positive associations with CR mortality.

Future work should continue to quantify the effects of different
PM components on health, with consideration of SOA and its
subcomponents. Historically, the association of individual PM2.5

components and health effects have lacked consistency, and as a
result, regulation of PM2.5 in the U.S. has focused on total mass11.
SOA concentration measurements are not routinely available, so
the analysis shown here relied upon the ability of a model to
robustly predict SOA. New data sets of measured SOA con-
centrations could be directly used in health impact assessment
and lead to improved air quality models which will also ultimately
lead to refinement of health effect estimates. An improved
understanding of SOA health implications could influence con-
trol strategies to effectively reduce mortality. For example, iso-
prene SOA is likely best reduced by targeting sulfur oxide
emissions20 while monoterpene SOA can be reduced via controls
on NOx

21,22. In addition, an improved representation of SOA
from anthropogenic sources could improve health impact esti-
mates and mitigation by providing insight into which sources
(vehicle, evaporative chemical products, commercial and resi-
dential cooking, solid fuel burning, etc.) most affect public health.

This study benefited from having a large dataset spanning 2708
counties across the U.S. and high-quality air pollutant concentration
data. The model algorithms and processes responsible for SOA
prediction were previously evaluated against data from field
campaigns13,26,27,43 as well as nationwide OC observations27,29. This
allowed for a systematic examination of PM2.5 components, specifi-
cally SOA, that is not standardly available. In addition, results from
initial statistical models were examined through sensitivity simula-
tions confirming the association between SOA and CR mortality.
However, the analysis performed here does not exclude a role for
components other than SOA from being important for health. Pri-
mary particle effects may be acute and on smaller spatio-temporal
scales than examined here. Future work focused on individual health
outcomes and exposures, rather than county-level information, could
better characterize near-source exposure and consequent health
implications, which may be more relevant for some components and
communities44.

The analysis here using measured OC is consistent with SOA
showing strong association with CR mortality. The ability of
measured OC to show a more precise relationship with cardior-
espiratory mortality than modeled OC suggests that increasing
the spatial coverage of OC measurements could be beneficial for
understanding the health impacts of PM2.5 components, parti-
cularly in the southeastern U.S. where the limited availability of
AQS sites prohibited an observation-based analysis. Total OC
lacks the distinction between POA and SOA which could explain
why both positive and negative associations of OC with adverse
health endpoints have been found in previous work11,45,46.
However, new observations could employ online techniques47 to
mitigate filter artifacts48, and measurement of specific chemical
fragments47 or functional groups49 could lead to a better
understanding of the role of OA subcomponents. Multiple studies
have shown that combining air quality models and measurements
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Fig. 4 Association of PM2.5 SOA subcomponents with death rates across
the contiguous U.S. (n= 2708 counties) in black and southeastern (SE)
U.S. (n= 646 counties) in red (open symbol) determined via regressed
coefficients (β) from multiple linear regression and their 95% confidence
intervals (whiskers). Model forms are single pollutant (SP, circles)
and multipollutant with refinement of SOA subcomponents (MP SOA,
triangles). SOABVOC and SOAAVOC are from the oxidation of VOCs that
are predominantly biogenic and anthropogenic in origin, respectively.
Regressed coefficients correspond to IQR-normalized species
concentrations in units of deaths per 100,000 in population.
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together will likely provide the most robust information going
forward18,50. As new SOA exposure estimates are created for
additional years and through other techniques, similar analysis
should be performed to further examine the role of SOA.

Health benefits due to changes in fine particle concentrations are
quantified for multiple purposes including evaluation of the public
health benefits of pollution reduction efforts51, co-benefits of carbon
pricing52, effectiveness of emission controls53, and forecasting air
quality impacts under future scenarios54. In each case, the mortality-
related impacts of PM2.5 are influenced by changes in the total as
dictated by the changes in individual components55. SOA is often
explicitly excluded in these analyses52,56,57. The work here suggests a
focus on primary emissions or inorganic components alone is
insufficient to properly estimate health impacts of changes in PM2.5.
If recent trends from the past decade continue58,59, sulfate will
continue to decrease as a fraction of PM2.5 in favor of OA. Since SOA
is an important driver of the health impacts of PM2.5 examined here,
strategies to further reduce health impacts of PM2.5 via emission
controls, as well as understanding how death rates have changed in
the recent past, requires consideration of SOA.

Methods
This cross-sectional study used multiple linear regression to estimate how spatial
variability in pollutant concentrations is associated with CR death rates while
adjusting for a wide array of confounders. Multiple sensitivity analyses were
undertaken to understand the robustness of the associations and independence of
estimated health effects.

Pollutant concentrations. County-level pollutant concentrations (full description
in Supplementary Table 2) were created by mapping 12 km by 12 km horizontal
resolution CMAQ v5.3.128,29 (Supplementary Table 8) predictions for 2016 by grid
cell center latitude and longitude to county locations using the R (v3.6.2) libraries
sp60, maps61, and maptools62. When multiple CMAQ cell centers fell within one
county, all respective CMAQ cells were averaged to create the county-level pre-
diction. Four small counties did not contain any CMAQ grid cell center. These
predictions were created by identifying the most populous city in each of the four
counties63 and the CMAQ grid cell containing that city. CMAQv5.3.1 tends to be
relatively unbiased in its prediction of annual-average PM2.5 and OC on a
nationwide basis (<10% absolute normalized mean bias compared to AQS obser-
vations; Supplementary Table 9 and Supplementary Fig. 6). Predictions for specific
OA systems have been evaluated in previous work (summarized in Supplementary
Table 10)13,26,27, and predictions from v5.3.1 for the summer in the Southeast are
greatly improved over previous model versions.

Total OC in PM2.5 measured at Chemical Speciation Network (CSN) and the
Interagency Monitoring of Protected Visual Environments (IMPROVE) network
sites during 2016 was obtained from the EPA AQS. Both CSN and IMPROVE use a
thermal optical reflectance method to measure OC collected on filters and report
similar results for collocated samplers (12% bias)64. Observed OC data were
aggregated to an annual average and multiple sites within a county were averaged
into one county-level value for pairing with the health outcome. CMAQ OC
predictions were determined by converting concentrations of OA by model species
to OC using species-specific organic matter to OC ratios13,26,27,43.

Cardiorespiratory deaths. The outcome of interest was year 2016 age-adjusted CR
mortality rates as determined by the Centers for Disease Control and Prevention65.
Age-adjusted rates are weighted by the population age relative to U.S. standard
population and created by the CDC66. CR mortality was determined via ICD-10 codes
I00-I99 (diseases of the circulatory system) and J00-J98 (diseases of the respiratory
system). All I00-J98 deaths, rather than specific disease outcomes such as stroke, were
used to increase sample size and power, particularly in low-population rural areas where
deaths for specific causes can be very low and thus poorly estimated. Counties with
missing death rates (CDC does not report rates when the count is below 9) were
removed from the analysis. The CDC flagged counties with 20 or fewer CR deaths as
having unreliable rates due to increased variance in the numerator. These counties
remained in the analysis to increase the nationwide representativeness despite the
potential for increased noise. County population was included as a weight in all models
to better account for the precision in estimating rates (higher population counties
naturally have more precision in estimating mortality rates) and account for the
increased noise associated with low-population counties. In addition to the contiguous
United States (48 states), subgroup analysis was performed on the southeastern U.S.,
defined as Kentucky, Tennessee, North Carolina, Mississippi, Alabama, Georgia,
South Carolina, and Florida (EPA Region 4, https://www.epa.gov/aboutepa/visiting-
regional-office).

Confounders. County-level confounders including population demographics (e.g.
race, sex, age), behaviors (e.g. smoking, obesity), social and economic factors (e.g.
education, income, unemployment, insured adults), and environmental parameters
(water quality, relative humidity, temperature) were included in all statistical
models. Relative humidity and temperature were obtained from WRF v4.1.1 pre-
dictions and processed through the CMAQ modeling system including the
Meteorology-Chemistry Interface Processor67 as in the work of Appel, et al.29. All
other confounders were obtained from the University of Wisconsin Population
Health Institute’s (UWPHI) County Health Rankings (CHR)68 2018 dataset69.
From the full set of CHR measures, metrics that were duplicative (e.g. demographic
metrics that summed to one), a health outcome (e.g. poor health, life expectancy),
or likely irrelevant to the outcome (e.g. driving alone, dentists, teen births) were
removed from consideration. In addition, we only considered CHR factors with
values for >95% of the contiguous U.S. counties. Combined with relative humidity
and temperature, this resulted in 28 confounders. Underlying inputs to the
UWPHI data come from the CDC, Bureau of Labor Statistics, American Com-
munity Survey, Census Bureau, Department of Agriculture, Centers for Medicare
and Medicaid Services as well as other data sources and were generally repre-
sentative of 2016 information. Supplementary Table 3 provides the full list of
confounders along with their original data source and year represented. The sta-
tistical model input dataset, including predicted composition, outcome, and con-
founders, resulted in complete information for 2708 (out of 3075) counties for the
contiguous U.S. and 646 (out of 736) counties for the southeastern U.S. The
minimum, mean, maximum, and IQR for all confounders are summarized in
Supplementary Table 1.

Statistical models. Primary analyses use multiple linear regression to associate
PM2.5 with CR mortality while adjusting for the confounders described above.
County-level population (American Community Survey 5-year estimate) was
included as a weight in each model as mentioned previously. In addition to total
PM2.5, PM2.5 components were analyzed. Individual PM2.5 species estimated by
CMAQ were grouped into six main components, mutually exclusive of each other
and summing to total PM2.5: OA, sea spray, soot, NH4NO3, SO4, and dust. These
components were created because many individual PM2.5 species are highly cor-
related (Supplementary Table 4) which limits the ability of statistical models to
separate their individual health associations. The six main components had cor-
relations with each other that did not exceed 0.67 (Pearson r, Supplementary
Table 4). The conversion from raw CMAQ output to model components used in
this work (Supplementary Table 2) along with the spatial distribution of con-
centrations (Supplementary Fig. 1) is available in the supplementary information.

In the second stage of models, the associations of PM2.5 components with
mortality were adjusted for total PM2.5 both by including a term for PM2.5 within
the models (SP-adj) and by regressing each component on total PM2.5 and taking
the residual30 for the component variation that was not due to total PM2.5 variation
(R) (Table 2). Since residual models remove the portion of the pollutant that is
correlated with total PM2.5, any statistically significant positive association of the
residual with the outcome indicates that variability in that component specifically
contributes to the adverse health effect beyond its role in PM2.5 total mass.

To further explore the relationship between the components, a series of analyses
included multiple components within a single model and primarily focused on
whether associations with organic PM2.5, and further subdivisions of organic PM2.5,
were independent of other PM2.5 components. These multipollutant models were
constructed to provide increasing granularity of information on associations
between SOA and SOA subcomponents. The first multipollutant composition
model (MP) included OA as well as the five other major PM2.5 components in a
single model. The second composition model (MP OA) further divided OA into
POA and SOA. The correlation between PM2.5 components including POA and
SOA did not exceed r= 0.79. The third, composition model (MP SOA) further
divided SOA into two subcomponents based on the dominant origin (biogenic vs
anthropogenic) of their precursor VOCs. SOA from C10–C15 terpenes as well as
isoprene and related (e.g. glyoxal) species was labeled as SOABVOC while SOA from
anthropogenic VOCs was labeled SOAAVOC (Supplementary Table 2). The models
are described in Table 2 and Supplementary Fig. 2.

Splines70 as implemented in generalized additive models (R package mgcv71)
were used to construct concentration-response curves for the association between
PM2.5 and county-level cardiorespiratory mortality rate (see Supplementary Fig. 3).
All statistical models used R v4.0.072. All regressed coefficients are presented per
IQR increase in the exposure along with a 95% confidence interval unless otherwise
indicated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The complete set of county-level concentrations and multiple regression results
generated in this study have been deposited at https://doi.org/10.5281/zenodo.5713903.
Mortality rate data used in this work are available from the Centers for Disease Control
and Prevention, National Center for Health Statistics, CDC WONDER Online Database,
released June 2017. Data are from the Compressed Mortality File 1999–2016 Series 20
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No. 2U, 2016, as compiled from data provided by the 57 vital statistics jurisdictions
through the Vital Statistics Cooperative Program. Last accessed at http://wonder.cdc.gov/
cmf-icd10.html on 31 Aug 2020 9:15:06 a.m. County Health Rankings 2018 data
developed as a collaboration between the Robert Wood Johnson Foundation and the
University of Wisconsin Population Health Institute were obtained from https://
www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation
(last access: 31 March 2020)69. Observed air quality data is available from the EPA Air
Quality System (AQS) available at https://www.epa.gov/aqs (last access: 18 October
2021)73,74. Source data for data generated in this work are provided with this
paper. Source data are provided with this paper.

Code availability
The analysis code for post-processing CMAQ predictions, aggregating CMAQ to annual-
average component values, aligning data by county, and performing the statistical
analyses have been deposited at https://doi.org/10.5281/zenodo.571390374. CMAQ v5.3.1
is available at https://doi.org/10.5281/zenodo.358589828.
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