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The aim of the present study was to investigate whether the MAPK pathways were involved in the mechanism of neuropathic pain
in rats with chronic compression of the dorsal root ganglion. We determined the paw withdrawal mechanical threshold (PWMT)
of rats before and after CCD surgery and then after p38, JNK, or ERK inhibitors administration. Western blotting, RT-PCR, and
immunofluorescence of dorsal root ganglia were performed to investigate the protein and mRNA level of MAPKs and also the
alternation in distributions of positive neurons in dorsal root ganglia. Intrathecal administration of MAPKs inhibitors, SB203580
(p38 inhibitor), SP600125 (JNK inhibitor), and U0126 (ERK inhibitor), resulted in a partial reduction in CCD-induced mechanical
allodynia. The reduction of allodynia was associated with significant depression in the level of both MAPKs mRNA and protein
expression in CCD rats and also associated with the decreased ratios of large size MAPKs positive neurons in dorsal root ganglia.
In conclusion, the specific inhibitors of MAPKs contributed to the attenuation of mechanical allodynia in CCD rats and the large
size MAPKs positive neurons in dorsal root ganglia were crucial.

1. Introduction

Neuropathic pain caused by lesion or inflammation results
from the dysfunction and derangement in transmission
and signal processing within the nervous system. It is
characterized by the symptoms of allodynia, hyperalgesia,
and spontaneous pain [1, 2] and it does not depend on
the continued presence of tissue-damaging stimuli and is
recognized as a disease in itself [3]. Chronic compression
of the dorsal root ganglia (CCD) in rats is a typical model
of neuropathic pain. During the formation and develop-
ment of neuropathic pain, inflammation is inevitable. Pain
and hyperalgesia that are produced by tissue damage or
infection are common features of the inflammatory process
[4]. Evidence demonstrates that a substantial proportion
of mediators are involved in the symptoms of neuropathic
pain, including cytokines, bradykinin, ATP and adenosine,
serotonin, eicosanoids, and neurotrophins [1]. Kinds of drugs
are used to alleviate neuropathic pain, but they exhibit limited
efficacy and undesirable side effects, and neuropathic pain
responds poorly to such drug treatments [5].

Mitogen-activated protein kinases (MAPKs), includ-
ing p38 mitogen-activated protein kinase (p38), c-Jun N-
terminal kinase (JNK), and extracellular-regulated kinase
(ERK), are a family of serine/threonine protein kinases that
transduce extracellular stimuli into intracellular posttransla-
tional and transcriptional responses. A variety of extracellular
stimuli activate intracellular MAPKs by phosphorylation,
which modulates the intracellular responses that drive dif-
ferent downstream signaling [6]. It is well established that
MAPK activation mechanisms are involved in the modula-
tion of nociceptive information and the peripheral and cen-
tral sensitization produced by intense noxious stimuli [7–12].
Several studies have demonstrated that MAPK pathways play
essential roles in inflammation and tissue remodeling [13, 14],
and the inhibition of MAPKs produces anti-inflammatory
effects in various inflammatory diseases [13]. MAPKs belong
to a highly conserved family of serine/threonine protein
kinases and are well known to be involved in various aspects
of cell signaling and gene expression in the central nervous
system (CNS) [15]. MAPKs are thought to be involved in the
modulation of inflammation-induced pain hyperalgesia in
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DRGs and the spinal cord [16]. When the physiopathological
mechanisms of inflammatory pain have been studied in
patients with amputation neuroma, spinal cord injury, or
other causes of neuropathic pain, the mitogen-activated
protein kinases (MAPKs) have been found to play a critical
role. The phosphorylated forms of these kinases maintain
and increase pain signals from the peripheral nociceptors or
DRGs by posttranslationally modifying proteins and regulat-
ing the transcription of critical genes.

It is demonstrated that specific members of the MAPK
family might mediate pain-associated spatial and temporal
plasticity in the HF; for example, the local injection ofMAPK
inhibitors significantly depresses thermal and mechanical
hyperalgesia [10, 17–19]. Following peripheral nerve injury,
ERK and p38 MAPK are activated and their expression
levels are increased in the spinal dorsal horns [7, 10, 20].
There is also evidence supporting that p38 reduces pain by
inhibiting p38 phosphorylation via decreasing TNF-𝛼 [21].
Additionally, JNK signaling plays a crucial role in mediating
antinociception and chronic tolerance to the antinociceptive
effects of morphine in acute, inflammatory, and neuro-
pathic pain states [22]. The spinal activation mechanisms of
MAPK signaling pathways in both neurons and microglia
are involved in the antinociceptive effects of pregabalin in a
zymosan-induced peripheral inflammatory pain model [23].

Notwithstanding these reports, the underlying role of
MAPKs in CCD rats remains unexplored with modern
techniques. In the present study, we thus assessed the effects
ofMAPKs inhibitors in gene and protein expressions and cel-
lular distribution in DRGs and also their effects on allodynia
in CCD rats.

2. Materials and Methods

2.1. Animals and Surgical Procedure. Adult male Wistar
rats weighing 180–220 g were provided by the Experimental
Animal Center of Shandong University and were housed in
a pathogen-free air room at a temperature of 20 ± 2∘C at
two per cage on a 12 h light/dark cycle with water and food
available ad libitum. The animals were allowed 7 days to
habituate to the housing prior to manipulation and half an
hour to habituate to the experimental environment before
every behavioral study was performed. All experimental
procedures were approved by the Animal Care and Use
Committee of the Shandong University.

Rats were anesthetized by 10% chloral hydrate
(300mg/100 g i.p.), and then two stainless steel rods were
implanted unilaterally into the intervertebral foramen at L4
and L5 [24, 25]. Rats in sham-operation group underwent the
same operation but with no steel bar insertion. The rats with
autophagy phenomenon, feeling deficiency, and disability
were eliminated.

2.2. Behavioral Testing. Behavioral testing was performed
using the ipsilateral hind paw of the animals prior to the
operation, on postoperative day 4, and 2 hours after the injec-
tion of inhibitors. The paw withdrawal mechanical thresh-
olds (PWMTs) were evaluated with a BME-404 Mechanical

Analgesia Tester (CAMS-Chinese Academy of Medical Sci-
ences, Beijing, China) [25]. The probe was pressed against
the lateral plantar surface of the hind paw with suffi-
cient force. A positive response was noted when the paw
was immediately withdrawn. The rats were tested again at
least five minutes later, the tests were repeated five times,
and the average was calculated and used in the statistical
analyses.

2.3. Western Blot Analysis. Four days after surgery, CCD
rats were intrathecally injected with MAPKs inhibitors for
2 h. The L4 and L5 ganglia from the operated side were
quickly and carefully harvested. The samples of total protein
were separated by sequential 5% and 10% SDS-PAGE and
then transferred to polyvinylidene fluoride membranes. The
membranes were incubated in 5% milk for 2 h at room tem-
perature. Next, the membranes were incubated with primary
antibody at 4∘C overnight and subsequently with horseradish
peroxides- (HRP-) conjugated secondary antibodies for 1 h.
The signals were detected with Immobilon�Western Chemi-
luminescent HRP Substrate. The primary antibodies were
rabbit anti-ERK polyclonal antibody (1 : 1,000, CST, USA),
rabbit anti-p-ERK polyclonal antibody (1 : 2,000, CST, USA),
rabbit anti-JNK polyclonal antibody (1 : 1,000, CST, USA),
rabbit anti-p-JNK polyclonal antibody (1 : 1,000, CST, USA),
rabbit anti-p38 polyclonal antibody (1 : 200, CST, USA), and
rabbit anti-P-p38 polyclonal antibody (1 : 1,000, CST, USA).
The second antibody was goat-anti-rabbit antibody (1 : 8,000,
Zhongshan Golden Bridge, Beijing, China). The protein
bands were developed with a FluoroChem 9900 imaging
system (USA), and the quantifications of the intensities of the
bands were performed with the Quantity One software and
normalized to 𝛽-tubulin (1 : 1,000, CST, USA).

2.4. Immunolocalization of p38, ERK, and JNK in Dorsal
Root Ganglia. Rats were deeply anesthetized with 5% isoflu-
rane and perfused transcardially with cold normal saline
followed by fixative containing 4% paraformaldehyde in
0.1M phosphate-buffered saline (PBS, pH 6.9).The ipsilateral
lumbar L4-L5 DRGs were removed rapidly after perfusion,
postfixed in the same fixative overnight at 4∘C, and then
dehydrated and paraffin-infused. A series of paraffin sections
(4 𝜇m) were cut using a rotary microtome.The sections were
incubated separately in mixtures of the following primary
antibodies at 4∘C overnight: rabbit anti-ERK polyclonal
antibody (1 : 200, CST, USA), rabbit anti-JNK polyclonal
antibody (1 : 200, CST, USA), and rabbit anti-p38 poly-
clonal antibody (1 : 50, CST, USA). The primary antibodies
were combined with mouse-anti-NF200 polyclonal antibody
(1 : 1,000, Abcam, Cambridge, UK). Then the sections were
incubated in Alexa Fluor 488-conjugated Affinipure Donkey
Anti-Rabbit IgG (H+L) and Alexa Fluor 594-conjugated
Donkey Anti-Mouse IgG (H+L) for 2 h at room temperature.
DAPI was used to stain the cell nuclei.

Labeled sections were examined under an Olympus-
u-rfl-t/dp 72 automatic fluorescence microscope using the
image analysis system of the microscope (JA) and analyzed
using the IPP.6 software. For the quantitative analyses of
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the numbers of positive neurons, three immunofluorescent
stained nonconsecutive sections were imaged per ganglion.
The data were collected from three animals for each inhibitor
(SB203580, U0126, and SP600125).

2.5. Real-Time Quantitative RT-PCR. L4 and L5 ganglions
were harvested in the same manner as described above.
Fragments of p38, JNK, ERK, or 𝛽-actin were amplified with
the following primers: p38 (forward, 5󸀠-CCTGCGAGGGCT-
GAAGTA-3󸀠; reverse, 5󸀠-ACGGACCAAATATCCACTG-
TCT-3󸀠), JNK (forward, 5󸀠-AGCCTTGTCCTTCGTGTC-3󸀠;
reverse, 5󸀠-AAAGTGGTCAACAGAGCC-3󸀠), ERK1 (forw-
ard, 5󸀠-CCAGAGTGGCTATCAAGAAG-3󸀠; reverse, 5󸀠-
TCCATGAGGTCCTGAACAA-3󸀠), ERK2 (forward, 5󸀠-
TGCCGTGGAACAGGTTGT-3󸀠; reverse, 5󸀠-TGGGCTCAT-
CACTTGGGT-3󸀠), and 𝛽-actin (forward, 5󸀠-AGACCTTCA-
ACACCCCAG-3󸀠; reverse, 5󸀠-CACGATTTCCCTCTCAGC-
3󸀠). Instrument control, automated data collection, and data
analysis were all performed using the Light Cycler software
program, version 4.0. The 2−ΔΔCT method was used to
analyze the data.

2.6. Chemicals and Reagents. The following chemicals were
used in this study: SB203580 (p38 inhibitor, CST, USA,
recommended concentration = 40𝜇mol/L), SP600125 (JNK
inhibitor, CST, USA, recommended concentration =
50𝜇mol/L), and U0126 (ERK inhibitor, CST, USA,
recommended concentration = 40𝜇mol/L). All of
the chemicals were dissolved in DMSO, and the final
experimental dilutions were made in normal saline on the
day of the experiment.

2.7. Data Analysis and Statistics. All calculations and sta-
tistical analyses were performed using Prism 5.0 (Graph
Pad Software, San Diego, CA, USA). A two-way repeated
measures ANOVA was used to analyze the differences in
the PWLs, the level of protein and gene expression, and the
neurons distribution. Values in the test were expressed as
means ± SDs. 𝑃 values < 0.05 were considered significant.

3. Results

3.1. PWMT Changes after the CCD Operation. To detect
whether the inhibitors of MAPKs attenuated CCD-induced
neuropathic pain, PWMTs were examined before surgery, 4
days after surgery, and 2 h after inhibitors administration.
As shown in Figure 1, the CCD group developed evident
mechanical allodynia hyperalgesia in the ipsilateral hind paw
compared with the control group. The PWMT significantly
decreased at 4 days after the CCD operation (𝑛 = 8 in each
group; ∗∗𝑃 < 0.01). Furthermore, CCD-induced allodynia
was attenuated by SB203580, SP00125, and U0126 (𝑛 = 8
in each group; #

𝑃 < 0.05), while there was no significant
difference between sham group and control group (𝑛 = 8 in
each group).

3.2. Changes in Protein Expressions of p38, ERK, and JNK
in the DRGs. To investigate whether p38, ERK, and JNK
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Figure 1: Alternations in PWMTs. ∗∗𝑃 < 0.01 compared with
control group; 𝑛 = 8 in each group; #𝑃 < 0.05 compared with the
CCD groups; 𝑛 = 8 in each group.

expression and phosphorylation were altered, pharmaco-
logical inhibitors were administered to the CCD rats. As
demonstrated in Figure 2, the levels of p38, JNK, ERK, P-
p38, P-JNK, and P-ERK protein expression in the CCD rats
significantly increased (𝑛 = 5, ∗𝑃 < 0.05, and ∗∗𝑃 < 0.01
compared with control group; #

𝑃 < 0.05 and ##
𝑃 < 0.01

compared with sham group). These CCD-induced increases
in protein expression level were diminished significantly by
inhibitors (SB203580, SP600125, and U0126) administration
(&𝑃 < 0.05 and &&

𝑃 < 0.01 compared with CCD groups).

3.3. Changes in Gene Expressions of p38, ERK, and JNK in
the DRGs. Pharmacological inhibitors of MAPKs not only
diminished the protein expression of p38, ERK, and JNK
in DRGs of CCD rats but also affected the level of gene
expressions. As demonstrated in Figure 3, the levels of p38,
JNK, and ERK gene expression in the CCD rats significantly
increased (𝑛 = 6 and ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared
with control group). These CCD-induced increases in gene
expression level were diminished significantly by inhibitors
(SB203580, SP600125, and U0126) administration (𝑛 = 6 and
##
𝑃 < 0.01 compared with CCD groups).

3.4. Changes in p38, ERK, and JNK Distributions in DRG
Neurons. To quantify the proportions of positive cells within
defined subsets of sensory neurons, we counted the numbers
of positive neurons detected in the NF200-immunoreactive
neuronal profiles.

As demonstrated in Figures 4(a)–4(c), p38, JNK, and
ERK were expressed in both the nuclei and cytoplasm; the
proportions of NF200 positive large size neurons among all
of the neurons in the DRG tissues increased significantly
(𝑛 = 6 and ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01) after CCD surgery
compared with control groups. After SB203580, SP600125,
or U0126 administration, the proportions of NF200 positive
neurons significantly decreased (𝑛 = 6 and #

𝑃 < 0.05 and
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Figure 2: Effects of the inhibitors on protein expressions of p38, JNK, and ERK and their phosphorylation. (a)–(c) show the expressions of
p38, P-p38, JNK, P-JNK, ERK, and P-ERK after SB203580, U0126, and SP600125 administration, and (d)–(f) show the iods compared with
𝛽-tubulin. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and 𝑛 = 5 for each group compared with the control group; #𝑃 < 0.05 and ##

𝑃 < 0.01 compared with the
sham group; 𝑛 = 5 in each group; &𝑃 < 0.05 and &&

𝑃 < 0.01 compared with the CCD group; 𝑛 = 5 in each group.

##
𝑃 < 0.01 comparedwithCCDgroup). As toNF200negative

small size neurons, though there were some changes in
proportion, we could not find any obvious regulation of these
changes.

4. Discussion

This is the first study showing the role of MAPK path-
ways in neuropathic pain in DRGs of CCD rats. Intrathe-
cal administration of the MAPKs inhibitors, SB203580,
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Figure 3: Relative expression levels of p38, JNK, and ERK mRNA in DRGs. 𝑛 = 6 in each group. ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared with
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𝑃 < 0.01 compared with CCD rats.

SP600125, and U0126, resulted in a partial reduction in
CCD-induced mechanical allodynia. The reduction of allo-
dynia was associated with significant depression in the
level of both MAPKs gene and protein expression in CCD
rats, and the large size MAPKs positive neurons in dorsal
root ganglia were crucial in maintaining the neuropathic
pain.

The CCD model has been proven to be a typical model
of neuropathic pain. In CCD rats, the direct mechanical
compression of the DRG [26] and secondary inflammatory
processes [27] induce hyperexcitability of the DRG neurons,
and this hyperexcitability is associated with allodynia and
changes in the lower paw withdrawal latency after CCD
surgery. Using specific inhibitors of MAPKs contributed to
the attenuation of mechanical allodynia in CCD rats. MAPK
pathways may be new targets of neuropathic pain treatment.

In theCNS, the activation of the p38MAPKpathway con-
stitutes a key step in the development of neuroinflammation.
Inflammatory stimuli bind to receptors on the cell surface
to trigger intracellular signal transduction pathways, such as
the p38 MAPK pathways [28, 29]. Subsequently, intracellular
p38 MAPK is activated and profoundly modulates somatic
inflammatory responses.The expression of ERK in the DRGs
has been implicated in the induction of neuropathic pain
behaviors in rat models of chronic constriction injury (CCI)
and the normalization of those behaviors after decompres-
sion of the CCI reflects the reversal of the pain behaviors [30].
The expression of JNK is also activated in the spinal DRG
after nerve injury, and this expression of p-JNK can maintain
mechanical allodynia [31]. Inhibitors of MAPKs administra-
tion in recommendatory dose and time specifically decreased
the upregulated protein expression of MAPKs (p38 and P-
p38 by SB203580, JNK and P-JNK by SP600125, and ERK and
P-ERK by U0126) in CCD rats. Similar changes were found
in the gene expression of p38, JNK, and ERK. However, the
dose/time dependence of these inhibitorsmay require further
analysis.

Neurons in DRGs are divided into three types (large:
>35 𝜇m with A𝛽 fiber; middle: 20–35 𝜇m with A𝛿 fiber;
small: <20𝜇m with C fiber), mainly depending on their
size, electrophysiological property, and neuronal processes
[32]; generally, A𝛽 fiber conducts proprioception and tactile
sense, C fiber conducts nociception signal, and A𝛿 fiber
conducts both. The proportions of NF200 positive large size
neurons among the p38, JNK, or ERK positive neurons in the
DRG tissues increased significantly after CCD surgery; then
the proportions were decreased by SB203580, SP600125, or
U0126 administration, while the proportions of NF200 nega-
tive small size neurons change without explicable regulation.
Therefore, the large size neurons with A𝛽 fiber contributed
mainly to the MAPKs mediated neuropathic pain in CCD
rats.

5. Conclusions

In conclusion, the present study demonstrated that spe-
cific inhibitors of MAPKs contributed to the attenuation
of mechanical allodynia in CCD rats and the large size
MAPKs positive neurons in dorsal root ganglia were crucial.
Therefore,MAPK pathways are involved in themechanism of
neuropathic pain in CCD rats.
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