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Abstract. Prostate cancer is one of the most common types 
of malignant tumor of men worldwide and the incidence and 
mortality rate is gradually increasing. At present, the molecular 
mechanisms of growth and migration in human prostate cancer 
have not been completely elucidated. Studies have demon-
strated that Ganoderma lucidum polysaccharides (GLP) can 
inhibit cancer. Therefore the present study investigated the 
effect and molecular mechanism of GLP on cell growth and 
migration of LNCaP human prostate cancer cells. LNCaP 
cells were transfected with either a protein arginine methyl-
transferase 6 (PRMT6) overexpression plasmid or PRMT6 
small interfering (si)RNA. The cell growth and migration, and 
the expression of PRMT6 signaling‑associated proteins, were 
investigated following treatment with 5 and 20 µg/ml GLP. The 
results demonstrated that GLP inhibited cell growth, induced 
cell cycle arrest, decreased PRMT6, cyclin‑dependent kinase 
2 (CDK2), focal adhesion kinase (FAK) and steroid receptor 
coactivator, (SRC) expression, and increased p21 expression in 
LNCaP cells, as determined by using a Coulter counter, flow 
cytometry, and reverse transcription‑quantitative polymerase 
chain reaction and western blotting, respectively. Furthermore, 
GLP significantly inhibited cell migration, as determined by 
Transwell migration and scratch assays, and altered CDK2, 
FAK, SRC and p21 expression in LNCaP cells transfected 
with the PRMT6 overexpression plasmid. By contrast, PRMT6 

knockdown by siRNA reduced the effect of GLP on cell 
migration. These results indicate that GLP was effective in 
inhibiting cell growth, the cell cycle and cell migration, and 
the suppressive effect of GLP on cell migration may occur via 
the PRMT6 signaling pathway. Therefore, it is suggested that 
GLP may act as a tumor suppressor with applications in the 
treatment of prostate cancer. The results of the present study 
provide both the preliminary theoretical and experimental 
basis for the investigation of GLP as a therapeutic agent.

Introduction

Prostate cancer is one of the most common types of malignant 
tumor in Europe and the United States (1,2). Prostate cancer 
is the second most common non‑skin cancer in men and is 
the fifth leading cause of cancer‑associated mortality in men 
worldwide. A total of ~14%  (1,22,000) of men diagnosed 
with prostate cancer worldwide in 2008 were in the Asia 
Pacific region, with 32% in Japan, 28% in China and 15% in 
Australia (3). It was recently reported that the incidence and 
mortality of prostate cancer in the majority of Asian countries 
gradually increased between 2012 and 2016 (4). It is estab-
lished that prostate cancer is associated with genetic factors, 
diet, infection and hormonal factors. At present, the molecular 
mechanisms of growth and migration in human prostate 
cancer have not been completely elucidated.

Protein arginine methyltransferase 6 (PRMT6) is a type I 
arginine methyltransferase that is primarily expressed in the 
nucleus and has functions in the regulation of transcription 
and the cell cycle, and DNA repair (5). PRMT6 has also been 
demonstrated to act as a coactivator in estrogen, progesterone 
and glucocorticoid receptor transcription. Furthermore, 
El‑Andaloussi et al (6) reported that PRMT6 had a key role 
in DNA base excision repair regulation as it forms a complex 
with methylated DNA polymerase β. Several studies have 
indicated that the expression of PRMT6 was usually observed 
in various types of tumor cells, including non‑small cell lung 
cancer (7), hepatocellular carcinoma (8), breast cancer (9) and 
prostate cancer (10). In addition, studies have reported that 
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PRMT6 knockdown inhibits cell growth and the cell cycle 
in lung cancer and U2OS human osteosarcoma cells (11,12). 
Phalke et al (13) reported that PRMT6 exhibited an oncogenic 
function by directly binding to and inhibiting the promoter 
of p21, which stimulated cell growth and protected the cell 
cycle from senescence in breast cancer cells. Although certain 
studies have reported that the expression of PRMT6 may be 
associated with the motility and invasion of tumor cells (10,14), 
the molecular mechanisms of PRMT6 in the regulation of cell 
growth and migration have not been completely elucidated.

It has been reported that Ganoderma lucidum (G. 
lucidum) exhibited preventive and therapeutic effects in 
cancer (15), chronic bronchitis (16), bronchial asthma (17) 
and hepatitis (18). Polysaccharides, which consist of glucose, 
mannose, galactose, xylose, fucose and arabinose, are one of 
the most important active components of G. lucidum (19). 
Several in vitro and in vivo studies have demonstrated that 
polysaccharides extracted from G. lucidum (GLP) exhib-
ited significant effects on tumorigenesis, oxidative stress, 
inflammation and immunoregulation (20,21). Xu et al (22) 
reported that GLP affected the function of T lymphocytes, 
B lymphocytes, macrophages and natural killer cells. 
Although certain studies have reported that GLP exhibited 
potential antiproliferative, pro‑apoptotic and inhibitory 
effects on migration in several cancer cell lines, including 
colon cancer (23,24), hepatocellular carcinoma (25), acute 
myeloid leukemia (26,27) and breast cancer (28,29), it is not 
established whether GLP is effective in regulating the growth 
and migration of prostate cancer cells. Therefore, the present 
study aimed to investigate the effect of GLP on the growth 
and migration of human prostate cancer cells, and to investi-
gate the underlying molecular mechanism.

Materials and methods

Isolation and analysis of GLP. G. lucidum was provided by the 
College of Food Science of Shenyang Agricultural University 
(Shenyang, China). GLP was extracted from G. lucidum as 
described previously (30). To obtain a crude polysaccharide 
sample, fermentation broth of G. lucidum was concentrated 
and precipitated by 90% alcohol. Identification and quanti-
fication of the monosaccharides was performed using a gas 
chromatography (GC) analyzer (Beckman Coulter, Inc., Brea, 
CA, USA). According to the method described by He et al (31), 
5 mg dry GLP was hydrolyzed in 2 M trifluoroacetic acid at 
120˚C for 5 h. The hydrolysate was reduced by NaBH4 and was 
acetylated using acetic anhydride. The acetylated monosac-
charides of GLP were added into a GC analyzer and GLP was 
analyzed by gas chromatography, which determined that GLP 
was composed of arabinose, galactose, glucose and xylose in 
an approximate molar ratio of 4:2:10:1.

Cell culture and GLP treatment. LNCaP prostate cancer cells 
were purchased from ScienCell Research Laboratories, Inc., 
(San Diego, California, USA), and were cultured according 
to supplier instructions. Cells in culture bottle were washed 
three times with PBS and were cultured in RPMI‑1640 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA), which 
was supplemented with 10% fetal calf serum (Thermo Fisher 
Scientific, Inc.), 2 mM glutamine, 100 U/ml penicillin and 

100 mg/ml streptomycin. A total of 1.2x106‑1.8x107 cells/well 
were subsequently treated with 5 and 20 µg/ml GLP and the 
control cells were treated with 0.01 M PBS (1XPBS) l at 37˚C 
for 72 h. The concentrations of GLP employed were selected 
based on a previous study (32). All cells were cultured at 37˚C, 
5% CO2 and 100% humidity.

Plasmids and small interfering (si)RNA transfection. The 
PRMT6 expression plasmid pVAX1 (4 µg) acted as a control 
plasmid purchased from Thermo Fisher Scientific, Inc., 
PRMT6 siRNA (50 mM) and siR‑Ribo™ (50 mM) acted as 
negative control were purchased from ScienCell Research 
Laboratories, Inc., which were transfected into LNCaP 
cells using Lipofectamine 2000 (Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's protocol at 
37˚C for 4 h. The following siRNA sequences were employed: 
PRMT6 siRNA, 5'‑GAG​CAA​GAC​ACG​GAC​GUU​U‑3'. 
(GenBank, accession number BC073866). Cells following 
4  h transfection were subsequently treated with 5 and 
20 µg/ml GLP and the control cells were treated with 0.01 M 
PBS (1XPBS) at 37˚C for 72 h.

Cell growth curve, cell clones and cycle analysis. For cell 
growth curve analysis, 5x104 cells were plated in each well of 
12 well plates in triplicate. Cells were maintained in culture 
with 10% fetal calf serum at 37˚C, 5% CO2 and 100% humidity 
for 12 h, and then cells were transfected with PRMT6 over-
expression plasmid or PRMT6 siRNA for 4  h. Following 
transfection, 5x104 cells were treated with 5 or 20 µg/ml GLP 
and control cells were treated with 0.01 M PBS (1XPBS) at 
37˚C for 0, 24, 48, 72, 96 and 120 h and were immediately 
counted by a Coulter counter (Beckman Coulter, Inc.) through 
an optical microscope (Olympus Corporation, Tokyo, Japan) 
following staining with 0.4% trypan blue solution for 10 min 
at room temperature. A total of 5x104 cells/well were plated 
in 6‑well plates in triplicate. Cells were maintained in culture 
with 10% fetal calf serum at 37˚C, 5% CO2 and 100% humidity 
for 12 h, and then cells were transfected with the PRMT6 
overexpression plasmid or PRMT6 siRNA for 4 h. Following 
transfection cells were treated with 5 or 20 µg/ml GLP and 
with 0.01 M PBS (1XPBS) as control at 37˚C for 120 h, and 
then were fixed using 4% paraformaldehyde for 15 min at 
room temperature and stained with 0.4% trypan blue solution 
for 10 min at room temperature. Images were taken with an 
optical microscope (Olympus Corporation) magnification, 
x100 and gray value analysis was using by imagepro version 
6.0 (Media Cybernetics, Inc.) of five fields of view. For cell 
cycle analysis, 2x105 cells were fixed 70% pre‑cooled ethanol, 
stored at 4˚C overnight and then stained with PBS containing 
5 mg/ml RNase, 0.1% Triton X‑100 and 20 mg/ml propidium 
iodide in the dark at room temperature for 30 min and analyzed 
using a flow cytometer (Attune NxT; Thermo Fisher Scientific, 
Inc.). The amount of DNA in G1, S and G2/M phases was 
analyzed using ModFit 161 LT version 3.0 software (Verity 
Software House, Inc., Topsham, ME, USA).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was isolated using TRIzol reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.) and RT was 
performed using ABScript II cDNA First‑Strand Synthesis kit 
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(ABclonal Biotech Co., Ltd., Wuhan, China) according to the 
manufacturer's protocol. cDNA was quantified by qPCR using 
SYBR Premix Ex Taq II (Takara Bio, Inc., Otsu, Japan) on a 
Mx3000P qPCR system (Agilent, Santa Clara, CA, USA). The 
reaction was as follows: cDNA 2 µl, ddH2O 6.4 µl, upstream 
and downstream primers 0.8 µl, SYBR Premix Ex TaqTMII1 
10 and 20 µl total reaction system. Amplification conditions: 
annealing 56˚C, 30 sec; extending 72˚C, 30 sec; 45 cycles. 
The experiment was repeated 3 times. Gene expression levels 
were calculated using Stratagene Mx3000P software (version 
Mx3005P; Shanghai PuDi Biotechnology Co., Ltd., Shanghai, 
China). The relative amount of PCR products generated from 
each primer set was determined on the basis of the threshold 
cycle (Ct) number using the 2‑ΔΔCq method  (33). GAPDH 
was used as control to normalize the amount of cDNA used. 

Relative expression=2[[Ct(control) gene X‑Ct (treatment) gene 
X]‑[Ct(control) 36B4‑Ct(treatment) 36B4]]. The following 
primers were used: PRMT6, 5'‑AGA​CAC​GGA​CGT​TTC​
AGG​AG‑3' (forward) and 5'‑CCA​CTT​TGT​AGC​GCA​GCG‑3' 
(reverse); p21, 5'‑TGA​GCC​GCG​ACT​GTG​ATG‑3' (forward) 
and 5'‑GTC​TCG​GTG​ACA​AAG​TCG​AAG​TT‑3' (reverse); 
cyclin‑dependent kinase 2 (CDK2), 5'‑ATG​ATG​ACG​ATG​
AGG​GTG​TGC​CAA‑3' (forward) and 5'‑GGT​CAC​CAT​TGC​
AGC​TGT​CGA​AAT‑3' (reverse); focal adhesion kinase (FAK), 
5'‑AGA​TGT​ACA​TCA​AGG​CAT​TTA‑3' (forward) and 5'‑AAT​
GCC​TTG​ATG​TAC​ATC​T‑3' (reverse); SRC, 5'‑GCC​TGT​TCA​
CCC​GTA​CTC​TGC​C‑3' (forward) and 5'‑GGT​AAC​TGC​CGA​
TCA​TAA​GGT‑3' (reverse); and GAPDH, 5'‑AGA​AGC​TGG​
GGT​CAT​TTG‑3' (forward) and 5'‑AGG​GGC​CAT​CCA​CAG​
TCT​TC‑3' (reverse).

Figure 1. GLP inhibited cell growth of LNCaP cells. LNCaP cells were cultured in RPMI‑1640 and treated with 5 or 20 µg/ml GLP. (A) The growth ratio of 
cells was determined using growth curve analyses. Cell growth was also was detected by (B) morphological observation and (C) quantified. Data are presented 
as the mean ± standard deviation. *P<0.05 vs. Ctrl. GLP, Ganoderma lucidum polysaccharide; Ctrl, control.
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Western blot analysis. Western blot analysis was performed 
as described previously (34). The cell protein was extracted 
by radioimmunoprecipitation lysate kit (Beijing Solarbio 
Science & Technology Co., Ltd., Beijing, China). The protein 
concentration was determined by bicinchoninic assay 
protein concentration kit (Vazyme, Piscataway, NJ, USA). 
Briefly, 20 µg protein/lane was loaded and resolved by 10% 
SDS‑PAGE. Protein was subsequently transferred to poly-
vinylidene difluoride membranes. Following blocking with 
5% bovine serum albumin (Thermo Fisher Scientific, Inc.) for 
1 h at room temperature, primary antibodies against PRMT6 
(1:500; cat. no. sc‑271744; Santa Cruz Biotechnology, Inc., 
Dallas, TX, USA), p21 (1:500; cat. no. sc‑136020; Santa Cruz 
Biotechnology, Inc.), CDK2 (1:1,000; cat. no. sc‑70829; Santa 
Cruz Biotechnology, Inc.), FAK (1:200; cat. no. sc‑271195; Santa 
Cruz Biotechnology, Inc.), SRC (1:1,000; cat. no. sc‑32789; 
Santa Cruz Biotechnology, Inc.) and GAPDH (1:5,000; cat. 
no. sc‑66163; Santa Cruz Biotechnology, Inc.) were incubated 
with the membranes at 4˚C. After 12 h incubation, the blot 
was washed and incubated with goat anti‑mouse immuno-
globulin (Ig) G‑horse radish peroxidase (HRP; 1:2,000; 
cat. no. sc‑2005; Santa Cruz Biotechnology, Inc.) and goat 
anti‑rabbit IgG‑HRP (1:2,000; cat. no. sc‑2004; Santa Cruz 
Biotechnology, Inc.) for 2.5 h at room temperature. Proteins 
were visualized using a Clarity Western enhanced chemilumi-
nescence Substrate (Bio‑Rad Laboratories, Inc., Hercules, CA, 
USA) and a Tanon 5200 Full automatic chemiluminescence 

image analysis system (Tanon Science and Technology Co., 
Ltd., Shanghai, China).

Transwell assay. Briefly, 5x105 cells were treated with 5 or 
20 µg/ml GLP, or control treatment, for 24 h at 37˚C and were 
seeded into the RPMI‑1640 medium in the upper well of a 
Boyden chamber at a concentration of 5x104 cells per well. The 
lower compartment was filled with 1 ml RPMI‑1640 (Thermo 
Fisher Scientific, Inc.), which was supplemented with 20% fetal 
calf serum (Thermo Fisher Scientific, Inc.). Following incuba-
tion at 37˚C for 48 h, migratory cells on the lower surface 
of the filter were fixed with 95% ethanol for 10 min at room 
temperature, stained with 0.4% trypan blue solution for 10 min 
at room temperature and imaged using an optical microscope 
(Olympus Corporation) and an AxioCam HRc CCD camera 
(Olympus Corporation; magnification, x400 times).

Scratch assay. Scratch assay was performed as described 
in a previous study  (35). Briefly, 1x108 cells were plated 
into 6 well plates in triplicate at subconfluence and cultured 
for 24 h at 37˚C. Confluent cells were treated either 5 or 
20 µg/ml GLP, or PBS for the control treatment for 24 h at 
37˚C prior to cell scraping using 1 ml pipette tips. Cells were 
then washed with growth medium and continually cultured 
in RPMI‑1640 (Thermo Fisher Scientific, Inc.), which was 
supplemented with 10% fetal calf serum (Thermo Fisher 
Scientific, Inc.), 2 mM glutamine, 100 U/ml penicillin and 

Figure 2. GLP inhibited cell cycle arrest in LNCaP prostate cancer cells. (A) Flow cytometry was performed to investigate the effect of GLP on the cell 
cycle. The (B) percentage of cells in each phase of the cell cycle and (C) number of cells in G1 phase following treatment with GLP. Data are presented as the 
mean ± standard deviation of three independent experiments. *P<0.05 vs. Ctrl. GLP, Ganoderma lucidum polysaccharide; Ctrl, control.
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100 mg/ml streptomycin for 48 h at 37˚C, and during this 
time, cells were also treated either 5 or 20 µg/ml GLP, or PBS 
for the control treatment. Cell migration was photographed 
in ten regions at 0 and 48 h.

Statistical analysis. Data are presented as the mean ± standard 
deviation, and were analyzed by analysis of variance followed 
by Student‑Newman‑Keuls post‑hoc test, and Chi‑squared 
test using SPSS software (version 20.0; IBM Corp., Armonk, 
NY, USA). P<0.05 was considered to indicate a statistically 
significant difference.

Results

GLP inhibits cell growth in LNCaP cells. The effects of 
different GLP concentrations on cell growth were determined 
using growth curve analyses and morphological observation. 
The results demonstrated that the growth ratio of cells was 
significantly decreased in either 5 or 20 µg/ml GLP groups 
compared with the control group following incubation for 72 h 
(Fig. 1A). Furthermore, morphological results also revealed 
that GLP (5 and 20 µg/ml) significantly inhibited cell growth 
compared with the control group (Fig. 1B-C).

Figure 3. GLP inhibited cell migration in LNCaP cells. GLP inhibited the migration of LNCaP cells as determined by (A) Transwell assay with trypan blue 
staining and (B) scratch assay. Quantified results for (C) Transwell and (D) scratch assays. Data are presented as the mean ± standard deviation. *P<0.05 vs. Ctrl. 
GLP, Ganoderma lucidum polysaccharide; Ctrl, control.
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GLP induces cell cycle arrest in LNCaP cells. Flow cytometry 
was performed to investigate the effect of GLP on the cell cycle. 
The results demonstrated that 5 and 20 µg/ml GLP significantly 
induced cell cycle arrest, with an increased number of cells in 
the G1 phase, of LNCaP cells in a dose‑dependent manner, 
compared with control cells (Fig. 2).

GLP inhibits cell migration in LNCaP cells. Transwell and 
scratch assays were performed to investigate the effect of GLP 
on the migration of LNCaP cells. The results demonstrated 

that 5 and 20 µg/ml GLP significantly inhibited cell migration 
compared with the control group (Fig. 3).

Effect of GLP on the PRMT6 signaling pathway and 
migration‑associated proteins in LNCaP cells. To determine 
the effect of GLP on the PRMT6 signaling pathway and 
migration‑associated proteins in LNCaP cells, the expression 
of PRMT6, p21, CDK2, FAK and FRC were determined by 
RT‑qPCR and western blot analysis. The results demonstrated 
that 5 and 20 µg/ml GLP decreased the protein expression of 

Figure 4. Effect of GLP on the PRMT6 signaling pathway in LNCaP cells. The mRNA and protein expression of PRMT6, p21, CDK2, FAK and SRC were 
determined by RT‑qPCR and western blot analysis, respectively. (A) Expression of PRMT6, p21, CDK2, FAK and SRC protein was assessed by western blot 
analysis. RT‑qPCR was performed to investigate the mRNA expression of (B) PRMT6, (C) p21, (D) CDK2, (E) FAK and (F) SRC. Data are presented as the 
mean ± standard deviation. *P<0.05 vs. Ctrl. GLP, Ganoderma lucidum polysaccharide; PRMT6, protein arginine methyltransferase 6; CDK2, cyclin‑dependent 
kinase 2; FAK, focal adhesion kinase; RT‑qPCR, reverse transcription‑quantitative polymerase chain reaction; Ctrl, control; SRC, Steroid receptor coactivator.
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PRMT6 and CDK2, and increased p21 expression (Fig. 4A). 
In addition, the protein expression of migration‑associated 
proteins FAK and FRC were decreased in GLP groups 

compared with the control group (Fig. 4A). Results for mRNA 
expression demonstrated that PRMT6, CDK2, FAK and FRC 
levels were significantly reduced at 5 and 20 µg/ml GLP, while 

Figure 5. GLP inhibited the PRMT6 signaling pathway in LNCaP cells. LNCaP cells were transfected with either a PRMT6 overexpression plasmid or PRMT6 
siRNA, and were subsequently treated with 5 or 20 µg/ml GLP. The protein expression of PRMT6, p21, CDK2, FAK and SRC was determined by western blot 
analysis in cells transfected with (A) PRMT6 overexpression plasmid and (B) PRMT6 siRNA. Reverse transcription‑quantitative polymerase chain reaction 
was used to investigate mRNA expression. PRMT6 mRNA expression in cells transfected with (C) PRMT6 overexpression plasmid and (D) PRMT6 siRNA. 
p21 mRNA expression in cells transfected with (E) PRMT6 overexpression plasmid and (F) PRMT6 siRNA. CDK2 mRNA expression in cells transfected 
with (G) PRMT6 overexpression plasmid and (H) PRMT6 siRNA. FAK mRNA expression in cells transfected with (I) PRMT6 overexpression plasmid and 
(J) PRMT6 siRNA. SRC mRNA expression in cells transfected with (K) PRMT6 overexpression plasmid and (L) PRMT6 siRNA. Data are presented as the 
mean ± standard deviation. *P<0.05 vs. Ctrl. #P<0.05 vs. 0 µg/ml GLP + over‑PRMT6/si PRMT6. GLP, Ganoderma lucidum polysaccharide; PRMT6, protein 
arginine methyltransferase 6; siRNA, small interfering RNA; CDK2, cyclin‑dependent kinase 2; FAK, focal adhesion kinase; Ctrl, control; SRC, steroid 
receptor coactivator.
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p21 levels were significantly increased, compared with the 
control group (Fig. 4B‑F).

GLP inhibits the migration of LNCaP cells via the PRMT6 
signaling pathway. To determine whether GLP regulates the 
migration of LNCaP cells via the PRMT6 signaling pathway, 
cells were transfected with either a PRMT6 overexpression 
plasmid or PRMT6 siRNA, and were subsequently treated with 
5 or 20 µg/ml GLP. The results demonstrated that overexpres-
sion of PRMT6 increased the expression of PRMT6, CDK2, 
FAK and FRC, and decreased p21 expression, compared with 
the vector‑transfected control. By contrast, PRMT6 knockdown 
decreased PRMT6, CDK2, FAK and FRC expression, and 
increased p21 expression compared with the vector‑transfected 
control. The results also demonstrated that GLP treatment 
inhibited PRMT6, CDK2, FAK and FRC expression, and 
promoted p21 expression in cells transfected with the PRMT6 
overexpression plasmid, whereas PRMT6 knockdown by siRNA 
inhibited the effect of GLP on CDK2, p21, FAK and FRC 
expression (Fig. 5). In addition, Transwell results confirmed 
that GLP significantly inhibited the migration of cells trans-
fected the PRMT6 overexpression plasmid, and results for 
PRMT6 siRNA‑transfected cells indicated that PRMT6 siRNA 
prevented the effects of GLP on cell migration (Fig. 6).

Discussion

In recent years, the morbidity and mortality associated with 
prostate cancer has been increasing in China. The present 
study demonstrated that GLP inhibited the cell growth, cell 
cycle and cell migration, decreased PRMT6, CDK2, FAK 
and FRC expression, and increased p21 expression in LNCaP 
cells. Furthermore, the results indicated that GLP significantly 
inhibited cell migration and altered CDK2, FAK, FRC and p21 
expression in cells transfected with a PRMT6 overexpression 
plasmid. By contrast, PRMT6 knockdown by siRNA reduced 
the effect of GLP on cell migration and CDK2, FAK, FRC and 
p21 expression.

Similar results were reported in a study by Ghafar et al (25), 
which demonstrated that GLP significantly inhibited the 
growth of hematoma cells and eliminated regulatory T cell 
suppression of T cell proliferation. Li et al (36) also reported 
that GLP decreased the adhesion of PC‑3 M human prostate 
carcinoma cells to umbilical cord vascular endothelial cells. 
Furthermore, Liang et al (23) demonstrated that GLP exhib-
ited potential antitumor activity by inhibiting migration and 
inducing apoptosis in human colon cancer cells. In addition, 
a previous study reported that Ganoderma atrum polysaccha-
ride ameliorated the antitumor effect of cyclophosphamide, 

Figure 6. GLP inhibited the migration of LNCaP cells via the PRMT6 signaling pathway. LNCaP cells were transfected with a PRMT6 overexpression plasmid 
or PRMT6 siRNA, and were subsequently treated with 5 or 20 µg/ml GLP. Representative images of migrated cells in Transwell assay in cells transfected 
with (A) PRMT6 overexpression plasmid and (B) PRMT6 siRNA. Quantified migration results for cells transfected with (C) PRMT6 overexpression plasmid 
and (D) PRMT6 siRNA. Data are presented as the mean ± standard deviation. *P<0.05 vs. Ctrl. #P<0.05 vs. 0 µg/ml GLP + over‑PRMT6/si PRMT6. GLP, 
Ganoderma lucidum polysaccharide; PRMT6, protein arginine methyltransferase 6; siRNA, small interfering RNA; Ctrl, control.



MOLECULAR MEDICINE REPORTS  17:  147-157,  2018 155

which was mediated via the induction of apoptosis and 
immune system activation in sarcoma 180‑bearing mice (37). 
Collectively, the results of the current study indicated that GLP 
exhibited antitumor activity, which may partially be mediated 
by inhibiting the growth and migration of LNCaP cells.

PRMT6 expression is reported to be increased in various 
types of tumor cells, and it may participate in cell cycle 
regulation in tumor cells (38‑41). p21 is an important down-
stream gene of PRMT6 that is involved in the development 
of numerous tumor types, including osteosarcoma (42,43), 
liver cancer (44) and prostatic cancer (45‑47). In addition, p21 
functions in the promotion G1 cell cycle arrest (48,49). CDK2 
has important roles in several tumor types by modulating the 
migration and motility of cancer cells (50,51). FAK and FRC 
are key markers of tumor cell migration, which are closely 
associated with the development of certain tumor types, 
including hepatocellular carcinoma (52), breast cancer (53) and 
U87‑MG glioma (54). In the current study, the results demon-
strated that overexpression of PRMT6 significantly increased 
expression of PRMT6, CDK2, FAK and FRC, and decreased 
p21 expression. By contrast, PRMT6 knockdown significantly 
decreased PRMT6, CDK2, FAK and FRC expression, and 
increased p21 expression in LNCaP cells. A similar report 
indicated that PRMT6 knockdown significantly increased the 
expression of p21 and induced cell cycle arrest in breast cancer 
cells  (13). In addition, Wang et  al  (55) demonstrated that 
PRMT6 overexpression reduced cell cycle arrest at G1 phase 
and decreased the intensity of p16‑CDK4 association in A549 
human lung adenocarcinoma cells. A previous study demon-
strated that PRMT6 overexpression significantly decreased 
the cell growth and colony forming ability of MCF7 breast 
cancer cells compared with controls  (14). It has also been 
reported that PRMT6 promoted the proliferation of U2OS 
human osteosarcoma cells and inhibited cell senescence by 
suppressing p21 expression (40,56). In conclusion, these results 
indicate that PRMT6 knockdown may inhibit cell migration 
by upregulating the expression of p21 and downregulating 
CDK2 expression in LNCaP cells.

However, it has been reported that GLP significantly 
inhibited the proliferation of S180 tumor‑bearing mice by 
macrophage activation and improved immune system func-
tions via the toll‑like receptor 4‑mediated nuclear factor‑κB 
signaling pathway (57). The mitogen‑activated protein kinase 
(MAPK) signaling pathway was also reported to be activated 
in GLP‑induced RAW264.7 cells (58). In addition, a study by 
Liang et al (23) demonstrated that GLP inhibited migration 
and apoptosis by activating a Fas/caspase‑dependent signaling 
pathway in human colon cancer cells. The results of the present 
study demonstrated that GLP significantly inhibited the migra-
tion of LNCaP cells transfected with a PRMT6 overexpression 
plasmid, whereas PRMT6 knockdown reduced the effect of 
GLP on cell migration, indicating that GLP may inhibit the 
migration of cells via the PRMT6 signaling pathway. A similar 
result was reported by Wu et al (59), which demonstrated that 
GLP inhibited the migration of MDA‑MB‑231 breast cancer 
cells, primarily by activating the FAK‑Src signaling pathway. 
In addition, Yang et al (26) reported that GLP induced cell 
cycle arrest and apoptosis by blocking the extracellular 
signal‑regulated kinase/MAPK pathway, and activating p38 
and c‑Jun N‑terminal kinase MAPK pathways in HL‑60 acute 

leukemia cells. WEES‑G6, a triterpene‑enriched extract from 
G. lucidum, was reported to inhibit the growth of Huh‑7 human 
hepatoma cells, and activated JNK and p38 MAPK pathways 
in hepatocellular carcinoma (60).

In conclusion, the results of the present study indicated that 
GLP significantly inhibited the growth, cell cycle and migration 
of LNCaP cells. In addition, GLP inhibited the migration of cells 
transfected with a PRMT6 overexpression plasmid, whereas 
PRMT6 knockdown reduced the effect of GLP on cell migra-
tion, indicating that GLP may inhibit LNCaP cell migration via 
the PRMT6 signaling pathway. Therefore, it is suggested that 
GLP may act as a tumor suppressor have potential as a treat-
ment for prostate cancer. The results of the present study provide 
both the preliminary theoretical and experimental basis for the 
investigation of GLP as a therapeutic agent.
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