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Patients with infective endocarditis (IE) form a heterogeneous group by age, co-morbidities
and severity ranging from stable patients to patients with life-threatening complications with
need for intensive care. A large proportion need surgical intervention. In-hospital mortality is
15-20%. The concept of using hyperbaric oxygen therapy (HBOT) in other severe bacterial
infections has been used for many decades supported by various preclinical and clinical
studies. However, the availability and capacity of HBOT may be limited for clinical practice
and we still lack well-designed studies documenting clinical efficacy. In the present review
we highlight the potential beneficial aspects of adjunctive HBOT in patients with IE. Based
on the pathogenesis and pathophysiological conditions of IE, we here summarize some of
the important mechanisms and effects by HBOT in relation to infection and inflammation in
general. In details, we elaborate on the aspects and impact of HBOT in relation to the host
response, tissue hypoxia, biofilm, antibiotics and pathogens. Two preclinical (animal) studies
have shown beneficial effect of HBOT in IE, but so far, no clinical study has evaluated the
feasibility of HBOT in IE. New therapeutic options in IE are much needed and adjunctive
HBOT might be a therapeutic option in certain IE patients to decrease morbidity and
mortality and improve the long-term outcome of this severe disease.
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HIGHLIGHTS

• Infective endocarditis (IE) is considered a biofilm infection of the endothelium of the heart, mainly
localized to the heart valves. IE also include infection related to devices implanted in the heart.

• Potential beneficial effects of Hyperbaric Oxygen Treatment (HBOT) in bacterial infections:
gy | ww
◦ Decreased tissue hypoxia
◦ Reduced biofilm formation
◦ Enhanced beneficial host responses
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◦ Reduced pro-inflammatory cytokines and adhesins
◦ Enhanced growth factors and anti-inflammatory cytokines
◦ Enhancedmicrobial killing of oxygen-dependent antibiotics
◦ Reduced microbial growth and virulence (i.e. toxin

production)

• An improved understanding of the mechanisms of host-

pathogen interactions will help optimize personalized
treatment and explore HBOT as a new adjunctive treatment
strategy in IE
INTRODUCTION

Infective endocarditis of native as prosthetic valves can be
characterized as a biofilm infection. The diagnosis and treatment
can be complicated and prolonged antibiotic treatment is needed to
eradicate the infection. The antibiotic bioavailability, penetration and
efficacy in a biofilm infection as IE are varying andoften combination
treatment is needed for a successful outcome. Especially, in
complicated IE with treatment failure, prosthetic valves, aortic rod
abscess and transcatheter aortic valve implantation (TAVI) devices
where reoperation are difficult new treatment options are much
needed. Adjunctive hyperbaric oxygen therapy (HBOT) could be a
potential supplement toantibiotic treatment toenhance theantibiotic
efficacy and host response against infection.

HBOT is administered as primary or adjunctive treatment in
various non-infectious and infectious diseases (Mathieu et al.,
2017; Moon, 2019). In this review, we highlight the potential
beneficial aspects of adjuvant HBOT based on the pathogenesis in
infective endocarditis (IE) and the known mechanisms of HBOT
in various inflammatory diseases. Currently, necrotizing soft tissue
infections (NSTI) including clostridal myositis (gas gangrene),
chronic refractory osteomyelitis and brain abscess are conditions
approved for adjunctive HBOT by the Undersea and Hyperbaric
Medical Society (UHMS), federal drug administration (FDA) in
the USA, and by the European Underwater and Baromedical
Society (EUBS) (Mathieu et al., 2017; Moon, 2019). HBOT is also
approved for crush injury, chronic diabetic and ischemic wounds,
acute thermal burn injuries and compromised skin grafts and flaps
(Moon, 2019), which often is complicated by bacterial biofilm
(Malone et al., 2017). The generally accepted indications and level
of evidence for the use of HBOT are systematic reviewed (Mathieu
et al., 2017).

IE is defined as an infection of the endocardium,most prevalent
on the heart valves (native or prosthetic) or on implanted cardiac
devices (MoreillonandQue, 2004). The incidenceof IE is increasing
(Jensen et al., 2021; Talha et al., 2021) and without treatment the
mortality rate is 100%. Even with current standard treatment the
mean in-hospitalmortality is as high as15–20%(Iversen et al., 2019;
Pries-Heje et al., 2021), 1-year mortality is up to 30-40% (Abegaz
et al., 2017) and approximately 50% need valve surgery during the
acute disease-course (Habib et al., 2019). IE is a serious acute
infection characterized by bacterial vegetation formation
composed of endothelial cells, platelets, monocytes and
neutrophils, as well as extracellular components including fibrin,
fibrinogen and collagen. Bacterial adherences to the damaged
endothelial cells or sterile vegetation promote a cascade of
s in Cellular and Infection Microbiology | www.frontiersin.org 2
interactions between host cells and colonizing pathogen (Werdan
et al., 2014; Moser et al., 2017; Lerche et al., 2021).

Ahallmarkof IE is thepathogen-host interactions causingbiofilm
formation of the endocardium or prosthetic material. Besides the
local bacterial colonization, the disease is often complicated by
bacterial dissemination to various organs (brain, spleen, kidney and
liver), which may cause peripheral abscess formation and
inflammation – or embolization-induced tissue hypoxia (Moser
et al., 2017). Staphylococci, streptococci, and enterococci are the
causative pathogens in >80% of patients with IE (Moreillon and
Que, 2004). The leading pathogen is Staphylococcus aureus (S.
aureus) in high income countries followed by viridans and oral
streptococci andE. faecalis (McDonald et al., 2005). Especially, in left-
sided IEvirulentpathogens suchasS.aureusandStreptococcus species
can subsequently progress in to a hypercoagulable state, septic shock,
meningitis and multiple organ dysfunction (Lerche et al., 1995;
Mourvillier et al., 2004; Fernández Guerrero et al., 2012). The
colonization of the valves and septic state may trigger an
exaggerated host response, by excessive chemotaxis of platelets,
monocytes and neutrophils to the site of inflammation, which may
lead to additional tissue and organ damage (Hamzeh-Cognasse et al.,
2015; Hsu et al., 2019).

Neutrophils represent the primary defense against invading
bacterial pathogens, however, the penetration and efficacy of
neutrophils in valve vegetations are limited (Durack and Beeson,
1972b). The neutrophils may instead contribute to vegetation
expansion (Hsu et al., 2019), and activate complex interactions
with platelets and endothelial cells (Jung et al., 2015; Folco et al.,
2018; Zucoloto and Jenne, 2019), host adhesins and pathogen
adhesins and secreted extracellular proteins (Shun et al., 2005;
Binsker et al., 2018). The availability of oxygen (O2) in the infected
tissues is crucial, as many important cellular immune functions are
dependent on oxygen availability for optimal cellular processes. To
function optimally during infection of the host, the neutrophils
needs an abundance of oxygen to drive the respiratory (oxidative)
burst to ensure efficient cytotoxic killing of the pathogens,
especially in the microenvironment of deep-sited infections and
biofilms characterized by tissue hypoxia.

Moderate to severe anemia is prevalent in almost 50% of
patients with IE, which might contribute to tissue hypoxia
(Pries-Heje et al., 2021). HBOT has recently been shown to
increase hemoglobin levels (Bosco et al., 2021) another
immunomodulatory effect that could be beneficial for improving
the long-term outcome of IE patients.

Two preclinical (animal) studies have shown beneficial effect of
HBOT in IE (Özkan et al., 2016; Lerche et al., 2017), but so far, no
clinical study has evaluated the feasibility ofHBOT in IE and only a
single case reporting a beneficial outcome (Chen et al., 2021).
ADMINISTRATION OF HBOT AND EFFECT
ON OXYGEN DELIVERY TO TISSUES

HBOT is a clinically used treatment modality in which a person
breathes pure oxygen (100%) under an increased atmospheric
pressure most commonly applied for sessions of 1-1.5 hours
(typically once or twice a day). For clinical purposes, the
February 2022 | Volume 12 | Article 805964
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common treatment protocol involves breathing ~100% oxygen at
a pressure of 2.0–2.8 atmosphere absolute [ATA] (203–284 kPa)
corresponding to diving at 10–18 m below sea level. HBOT can
be carried out in either a mono- (single person) or multi-place
(typically 2 to 14 patients) pressure chamber. In the blood, ~98%
of the present oxygen is bound to the erythrocytes at atmospheric
pressure and approximately 2% is dissolved in the plasma. Due to
the high fraction of oxygen bound to erythrocytes a further
increase in the oxygen tension may only be achieved through an
increase in free dissolved oxygen (Henry´s law). Thus, HBOT
increases the amount of dissolved oxygen in the plasma and
increases the oxygen delivery in tissues, independently of
hemoglobin (Gill and Bell, 2004). In a normal healthy person
the oxygen tension in arterial blood is 80–100 mmHg, in venous
blood 30–40 mmHg, in tissues about 60 mmHg (Kanick et al.,
2019) and in uninfected bone 40-50 mmHg and in infected bone
10-20 mmHg (Mader et al., 1980). During HBOT treatment, the
arterial oxygen tension exceeds 2,000 mmHg (at 3 ATA) (6.8 ml
O2/100 ml of blood) and levels of 200–400 mmHg in tissues
(Thom, 1989). This means that the availability of free oxygen
increases ~20 fold in arterial blood, ~10 fold in venous blood and
~6-10 fold in the tissue during HBOT (2.8 ATA).
MECHANISMS OF ACTION RELATED
TO INFECTION

Increased tissue oxygenation by HBOT affects three major
components of importance in infectious diseases: (1) The host
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
cell function, (2) The oxygen-dependent killing of specific
antibiotics, and (3) The direct effects on the pathogen (Figure 1).

The main effect of HBOT relates to the increased tissue
oxygenation (hyperoxia). It is well accepted, that HBOT will
increase the intracellularly production of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) in various cells
(Jamieson et al., 1986; Thom, 1989) and neutrophils (Almzaiel
et al., 2013). ROS includes superoxide anion (O−

2 ), peroxide (O
−2
2

), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and
hydroxyl (OH−) induced by hyperoxia and the neutrophil-
mediated killing of pathogens. ROS are toxic to the pathogen
causing damage to DNA, proteins and lipids. ROS and RNS serve
as effector and/or signaling molecules in a number of pathways,
transduction cascades and inducer of cytokines/chemokines,
hormones and growth factors (Valko et al., 2007; Circu and
Aw, 2008; Kemp et al., 2008; Thom, 2011).
HYPERBARIC OXYGEN AND
HOST RESPONSE

Neutrophils – Oxygen-Independent
and Oxygen-Dependent Effects
Neutrophils play a central role in the innate immune response
and a critical role in bacterial killing (Figure 2). Neutrophils kill
microorganisms by oxygen-independent and oxygen-dependent
mechanisms (Elsbach et al., 1985). The ability of activated
neutrophils to ingest and subsequently kill invading microbes
FIGURE 1 | Overview on therapeutic mechanisms of hyperbaric oxygen (HBOT). The figure outlines effects that occur due to increased production of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) because of hyperoxia. Oxygen-dependent antibiotics stimulate oxidation of NADH via the electron
transport chain that is dependent upon the tricarboxylic acid (TCA) cycle. Hyperactivation of the electron transport chain stimulates superoxide formation. Superoxide
damages iron-sulfur clusters, making ferrous iron available for oxidation by the Fenton reaction. The Fenton reaction leads to hydroxyl radical formation, and the
hydroxyl radicals damage DNA, proteins, and lipids, which results in lethal bacterial killing. This mechanism is further enhanced by HBOT potentiating antibiotics.
HBOT has a direct effect on pathogens increasing reducing growth rates and toxin-production. The important immunomodulatory effects of HBOT on neutrophils,
platelets and endothelial cells are illustrated.
February 2022 | Volume 12 | Article 805964
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is essential for the integrity of the host to maintain infection
control. Neutrophils remove pathogens through phagocytosis.
This engulfment of pathogens by neutrophils is oxygen-
independent (Elsbach et al., 1985) and is possible under
hypoxic conditions. However, the oxygen-independent system
alone is inadequate to eradicate all pathogens and a decreased
killing of pathogens is seen in a hypoxic environment (Mandell,
1974; Hunt et al., 1975; Hohn et al., 1976). Various studies have
shown that the phagocytic activity improves during short-course
of standard HBOT, for example in diabetic foot infections (Top
et al., 2007) and in healthy volunteer divers (Labrouche et al.,
1999) and in vitro (Almzaiel et al., 2013). Neutrophils may also
contribute to depletion of oxygen (Kolpen et al., 2010; Jensen
et al., 2019). Hypoxia selectively inhibits the respiratory burst
activity and killing of S. aureus in human neutrophils
(McGovern et al., 2011) and has also been shown in other
chronic infections (Jensen et al., 2010).

The oxygen-dependent neutrophil respiratory burst, leads to
the production of several different ROS (Babior et al., 2002;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Quinn and Gauss, 2004; Van Der Veen et al., 2009). ROS have
direct antimicrobial properties and also facilitate the degradation
and destruction of pathogens by host cells (Johnson and Travis,
1979; Reeves et al., 2002). HBOT has been shown to enhance the
respiratory burst killing mechanism of neutrophils. Mader et al.
demonstrated the significance of increased oxygen tension to
improve the neutrophils killing capacity against S. aureus in an in
vitro assay of rabbit neutrophils and opsonin (Mader et al., 1980).
Comparable findings have been reported by Almzaiel et al. in
neutrophil-like cells (HL-60) compared to normoxia and
hypoxia-treated cells (Almzaiel et al., 2013) in vitro and
Labrouche et al. in circulating neutrophils isolated from divers
(Labrouche et al., 1999), and Schwartz et al. in isolated human
neutrophils (Schwartz et al., 2021). While these studies indicate
that HBOT enhances the oxygen-driven respiratory burst of
neutrophils leading to an increased bacterial killing, other
studies have reported no effect of HBOT on the phagocytic
activity or respiratory burst of neutrophils (Jüttner et al., 2003) or
even a decreased ROS production by HBOT (Kalns et al., 2002;
FIGURE 2 | Overview of the activations pathways of neutrophils, platelets and endothelial cells promoted by pathogens and the possible effects of hyperbaric
oxygen treatment (HBOT). Pathogens activates the NADPH oxidase driving the respiratory burst when phagocytized. Pathogens directly activates toll-like receptor 2
(TLR2 or TLR4) and complement receptors (CRs) enhancing the respiratory burst generating reactive oxygen species e.g. hydrogen peroxide (H2O2), superoxide (O2-)
and hypochlorite (OCl-) for bacterial killing of phagocytosed bacteria. On the cell wall of bacteria are several pathogen-associated molecular patterns (PAMPs) which
are pathogen derived alerting the host response. Host derived damage-associated molecular pattern (DAMPs) also alert the host response enhancing chemotactic
signaling. The activated neutrophil upregulates the expression B2 integrin CD11b/CD18 (MAC-1) and integrin L-selectin released (shedding) by increased expression
of CD11b/CD18. Platelets are directly activated by S. aureus and activated platelets bind toll-like receptor 4 (TLR4) stimulating ROS. Activated platelets expressing
P-selectin bind to the ligand PSGL-1 forming neutrophil-platelets complexes (PNC) enhancing the respiratory burst system. Activated platelets and lysed platelets
release platelet microvesicles (MV) in circulation activating the intrinsic pathway (contact pathway) of the coagulation cascade leading to increased thrombin.
Excessive platelet binding of the PMN triggers neutrophil extracellular traps (NET) release and hyperactivation of the ROS system transporting granules to the
membrane by exocytosis and NETosis (membrane disruption), exact mechanism unknown. Antimicrobial peptides are released (e.g. myeloperoxidase (MPO),
neutrophil elastase (NE), neutrophil gelatinase-associated lipocalin (NGAL), S100A8/A9) to the extracellular space. Besides antimicrobial components NETs consist of
chromatin, DNA and histone facilitating thrombosis and thrombin generation. Activation of NADPH oxidase results in the activation of protein-arginine deiminase 4
(PAD4) converting arginine to citrulline on histones and chromatin decondensation in the nucleus of the PMN. NE and MPO are release for granules (azurophilic) in
the cytosol facilitating H2O2 and unfolding of chromatin. Interleukin 8 (IL-8) bind CXCL2/8 increasing CD11b/CD18 by activation of pathways (protein kinase C, PKC)
and Src kinases) inducing NET release. Collectively, these activation pathways are believed to be halted by HBOT resulting in reduced collateral tissue damage in
severe infections as infective endocarditis. NADPH, Nicotinamide Adenine Dinucleotide Phosphate; Protein Kinase A; ROS, Reactive Oxygen Species.
February 2022 | Volume 12 | Article 805964
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Grimberg-Peters et al., 2016). The conflicting results could be
explained by different methodologies: measurement of ROS
(intracellular and/or extracellular), cell isolation and washing
procedures, quantity of stimuli agents used (PMA, bacteria and
zymosan etc.), the hyperbaric oxygen exposure time, fixation of
cells, and time of examination post HBOT. Another explanation
could be that the direct effect of HBOT on bacteria (see
Hyperbaric Oxygen, Pathogens and Antibiotics) includes
increased membrane instability and permeability (change in
osmotic pressure) against the toxic reactive oxygen species
(ROS) generated by both the neutrophils and HBOT.

Importantly, the viability and function of neutrophils are not
adversely affected by intermittent exposure to elevated oxygen
tensions. Neutrophils isolated from the peritoneal exudates of mice
exposed intermittently toHBOT(100%O2, 2,5ATA,1.5h twicedaily
for 8 days) showed the same ability to phagocytize and generate an
effective respiratory burst (Gadd et al., 1990) after 16 sessions of
HBOT compared to controls groups (non-HBOT, 10% O2 HBOT).
In contrast to intermittent exposures, prolonged exposures, i.e.
exceeding 24 hours, to normobaric hyperoxia seems to inhibit
neutrophil function (Dunn and Smith, 1986). In vitro studies have
also shown that phagocytosis was impaired by a 24 h exposure of
HBOT (100% O2, 2.9 ATA (Weislow and Pakman, 1974).
HBOT Reduce Neutrophil Adherence on
the Endothelium
Important immune modulation during HBOT is the inhibition
of neutrophil adhesion to vascular endothelium, which is why
HBOT has been proposed as an adjunctive therapy in ischemia/
reperfusion injury. This is of importance in IE, as neutrophils
penetration in bacterial vegetations are limited and adherence to
platelets trigger degranulation and neutrophil extracellular traps
(NETs) contributing to additional platelets aggregation,
vegetational growth and biofilm formation (Hsu et al., 2019).
An experimental study by Zamboni et al. showed that following
total ischemia of muscle flaps, the number of leukocytes adhering
to vascular endothelium was significantly reduced by treatment
with HBOT (Zamboni et al., 1993). The mechanisms responsible
for reduced neutrophil sequestration have been reported in a
series of elegant studies by Thom et al. (Thom, 1993; Chen et al.,
1996). Focusing on the neutrophil modulation by HBOT, Thom
et al. have shown that HBOT reduces neutrophil adhesion to a
variety of substrates including fibrinogen. Using neutralizing
antibodies, the effect has been shown to be specific to b2-
integrin class of neutrophil adhesion molecules and is dose-
dependent in the sense that exposure to pressures less than 2.4
ATA for 45 min has a negligible effect, whereas pressures of at
least 2.8 ATA for 45 min completely inhibit adhesion, which is
reversed by exposure to a stable cGMP analogue. The hypothesis
that selective inactivation of b2-integrin function is sufficient to
reduce ischemia/reperfusion (I/R) injury has been confirmed by
other studies examining the efficacy of anti-Mac-1 monoclonal
antibodies (Simpson et al., 1988; Zhang et al., 1995; Kalns et al.,
2002). Overall, the intermittent exposure of HBOT used in
clinically relevant regimes seems to have a positive effect on
the neutrophil function.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
However, other mechanisms may also play a part during
HBOT. Buras et al. have shown that HBOT can reduce the
expression of the neutrophil counter ligand ICAM-1 on vascular
endothelium in vitro under conditions that mimic I/R (Buras and
Reenstra, 2007). This implies that HBOT may target both the
neutrophil and the vascular endothelium leading to a synergistic
inhibitory effect, which might be of importance in IE by reducing
the endothelial damage of the valves. Interestingly, a prospective
study of 80 patients with necrotizing soft tissue infections (NSTI)
receiving HBOT showed that HBOT might elevate soluble
ICAM-1 (sICAM-1) and that the effect of HBOT was more
pronounced in patients with NSTI and septic shock.
Additionally, low baseline sICAM-1 was identified as an
independent risk factor of 90-day mortality and baseline
sICAM-1 was associated with severity of disease as indicated
by significant correlations to simplified acute physiology score II.
The authors speculate that HBOT might modulate endothelial
shedding of ICAM-1 and reduce the inflammation on the
endothelial line (Hedetoft et al., 2021).
HBOT Reduce Neutrophil Inflammation
Reduction of endogenous damage-associated molecular patterns
(DAMPs), the hosts “danger signal molecules” released upon
infection and inflammation would be of great importance to
dampen the exaggerated innate host response contributing to
pathological cell damage seen in intravascular infections
(Figure 2). An interesting study by Grimberg-Peters et al.
revealed that HBOT could reduce the neutrophil extracellular
traps (NETs) release from inflammatory neutrophils (Grimberg-
Peters et al., 2016) and as mentioned earlier NETs are important
in the progression of IE (Hsu et al., 2019). Various animal models
indicate that neutrophil recruitment is significantly reduced by
HBOT following I/R injury to the liver (Chen et al., 1998),
intestine (Yamada et al., 1995; Tjärnström et al., 1999) and
gracilis muscle (Zamboni et al., 1996). Other studies have
shown that HBOT reduces the extent of tissue necrosis
(Zamboni et al., 1989; Sterling et al., 1993; Liu et al., 2011) and
lipid peroxidation (Thom, 1990) and maintains normal levels of
tissue ATP (Haapaniemi et al., 1995). HBOT has also been
shown to inhibit NF-kb signaling pathways which are
stimulated in various inflammatory and infectious diseases
(Sakoda et al., 2004; Liu et al., 2018). Collectively, these studies
indicate that HBOT ameliorate the collateral tissue damage and
dampen proinflammatory responses.

Another interesting effect of HBOT is the mobilization of
bone marrow derived stem/progenitor cells shown in humans
and animals, primarily CD34+ cells (Thom et al., 2005;
Milovanova et al., 2009). The mobilization of progenitor cells
occurs via nitrite oxide-dependent mechanism. During infection,
the turnover of host cells is high. Therefore, further recruitment
of myeloid and endothelial progenitor cells might be very
important in the healing of intravascular infections. Thus,
higher levels of circulating endothelial progenitor cells (CD34+)
could be beneficial to restore the lining of the valve endothelium
and blood vessels (vasculogenesis) that are damaged during
severe infections and IE.
February 2022 | Volume 12 | Article 805964
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EFFECTS OF HYPERBARIC OXYGEN ON
PLATELETS, ENDOTHELIAL CELLS AND
COAGULATION

Direct Effects of HBOT on Platelet
Aggregation and Adhesion
In the intact vasculature most platelets never undergo firm
adhesion; however, upon vessel wall injury they rapidly adhere
to the exposed extracellular matrix (ECM), become activated and
form a platelet plug, thereby preventing blood loss and capillary
leakage. In IE the same process can lead to excessive platelet
aggregation on the valves contributing to expansion of
vegetations (Lerche et al., 2019; Lerche et al., 2021).

There are sparse investigations of the direct effect of HBOT
on platelets. In a study on isolated horse platelets Shaw et al.
demonstrated that a single HBOT (100% oxygen, 2.2 ATA) had
no detrimental effect on platelet biochemistry and did not cause
overt oxidative stress (Shaw et al., 2005). In a subsequent study
by Shaw et al. there were no significant difference in expression of
surface markers (PECAM-1, CD62P or PAC-1) or nitrite oxide
in HBO-treated compared to control-treated platelets. However,
they noted an increased aggregation in vitro of platelet rich
plasma stimulated with collagen, in the HBO-treated group
compared to controls. However, the authors did not measure
the two major receptors for platelets binding to collagen, the
integrin alphaIIbetaI, Ig superfamily member and glycoprotein
VI. Nor glycoprotein GPIb-V-IX was investigated, considered as
an indirect collagen receptor acting via von Willebrand factor
and essential for platelet/endothelial cell interactions with
collagen at high shear rates (Clemetson and Clemetson, 2001;
Pappelbaum et al., 2013). In addition, it was not investigated if
HBOT modulates the surface adhesin of platelets. Translating in
vitro platelet aggregation studies to in vivo conditions should be
interpreted carefully due to easy mechanical activation of
platelets ex vivo. More investigations are needed to clarify these
aspects and the effect of HBOT of platelet-pathogen adherence in
valve vegetations, which is of importance in IE (Kroh et al., 2009;
Claes et al., 2017; Liesenborghs et al., 2019).

Effects of HBOT on Platelet Chemotaxis
Platelets mediate leukocyte recruitment via two main
mechanisms: (1) by serving as a docking site for immune cells
along the endothelium surrounding the inflammatory focus and
(2) through secretion of chemo-attractants. Studies have shown
that platelets contain antimicrobial proteins in their granules
(Yeaman et al., 1992), which for some infections can reduce the
bacterial load (Sullam et al., 1993), while other pathogens are
more resistant to these host antimicrobial peptides (Dhawan
et al., 1997). Lerche et al. measured vascular endothelial growth
factor (VEGF) in aortic valve vegetations and found it to be
significantly decreased in HBOT-group compared with non-
HBOT controls in an experimental S. aureus IE model (Lerche
et al., 2017). VEGF is highly expressed in platelets (and activated
endothelial cells), thus indicating that adjuvant HBOT reduced
the platelets aggregation and endothelial inflammation on the
valves (Lerche et al., 2017). This was also confirmed by the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
reduced weight and size of aortic vegetations in the HBOT group
compared to control group. VEGF is tightly regulated by
hypoxia-inducible factor (HIF)-1a, and HBOT might also
modulate the expression of VEGF in platelets and endothelial
cells, decreasing VEGF mRNA levels of these cells (Ferrara et al.,
2003). Liu et al. have shown that pulmonary artery endothelial
cells do not express VEGF under basal conditions; however,
significant VEGF mRNA levels accumulate when these cells are
exposed to hypoxia (Liu et al., 1995).

The oxygen sensitive modulation of HIF-1a expression and
the downstream target genes (i.e. VEGF) is probably the main
factor to regulate transcription of VEGF by host cells during
HBOT. Timing of HBOT in hypoxic insult affects the
transcription of HIF-1a and may lead to either an up-
regulation or downregulation of HIF-1a (Amir and Shai,
2020). Another explanation for the reduced VEGF expression
in infected valves (Lerche et al., 2017) could be the simple
consequence of a more efficient treatment response, reducing
the bacterial load and inflammation on the valves. The interplay
between platelets and neutrophils are thoroughly reviewed
elsewhere (Jenne and Kubes, 2015; Sørensen and Borregaard,
2016; Zucoloto and Jenne, 2019).

Effects of HBOT on Endothelial Cells
It is well known that endothelial cells also perform hypoxia-
induced exocytosis (Pinsky et al., 1996). Weibel–Palade bodies
are secretory organelles in endothelial cells with high
concentrations of von Willebrand factor (VWF), P-selectin, IL-
8, IL-6, angiopoietin-2, and monocyte chemoattractant protein-1
alerting and recruiting platelets and neutrophils to the site of
infection/inflammation. It is likely that HBOT could reduce this
hypoxia-induced exocytosis of the endothelial cells, indirectly
indicated by the decreased IL-8 and IL-6 observed in an
experimental model of left-sided S. aureus IE (Lerche et al.,
2017). Besides the virulence of pathogens, thrombin formation is
also an important agonist to activate endothelial cells and
platelets prompting the release of Weibel–Palade bodies
content. In the experimental left-sided S. aureus IE model by
Lerche et al. it has also been shown that by treating with
adjunctive dabigatran and direct thrombin inhibitor the
bacterial load and pro-inflammatory IL-8, IL-6, ICAM-1 and
L-selectin of the valve vegetations were significantly reduced
(Lerche et al., 2019), however VEGF levels were not affected.
Combining different immunomodulatory targets together with
antibiotic treatments would also be of great interest in future
clinical studies of IE to personalize treatment regimens and
improve clinical outcome.
HYPERBARIC OXYGEN, PATHOGENS
AND ANTIBIOTICS

Oxidative Stress on Pathogens
HBOT has a direct impact on pathogens, which is believed to be
a result of formation of intracellular ROS as mentioned earlier.
The ROS formation induced by the hyperoxia are toxic to the
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pathogen itself causing damage to DNA, proteins and lipids.
Depending on the properties of the pathogen HBOT may have
bactericidal (Walden and Hentges, 1975) or bacteriostatic effects
(Korhonen, 2000). HBOT induces oxidative stress and eliminates
microorganisms that lack antioxidant defense systems (McCord
et al., 1971).

Oxidative stress has been suggested as a major factor in the
development and progression of sepsis and septic shock
(Motoyama et al., 2003; Ware et al., 2011). Hedetoft et al.
measured oxidative stress markers by myeloperoxidase (MPO),
two antioxidants superoxide dismutase (SOD) andhemeoxygenase
1 (HO-1) and nitrite+nitrate in 80 patients with necrotizing soft
tissue infections (NSTI) before and afterHBOT. The study revealed
an immediately increase in plasmaMPO and SOD. In septic shock
patient with NSTI, HO-1 was significantly increased after first
HBOT. On the following day a significant reduction was observed
forMPO and SOD andmost pronounced for septic shock patients,
highlighting the immediate immunomodulatory effect of HBOT.A
high baseline SOD was associated with increased 90-day mortality
(Hedetoft et al., 2021).

S. aureus, one of the dominating pathogens in IE, is well
known for its adaptation to oxidative stress, where catalase
activity in S. aureus is a key virulence factor. The involvement
of oxidative stress in the susceptibility to antibiotics of S. aureus
biofilm has recently been demonstrated by the protection against
antibiotics provided by catalase (Haj et al., 2021). S. aureus has
been intensively studied under HBOT. Bornside et al. showed
that S. aureus growth could be retarded by 60% after 12 h of
HBOT (Bornside, 1967). When cultures were transferred back to
atmosphere condition exponential growth was restored.
Importantly, they showed that the minimum inhibitory
concentrations (MICs) for different antibiotics were reduced by
HBOT, making the pathogen more susceptible to antibiotics
(Bornside, 1967). In addition, Schwartz et al. showed that
planktonic S. aureus exposed to 90 min of HBOT in a 4-h
assay revealed a significantly lower colony forming units (CFU)/
mL, compared to normobaric, normoxic growing S. aureus
(Schwartz et al., 2021).

Effects of HBOT on Bacterial Biofilms
HBOT is used as adjunctive treatment for patients with NSTI
with virulent group A streptococcal infections (Siemens et al.,
2016) also considered as an acute biofilm infection like IE. In
vitro studies applying HBOT to bacterial biofilms have shown to
augment the antimicrobial effect of ciprofloxacin (Kolpen et al.,
2016; Kolpen et al., 2017). Furthermore, by knockout of the
catalase gene in Pseudomonas aeruginosa (DkatA), the oxygen-
dependent antibiotic killing is further enhanced (Kolpen et al.,
2017). Another important aspect of HBOT, is that the oxygen
penetration into the biofilm (in vitro) increases by four-fold,
enhancing the metabolic activity and growth rate of the bacteria,
thus, making them more susceptible to antibiotic treatment
(Gade et al., 2018). Important studies by Durack et al. showed.
that the Streptococci, at the peripheral border of vegetations were
more metabolically active while those in the center were less
active (dormant state), indicating oxygen tension gradients
within the vegetations (Durack and Beeson, 1972a; Durack
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et al., 1973; Durack, 1975). This observation correlates well to
the clinical situation and the biofilm architecture seen in valve
vegetations, thus indicating that HBOT is an effective treatment
option to reduce the bacterial load, size of valve vegetations and
inflammation (Lerche et al., 2017).

HBOT and Small-Colony Variants
The recalcitrant nature of IE can partially be explained by small-
colony variants (SCVs) in the valve vegetations (Miller et al.,
1978). SCVs of S. aureus are characterized by being non-
hemolytic, having reduced coagulase activity and displaying
non-pigmented colony morphologies 5–10 times smaller than
the most common colony morphologies, due to auxotrophy
(Proctor et al., 2006). These phenotypes are also characterized
by increased antibiotics-tolerance [increased minimum
inhibitory concentrations (MIC)] towards several antibiotic
drugs (especially oxygen-dependent antibiotics) as well as
increased catalase activity inducing tolerance to ROS. An
important observation in experimental S. aureus IE is the
formation of SCVs often seen in aminoglycoside treated
animals (Lerche et al., 2015). This phenomenon is further
induced by HBOT, as shown in an experimental S. aureus IE
model of the cultured valve vegetations (Lerche et al., 2017). Sub
analysis revealed that 54% in the HBOT group and 18% of
control group had S. aureus SCVs in valve vegetations. The MICs
of SCVs toward tobramycin and gentamicin were increased 50-
fold compared to wild-type (0.125 mg/mL to 6 mg/mL). The
increased oxidative stress on S. aureus both by HBOT and
aminoglycoside influences S. aureus to change metabolism
towards a more oxygen-independent metabolism. This fitness-
cost of the pathogens, however, also impacts the virulence of the
S. aureus SCVs, which are known for slow growth and reduced
virulence compared to the wild-type (Proctor et al., 2014). This
change in virulence was observed in the HBOT treated group, by
significantly better clinical performance status compared to the
control group (Lerche et al., 2017). This observation would also
be relevant in a clinical protocol of HBOT in IE, highlighting the
need to treat IE with a secondary antibiotic, which do not have an
oxygen-dependent killing mechanism (i.e., rifampicin and
linezolid), to prevent SCVs and with a good efficacy against
biofilm (Lerche et al., 2021). This potential drawback of HBOT
selecting these resistant bacterial phenotypes could, however, be
limited by strategies by combining antibiotics with different modes
of action. Several studies indeed suggest that combinations allow
or an improved intracellular killing of SCVs, especially when they
include rifampicin, linezolid or a highly bactericidal agent such as
oritavancin (Baltch et al., 2008; AnhNguyen et al., 2009; Lauridsen
et al., 2012) If standard treatment length is followed IE the
incidence of recurrent infection is very low. However, the
strategy of combined antibiotic treatment (per oral, with
different mode of actions) is already being used in standard
treatment of stable IE patients with convincing results
(Bundgaard et al., 2019; Iversen et al., 2019).

Effects of HBOT on Pathogen Virulence
Studies have shown that HBOT also reduce a-toxin production in
Clostridium perfringens. Clostridium perfringens growth is
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restricted at O2 tensions up to 70 mmHg, and a-toxin production
is halted at tensions of 250 mmHg. The adaptation of S. aureus to
SCVs is also accompanied by loss of the hemolytic toxin (a-, b-
toxins) activity due to the oxidative stress induced by HBOT.
These hemolysins are known to be of great importance in
pathogenesis of IE and biofilm formation on the heart valves
(Bhakdi et al., 1988; Chow et al., 1993; Bayer et al., 1997; Caiazza
and O’Toole, 2003; Scherr et al., 2015). The impact of HBOT on
other prevalent IE pathogens as hemolytic and non-hemolytic
streptococci and enterococci remains to be investigated. Very rare
cases of IE with anaerobe pathogens (Cutibacterium agnes,
Veillonella and Clostridium spp.) are known to mainly affect
prosthetic valves and a high portion of patients need cardiac
surgery (Kestler et al., 2017), this group could also potential benefit
of adjunctive HBOT regime to enhance the killing of the anaerobic
pathogens and reduce the need for surgical intervention.
SIDE EFFECTS OF HYPERBARIC
OXYGEN THERAPY

HBOT is generally accepted as a safe and non-invasive treatment
option (Heyboer et al., 2017; Moon, 2019). Few absolute contra
indications exist, among those with undrained pneumothorax.
The most frequent and relatively benign side effects are middle ear
barotrauma (in 2% of awake patients), which are reversible and
can be prevented by autoinflation techniques or by paracentesis or
inserting tympanostomy tubes. At high pressures and longer
exposures oxygen has toxic effects with pulmonary and
neurologic manifestations. However, pulmonary toxicity requires
prolonged exposures to HBOT and is not a recurrent clinical
problem (Hadanny et al., 2019). Oxygen seizures appear with an
incidence of 0.01% depending on pressure and exposure time with
no clinical evidence of long-term sequelae (Camporesi, 2014) and
can be prevented by short air breathing periods during HBOT
sessions (Hadanny et al., 2016a). Depending on the administration
method applied (masks or hoods/monochamber), reversible
myopia may appear (Hadanny et al., 2016b).
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CONCLUSION

Intermittent HBOT demonstrates multiple beneficial effects,
dampening the detrimental host-pathogen interactions in IE.
HBOT remains one of the most effective clinical means of oxygen
delivery to deep vital tissue infections. There is a paucity of high-
quality randomized controlled trials of HBOT, which makes it
difficult to properly assess the clinical efficacy of HBOT.
Hopefully, more well-designed trials are coming in the future.
Patients with IE that would benefit from HBOT the most, would
probably be the acutely ill with severe sepsis, large vegetations,
dysregulated coagulation and thrombotic events, or until
stabilization, or the patient groups which are not candidates
for acute surgical intervention or removal of prosthetic valves
and cardiac devices due to high risk of complications.

In conclusion, IE is a serious infectious disease and outcome
data using present guidelines of antibiotic treatment of IE
indicates the need for improved treatments strategies. HBOT is
a promising candidate as an adjunctive treatment strategy due to
the multifaceted effects and the pathophysiology of IE. HBOT as
a potential treatment option in cases of IE is currently being
studied in our center.
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