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Abstract: This study aimed to assess the effectiveness of MRI-based texture features of the lacrimal
glands (LG) in augmenting the imaging differentiation between primary Sjögren’s Syndrome (pSS)
affected LG and healthy LG, as well as to emphasize the possible importance of radiomics in pSS
early-imaging diagnosis. The MRI examinations of 23 patients diagnosed with pSS and 23 healthy
controls were retrospectively included. Texture features of both LG were extracted from a coronal
post-contrast T1-weighted sequence, using a dedicated software. The ability of texture features to
discriminate between healthy and pSS lacrimal glands was performed through univariate, multi-
variate, and receiver operating characteristics analysis. Two quantitative textural analysis features,
RunLengthNonUniformityNormalized (RLNonUN) and Maximum2DDiameterColumn (Max2DDC),
were independent predictors of pSS-affected glands (p < 0.001). Their combined ability was able to
identify pSS LG with 91.67% sensitivity and 83.33% specificity. MRI-based texture features have the
potential to function as quantitative additional criteria that could increase the diagnostic accuracy of
pSS-affected LG.

Keywords: lacrimal glands; MRI; primary Sjögren’s Syndrome; radiomics; textural analysis

1. Introduction

Primary Sjögren’s Syndrome (pSS) represents a chronic autoimmune inflammatory
disease that affects the exocrine glands, especially the salivary (SG) and lacrimal glands
(LG), causing xerostomia and xerophthalmia. The pathological changes are due to the
periductal lymphocytic infiltration and the consecutive progressive loss of the exocrine
glands’ secretory function [1,2]. Patients with pSS have an increased risk (up to 40-fold
higher than in the general population) of developing non-Hodgkin’s lymphoma, the main
cause of pSS-related mortality [3]. Therefore, it is of paramount importance to choose the
optimal imaging technique that allows us not only to diagnose this disease, but also to
evaluate its stage and activity in order to start treatment as early as possible [4,5].

The current ACR-EULAR diagnostic criteria for pSS [6] imply that each individual
must reach a score greater than 4 when the weights from the five following criteria items are
summed: autoantibody positivity anti-Ro/anti-La (3 points), labial salivary gland biopsy
revealing focal lymphocytic sialadenitis and a focus score greater ≥ 1 (3 points), at least
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one eye with an ocular staining score ≥ 5/van Bijsterfeld score ≥ 4 (1 point), at least one
eye with a Schirmer test ≤ 5 mm/5 min (1 point), and an unstimulated whole saliva flow
rate ≤ 0.1 mL/min (1 point).

In patients with pSS, SG imaging is mainly performed. Ultrasonography of the parotid
gland represents the most widely used method in assessing parenchymal changes, clinical
activity [7], and the response to therapy [8]. Magnetic resonance imaging (MRI) is also used
in evaluating patients with pSS; MRI sialography represents the gold standard imaging
technique in staging the disease [9]. The imaging aspect of the parotid and submandibular
glands consists of diffuse parenchymal changes, with progressive acinar atrophy and the
presence of multiple cystic areas that correspond to the ectasia of the salivary ducts. In
advanced stages, the SG parenchyma is completely destructed [8].

LG are paired, almond-shaped glands situated in the superolateral aspect of the orbit,
in the extraconal space (Figure 1). They consist of a palpebral and an orbital lobe [10].
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deposition, increased fatty degenerated LG, and atrophic LG [13]. Moreover, on diffusion-
weighted imaging (DWI), LG in pSS patients presented lower apparent diffusion coeffi-
cient values compared to normal LG of age-matched healthy subjects [14]. 

Recently, radiology has slowly shifted to radiomics, which has emerged as an inno-
vative method of the quantitative post-processing of medical images through advanced 
mathematical analysis. The hypotheses underlying radiomics are the following: images 
represent the phenotypic expression of biological processes, respectively, an image con-
tains much more information than the human eye can perceive [15]. In summary, it is 
theorized that a pathological process that alters the tissue produces a modified MRI signal, 
which will, in turn, give textural features different values from those of the normal struc-
tures [16,17]. In the last decade, several studies have been published that have analyzed 
the contributions of radiomics in the fields of head and neck imaging, emphasizing its 
potential to increase diagnostic accuracy and providing valuable information that could  
influence and facilitate a therapeutic decision [18,19]. Regarding LG pathology, however, 

Figure 1. (A) The lacrimal apparatus anatomy—illustration. (B) Coronal contrast-enhanced T1-
weighted MR image with fat saturation depicting the normal aspect of the lacrimal gland localized in
the superolateral region of the orbit (extraconal) and its lobe divisions.

As far as LG are concerned, in pSS, both lobes are diffusely affected [10,11]. However,
the literature regarding the imaging aspect of the LG in pSS is scarce. One preliminary study
proved that the two most relevant ultrasonographic LG features that could help differentiate
pSS subjects from healthy subjects were the glandular parenchymal inhomogeneity and
the fibrous aspect of LG [12]. One older study proved that MRI was useful in assessing the
change in the size of LG in pSS according to the stage of the disease, with four patterns
being described: hypertrophic LG, heterogenous normal-sized LG with fat deposition,
increased fatty degenerated LG, and atrophic LG [13]. Moreover, on diffusion-weighted
imaging (DWI), LG in pSS patients presented lower apparent diffusion coefficient values
compared to normal LG of age-matched healthy subjects [14].

Recently, radiology has slowly shifted to radiomics, which has emerged as an inno-
vative method of the quantitative post-processing of medical images through advanced
mathematical analysis. The hypotheses underlying radiomics are the following: images
represent the phenotypic expression of biological processes, respectively, an image contains
much more information than the human eye can perceive [15]. In summary, it is theorized
that a pathological process that alters the tissue produces a modified MRI signal, which will,
in turn, give textural features different values from those of the normal structures [16,17]. In
the last decade, several studies have been published that have analyzed the contributions
of radiomics in the fields of head and neck imaging, emphasizing its potential to increase
diagnostic accuracy and providing valuable information that could influence and facilitate a
therapeutic decision [18,19]. Regarding LG pathology, however, only two studies have been
performed so far, and they assessed the applicability of textural analysis on MRI images in
differentiating between benign and malignant lesions of LG. Lecler et al. [20] showed that
MRI-based texture features could act as biomarkers for the detection of LG tumors, while
Guo et al. [21] demonstrated that radiomic features could enhance the benign–malignant
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differentiation of LG tumors. To the best of our knowledge, the role of radiomics in the
diffuse pathology of LG including pSS has not been studied so far.

Generally, pSS presents an insidious onset with vague symptoms that cause a frequent
delay in diagnosis for many years [22]. Xuan et al. assessed the temporal changes in the
exocrine glands in patients with pSS and reported that the parenchymal inflammation
first occurs in the LG and is then followed by the major salivary glands’ involvement [23].
Therefore, the aim of our study was to preliminarily assess the value of the textural analysis
parameters of the LG on MRI images, which would allow the differentiation of healthy
subjects from pSS patients, and to highlight the potential relevance of future radiomic
studies in the earlier-imaging diagnosis of pSS.

2. Results

A total of 23 patients (mean age 58.7 years old, age range 29–83) diagnosed with
pSS were included in this study. The majority of them were female patients (91.3%). The
median time between the disease onset and the MRI investigation was 29 months. A total
of 86.9% of the subjects presented a positive Schirmer’s test which objectively quantified
xerophthalmia. The extended characteristics of the pSS patients are summarized in Table 1.
The control group consisted of 23 healthy subjects (mean age 56.3 years old, age range
30–81), 21 of them of the female gender, with no pathological changes detected on cerebral
CE-MRI performed for tension-type headaches and migraines (17, 52.2%), cerebral tumor
suspicion (5, 21.7%), and ischemic stroke suspicion (6, 26.1%).

Table 1. Descriptive data of the pSS patients.

Variable (n = 23)

Age (years) 58.79 ± 12.64
Female:male 21:2
BMI (kg/m2) 26.15 ± 4.78
Disease duration (months) 29 [15.5–60]
ESSDAI

Inactive 17 (73.9)
Moderately active 4 (17.3)
Severely active 2 (8.69)

ESSDAI score 3.71 ± 5.94
Positive Schirmer’s test 20 (86.9)
Schirmer’s test (mm) 1 [1.5, 3.75]
Xerophthalmia

Absent 1 (4.3)
Mild under treatment 18 (78.3)
Severe under treatment 4 (17.4)

Anti-Ro/La autoantibodies 20 (86.9)
Rheumatoid factor 18 (78.2)

The results are expressed as mean ± standard deviation, median and [interquartile range], or percentage (%),
n = number of patients, BMI = body mass index, ESSDAI = EULAR Sjögren’s Syndrome disease activity index.

A total of nineteen unique texture analysis features showed statistically significant
results in the univariate analysis when comparing the pSS group vs. the control group.
The Mann–Whitney U test results are displayed in Table 2. These parameters were further
included in the multivariate logistic regression analysis, which resulted in a coefficient of
determination (R2) of 0.48, an adjusted R2 of 0.35, and a multiple correlation coefficient
of 0.69. Two texture parameters, RunLengthNonUniformityNormalized (RLNonUN) and
Maximum2DDiameterColumn (Max2DDC), were independent predictors for pSS (p = 0.04
and p = 0.03, respectively) (Table 3). The diagnostic performance of the two predictive
radiomic features and the prediction model was assessed by ROC analysis (Table 4 and
Figure 2.
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Table 2. Textural features that show statistically significant results at the univariate analysis between
patients with pSS and healthy subjects.

Parameter p-Value pSS Group (n = 23) Control Group (n = 23)

Median IQR Median IQR

RunPercentage 0.000025 0.89 0.85–0.90 0.85 0.82–0.86
InverseVariance 0.000027 0.30 0.27–0.35 0.36 0.34–0.4
ZoneVariance 0.000028 1.61 0.80–2.44 3.26 2.09–4.27

LargeDependenceEmphasis 0.000029 4.56 3.90–5.96 6.29 5.35–7.92
RunLengthNonUniformityNormalized 0.000031 0.80 0.75–0.84 0.75 0.70–0.77

ShortRunEmphasis 0.000032 0.91 0.89–0.93 0.88 0.86–0.90
GrayLevelNonUniformity 0.000033 8.39 7.04–10.01 11.63 8.88–15.70

SmallDependenceEmphasis 0.000035 0.56 0.47–0.60 0.45 0.41–0.49
DependenceNonUniformityNormalized 0.000047 0.34 0.27–0.37 0.27 0.24–0.30

LongRunEmphasis 0.000050 1.42 1.35–1.57 1.62 1.51–1.82
DependenceVariance 0.000141 1.05 0.79–1.47 1.49 1.28–1.85

SizeZoneNonUniformityNormalized 0.000149 0.53 0.48–0.60 0.47 0.40–0.50
RunVariance 0.000154 0.16 0.12–0.20 0.23 0.18–0.30

SmallAreaEmphasis 0.000189 0.75 0.72–0.80 0.71 0.65–0.74
LargeAreaHighGrayLevelEmphasis 0.000200 1304.26 922.01–2309.91 2835.71 1510.48–4198.58

Kurtosis 0.000335 3.29 2.85–3.84 4.97 3.22–6.73
RobustMeanAbsoluteDeviation 0.000480 71.89 54.54–86.86 55.64 42.45–67.38
Maximum2DDiameterColumn 0.000550 5.03 4.65–5.73 5.77 5.35–6.47

Skewness 0.000550 -0.59 −0.96–−0.11 −1.10 −1.46–−0.44

p = statistical significance level; IQR = interquartile range.

Table 3. Multivariate analysis results. Bold values are statistically significant.

Independent Variables Coefficient Std. Error t p r partial r semipartial VIF

DependenceNonUniformityNormalized −8.77 6.47 −1.35 0.179 −0.15 0.11 141.98
DependenceVariance −0.60 1.00 −0.60 0.548 −0.06 0.04 220.03

GrayLevelNonUniformity 0.00 0.01 0.48 0.626 0.05 0.04 3.10
InverseVariance −3.05 1.89 −1.61 0.109 −0.18 0.13 9.69

Kurtosis −0.02 0.05 −0.39 0.696 −0.04 0.03 6.54
LargeAreaHighGrayLevelEmphasis −0.00 5.06 −1.03 0.304 −0.11 0.08 5.82

LargeDependenceEmphasis −1.04 1.31 −0.79 0.431 −0.09 0.06 6242.02
LongRunEmphasis −5.83 4.41 −1.32 0.189 −0.15 0.10 1440.47

Maximum2DDiameterColumn −0.09 0.04 −2.12 0.037 −0.23 0.17 1.30
RobustMeanAbsoluteDeviation 0.00 0.00 0.93 0.352 0.10 0.07 4.79

RunLengthNonUniformityNormalized 42.15 21.14 1.99 0.049 0.22 0.16 1386.23
RunPercentage −87.08 75.41 −1.15 0.251 −0.13 0.09 8747.97

RunVariance 9.60 7.76 1.23 0.219 0.14 0.10 710.30
ShortRunEmphasis −82.77 43.88 −1.88 0.063 −0.21 0.15 1750.14

SizeZoneNonUniformityNormalized −8.85 8.91 −0.99 0.323 −0.11 0.08 473.78
Skewness 0.08 0.12 0.70 0.480 0.08 0.05 4.32

SmallAreaEmphasis 4.35 11.61 0.37 0.709 0.04 0.03 511.95
SmallDependenceEmphasis 21.37 14.73 1.45 0.151 0.16 0.11 1570.01

ZoneVariance 0.06 0.08 0.76 0.449 0.08 0.06 75.30

Std. Error = standard error; p = statistical significance level; VIF = Variance Inflation Factor.

The diagnostic performance of the two predictive radiomic features and the prediction
model was assessed by ROC analysis (Table 4 and Figure 2). The cutoff value of 5.35 for
RLNonUN and 0.77 for Max2DDC differentiates pSS from healthy controls with a sensitivity
of 70.83% (CI, 55.9–83%) and 72.92% (CI, 58.2–84.7%), respectively, and a specificity of
70.83% and 79.17%, respectively. The prediction model based on the values expressed by
the two independent predictor parameters presented the highest sensitivity (91.67%; CI,
80–97.7%), specificity (83.33%; CI, 69.8–92.5%), and AUC (0.905; CI, 0.828–0.956).
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Table 4. The diagnostic performance of the selected radiomic features and of the combined prediction
model in differentiating between normal LG and LG of patients with pSS.

Texture Parameter AUC p-Value J Cut-Off Se Sp

Maximum2DDiameterColumn 0.713
(0.611–0.8) 0.0001 0.41 ≤5.35 70.83

(55.9–83)
70.83

(55.9–83)

RunLengthNonUniformityNormalized 0.747
(0.648–0.83) <0.0001 0.52 >0.77 72.92

(58.2–84.7)
79.17

(65.0–89.5)

Prediction model 0.905
(0.828–0.956) <0.0001 0.75 >0.44 91.67

(80.0–97.7)
83.33

(69.8–92.5)

AUC = area under the curve; J = Youden index; Se = sensitivity; Sp = specificity. Between the brackets are values
corresponding to the 95% confidence interval.
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In our group of pSS subjects, no statistically significant correlation was found between
the ESSDAI score and the Schirmer’s test values (Table 5).

Table 5. Correlation between the two predictive radiomic features for pSS parenchymal changes in
LG and the ESSDAI score and Schirmer test values.

Radiomic Feature ESSDAI Score Schirmer’s Test (mm)

Max2DDC r = 0.315, p = 0.134 r = −0.312, p = 0.138
RLNonUN r = −0.191, p = 0.372 r = 0.334, p = 0.111

r = correlation coefficient; p = statistical significance level.

3. Discussion

Our results assess the ability of radiomic features extracted from contrast-enhanced
T1-weighted images fat-saturated to differentiate parenchymal changes in LG of patients
with pSS from healthy controls.

So far, in the pSS classification criteria, no imaging methods are included, according to
international guidelines [6]. However, due to the increased risk of lymphoma development
in patients with pSS [4], discovering reliable, non-invasive imaging tools that will allow
early diagnosis is crucial. Currently, the SG ultrasound is proposed to be the first-line
imaging tool if there is a clinical suspicion of pSS, given its well-recognized diagnostic
performance and a validated B-mode OMERACT scoring system [24]. Studies on LG
ultrasound (LGUS) in pSS are scarce. One study proved that LGUS is highly reliable in
detecting relevant features and is able to distinguish between pSS patients and healthy
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subjects. Although LG are superficially located and therefore easily accessible with high-
frequency ultrasound probes, in some cases, the parenchymal visibility was impaired (up
to 11.5% in healthy subjects and 3% in patients with pSS) [12].

The role of MRI in assessing patients with pSS has been widely researched [25], but
studies have mainly addressed the structural changes of the major SG. There are few studies
that assessed the MRI aspect of LG in pSS, some suggesting that the size change associated
with an increased fat deposition [14] and a lower ADC value [13] might be characteristic
features of LG affected by pSS. However, the diagnostic performance of these criteria on
MRI has not yet been assessed [13,14].

MRI has the advantage of a high soft tissue contrast resolution, providing accurate
anatomical details which can be further improved by fat saturation techniques, preventing
high signal return from the orbital fat [26]. The current limitations of MRI regarding the
LG assessment in pSS might be related to the fact that MRI head–neck protocols are often
laborious; they require long times to be performed, and highly specialized radiological
personnel is mandatory for correct examinations and radiological reports [27]. No validated
eye-related side effects of MRI have been reported in the literature; however, MRI is unsafe
to perform on patients with intra-orbital foreign bodies [28,29].

As LG are anatomically small-sized glands, diffuse parenchymal changes might be
more difficult to detect visually, especially in the early stages. Thus, in this study, we
wanted to assess the potential of textural analysis in detecting structural changes of LG in
pSS, which are not apparent by simple visual inspection.

Our results show that the Max2DDC parameter extracted from LG parenchyma proved
to be an independent predictor for pSS. It held higher values in healthy controls compared
to patients with pSS. These might be explained by the progressive degeneration of LG
parenchyma caused by the chronic glandular inflammation in pSS, leading to a gradual
decrease in the size of LG, even reaching complete atrophy [12].

The RLNonUN parameter was also an independent predictor of affected LG. It dis-
played higher values for the affected than for unaffected glands. This parameter measures
the similarity of run lengths throughout the image, with a lower value indicating more
homogeneity among run lengths in the image [30]. This translates into an increased inhomo-
geneity of LG in patients with pSS. This is in accordance with one preliminary study based
on the ultrasound appearance of LG in patients with pSS compared to healthy subjects,
where the two most discriminative features were the glandular inhomogeneity and the
fibrous aspect of the glands [12,31].

Therefore, it is possible that texture analysis can reflect some of the intrinsic changes
of the LG in patients with pSS and can offer adequate differentiation between affected
and unaffected glands. However, due to the lack of direct coordination between the MRI
examination and a histopathological evaluation, the exact substrate of this differentiation
remains unclear and needs to be further evaluated through prospective studies.

The diagnostic performance of the two predictive radiomic features was good, with
AUC values of 0.713 and 0.747 for Max2DD and RLNonUN, respectively, while the predic-
tion model using both parameters proved to increase the AUC to 0.905. These results are
promising, proving the important role that radiomics has in differentiating between the
normal LG structure and the pathological changes that occur in patients with pSS.

To the best of our knowledge, this is the first MRI-based study that assessed the
diagnostic value of the radiomic features of LG in patients with pSS.

Radiomic studies on MRI scans have been performed to assess focal lesions of LG
but not diffuse pathologies, such as pSS. Lecler et al. also performed a study on subjects
with LG lesions and proved that radiomic features extracted from multiple MRI sequences
are highly reproducible and generate independent information that might be used as
biomarkers [20]. Guo et al. [21] identified four quantitative radiomic parameters, including
texture, shape, and intensity features, extracted from MRI T2W imaging and post-contrast
T1W imaging that allowed differentiation between benign and malignant lesions of LG
with a diagnostic accuracy between 80–86%. Moreover, the resulting combination model
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presented a superior diagnostic performance (AUC of 0.93), compared to that of radiologists
(AUC of 0.70).

The main limitations of this study are the following. Firstly, a small number of patients
diagnosed with pSS who also underwent MRI exams were included. This is explained
by the relatively low prevalence of this disease in the general population (0.06% world-
wide) [32] and the fact that the study was monocentric. However, the monocentric nature of
this study allowed all examinations to be performed on the same machine, which resulted
in a higher degree of homogeneity of the selected images and, therefore, a more adequate
extraction of textural analysis parameters. Both LG of one subject were assessed, leading to
an increased number of observations, and a severe Bonferroni correction was applied to
counteract any statistical bias. However, future studies on larger cohorts are mandatory
to confirm the obtained results and to validate and increase the statistical significance
of the assessed correlations. Secondly, the retrospective nature of the study might also
have contributed to the selection and verification bias. Thirdly, no biopsy of the LG was
performed, as it is not required for the diagnosis of pSS according to the guidelines, this
procedure is also more technically challenging and invasive than minor salivary glands
biopsy. Nevertheless, it would have allowed the correlation of the imaging aspect with
the histopathological changes of LG. In the control group, there was also no histological
confirmation that the lacrimal glands were healthy. However, there was neither a clinical or
paraclinical aspect nor medical history that would suggest any pathological change in LG
in the control group. Finally, we did not assess the parenchymal LG differences between
the pSS group and subjects with dry-eye syndrome, which did not fulfill the pSS criteria.
This, however, represents an important objective for future research in our department.

4. Materials and Methods
4.1. Study Groups

This Health Insurance Portability and Accountability Act–compliant, single-institution,
retrospective pilot study was approved by the institutional review board (ethics committee
of the University of Medicine and Pharmacy “Iuliu Hat,ieganu” Cluj-Napoca; Date of
approval: 2 April 2018/No. of approval 166), and informed consent was waived due to
the retrospective nature of this research. The study was performed in accordance with the
ethical code of the World Medical Association (Declaration of Helsinki).

Between June 2018 and December 2020, 27 patients with previously documented
pSS underwent contrast-enhanced MRI examinations of the head–neck region for the
assessment of PG and LG. Four patients were excluded from the study due to the severe
atrophy of both lacrimal glands, which could therefore not be identified on the MRI scans.
Thus, a final number of 23 patients with pSS were included in this retrospective study.

The diagnosis of pSS was established according to the American College of Rheuma-
tology and the European League Against Rheumatism (EULAR) current classification
criteria published in 2016 [6]. The clinical examination was performed by one experienced
rheumatologist. The severity of the xerophthalmia during the last two weeks was assessed
using a 0–2 grading scale questionnaire (0—without symptoms, 1—mild symptoms with
symptomatic treatment, 2–severe symptoms even with symptomatic treatment) [7]. The
evaluation of xerophthalmia was realized using the Schirmer test in 5 min (mm), and the
EULAR Sjögren’s Syndrome disease activity index (ESSDAI) was calculated [33]. After
clinical examination, laboratory tests were performed.

The control group included 23 subjects who performed cerebral CE-MRI examination
for tension-type headaches and migraines, as well as brain tumor or ischemic stroke suspi-
cion, matched based on age and gender. The control subjects had no pathological changes
on the MRI scans and did not present any sicca symptoms, autoimmune disorders, history
of head–neck irradiation, or medication that could influence the tears or saliva secretion.



Int. J. Mol. Sci. 2022, 23, 10051 8 of 11

4.2. MRI Protocol

The MRI examinations were performed in a single-center, using a 1.5 Tesla MRI scanner
(SIGNA™ Explorer, General Electric) with an eight-channel high-resolution head coil.
The acquisition protocol consisted of axial T1-weighted imaging fast spin-echo, axial T2-
weighted using the Propeller technique (Periodically Rotated Overlapping ParallEL Lines
with Enhanced Reconstruction), coronal STIR (Short Tau Inversion Recovery) Propeller,
axial diffusion-weighted imaging (DWI) using echo-planar imaging sequences at multiple
b-values (b0, b200, b400, b800, and b1000 s/mm2) with the corresponding ADC maps; axial
perfusion-weighted imaging with enhancement curve generation, coronal gadolinium-
enhanced T1-weighted fat-suppressed, and 3D HYDRO T2-weighted imaging.

For the LG textural analysis, the coronal-contrast-enhanced T1-weighted sequence
with fat saturation was used, acquired using the following parameters: repetition time/echo
time (750/15 ms), field of view (335 × 240 mm2), slice thickness (3 mm), slice gap (0.3 mm),
and matrix acquisition time (4 min). Post-contrast images were acquired after the intra-
venous injection of 0.1 mL/kg Gadobudrol (Gadovist; Bayer HealthCare, Berlin, Germany).

4.3. Texture Analysis

The radiomics approach consists of four steps: image segmentation using regions of
interest, feature extraction, feature selection, and prediction.

4.3.1. Image Pre-Processing and Segmentation

Each examination was reviewed on a dedicated workstation (General Electric, Advan-
tage workstation, 4.7 edition) by one radiology resident (P.A.S.) in his fourth year of training
with previous experience in radiomics studies, who reviewed the images for possible arti-
facts and protocol errors. No examination was excluded for these reasons. All examinations
were anonymized, and the selected sequence was retrieved in DICOM format (Digital
Imaging and Communications in Medicine) and imported into an open-source texture
analysis software, Slicer version 4.11 (available online at: http://www.slicer.org/ (accessed
on 1 May 2021). Within the 3D Slicer program, before segmentation, all MR images were
preprocessed for intensity normalization and discretization. The 3D segmentation was
performed manually by another radiology resident. The researcher incorporated each LG
using a three-dimensional region of interest (ROI) using consecutive slices. Both the orbital
and the palpebral lobe were included. The segmentations were then independently revised
by a senior radiologist with 10 years of experience in head–neck MRI.

4.3.2. Feature Extraction

Seven categories of radiomic features were derived from the ROI (region of interest)
segmentation of the LG: shape, first-order parameters, GLCM (gray-level co-occurrence
matrix), GLDM (gray-level dependence matrix), GLRLM (gray-level run-length matrix),
GLSZM (gray-level size zone matrix), and NGTDM (neighboring gray-tone difference
matrix). Finally, a total of 103 textural analysis parameters were extracted. The feature
extraction was automatically performed by the 3D Slicer software. Previously to the
extraction, a ROI normalization was performed to reduce the intensity variations that can
affect the true image textures [34].

4.3.3. Feature Selection, Class Prediction, and Statistical Analysis

Two feature-selection steps were used to avoid overfitting in the radiomic model. The
absolute values recorded by the two types of fluids for each parameter were compared
using a univariate analysis test (Mann–Whitney U). The receiver-operating-characteristic
(ROC) analysis was performed, with the calculation of the area under the curve (AUC)
with a 95% confidence interval (CI) for the parameters showing p values below 0.00052,
after the Bonferroni correction (which implied dividing the standard p-value of 0.052 to
94; 92 being represented by the number of the extracted features, plus age and gender)
on the univariate analysis. A multivariate analysis was conducted to investigate which

http://www.slicer.org/
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of the parameters that showed statistically significant results in the univariate analysis
were also independent predictors for pSS. This method was used in previous texture
analysis studies [17,34] with good classification results. Correlations were assessed using
Spearman’s coefficient. Statistical analysis was performed using a commercially available
dedicated software, MedCalc version 14.8.1 (MedCalc Software, Mariakerke, Belgium).

An example of LG segmentation is offered in Figure 3.
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and after segmentation (B); 3D reconstruction of the lacrimal glands (C); magnified 3D reconstruction
of the lacrimal glands (D).

5. Conclusions

This study proves that radiomics represents an innovative useful method that has the
potential to identify reliable textural features of LG that distinguish patients with pSS from
controls. Further research into the parenchymal textural changes of LG must be conducted
on larger cohorts of patients in order to confirm and validate these results.
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