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Abstract: Mitochondrial reactive oxygen species (ROS) can be either detrimental or beneficial
depending on the amount, duration, and location of their production. Mitochondrial complex I is a
component of the electron transport chain and transfers electrons from NADH to ubiquinone. Complex
I is also a source of ROS production. Under certain thermodynamic conditions, electron transfer can
reverse direction and reduce oxygen at complex I to generate ROS. Conditions that favor this reverse
electron transport (RET) include highly reduced ubiquinone pools, high mitochondrial membrane
potential, and accumulated metabolic substrates. Historically, complex I RET was associated with
pathological conditions, causing oxidative stress. However, recent evidence suggests that ROS
generation by complex I RET contributes to signaling events in cells and organisms. Collectively,
these studies demonstrate that the impact of complex I RET, either beneficial or detrimental, can be
determined by the timing and quantity of ROS production. In this article we review the role of
site-specific ROS production at complex I in the contexts of pathology and physiologic signaling.

Keywords: reactive oxygen species; mitochondrial complex I; reverse electron transport; superoxide;
hydrogen peroxide; ischemia reperfusion injury; oxidative damage

1. Introduction

Mitochondria are a major source of reactive oxygen species (ROS) production in cells. ROS can be
produced during cellular respiration [1,2], where electrons pass directly onto oxygen instead of the
next electron carrier in the electron transport chain (ETC) [2–5]. There are many antioxidant systems
that detoxify ROS [6]. Under certain conditions, however, such as damage to the ETC or during
ischemia reperfusion injury, the amount of ROS produced overwhelms the cellular defense systems
resulting in oxidative stress [2,3,7]. For many years ROS have been associated only with oxidative
stress, however, it is now accepted that ROS play a role in cellular signaling as well [7–12]. Determining
what factors make ROS beneficial or detrimental is an active area of research [13]. Much like the second
messenger calcium, the effect of ROS can be determined by many factors including how much, when,
and where ROS are produced. There are many sites of ROS generation in mitochondria [1,2,14–16]
each of which is differentially sensitive to cellular conditions [17]. However, our understanding of
how site-specific ROS production contributes to physiology remains limited. Here we will focus on
ROS generated at mitochondrial complex I of the ETC. Complex I can generate ROS through reverse
electron transfer (RET) under a variety of metabolic conditions, many of which are associated with
pathology [2,12,18,19]. However, recent studies suggest that complex I ROS generation by RET can
have physiologic roles [12,20–24].
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2. Complex I ROS Generation

2.1. Complex I Function and ROS Production

Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a large multimeric protein
complex and a member of the ETC [25–28]. Complex I is comprised of a hydrophobic section located
in the inner membrane and a hydrophilic section in the matrix (Figure 1). Complex I transfers two
electrons from NADH to ubiquinone (Q) and pumps protons into the intermembrane space [27,29].
The hydrophilic section of complex I catalyzes the oxidation of NADH at the flavin mononucleotide
(FMN) containing subunit. Electrons are then passed through a series of iron-sulfur clusters to reduce
Q to ubiquinol (QH2) at the Q binding site [26,27]. QH2 can transfer electrons to complex III, which are
eventually passed onto oxygen at complex IV to form water [27,29]. During this process, an electron
can reduce oxygen to generate superoxide (O2•

−) instead of continuing down the ETC. O2•
− can

be converted to hydrogen peroxide (H2O2) through spontaneous dismutation or enzymatically via
superoxide dismutase (SOD) [2]. There are many sites of ROS production in mitochondria, and
complex I can generate ROS either through forward electron transfer (NADH to Q) or reverse electron
transfer (QH2 to NAD+) [30]. Sites of O2•

− generation within complex I include the FMN group,
iron-sulfur clusters, and the Q binding site [31–35]. The FMN and Q sites are relatively accessible to
the mitochondrial matrix. These locations have high probabilities of electrons leaking from the ETC
and reducing oxygen to O2•

− [26,27]. Additionally, each ROS production site within complex I has a
different sensitivity to oxygen concentration, such that changes in the local oxygen levels can affect the
site’s contribution to ROS production [17].
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Figure 1. Mitochondrial electron transport chain. The electron transport chain (ETC) is located in the
mitochondrial inner membrane. Electrons (dashed lines) from reducing equivalents (e.g., NADH) enter
the ETC at complex I (CxI) or complex II (CxII) and reduce the ubiquinone pool (Q, yellow). Electrons are
then transferred from QH2 to complex III (CxIII), to cytochrome c (Cyt c) and ultimately onto oxygen (O2)
at complex IV (CxIV). During this process protons are pumped (not shown) to generate a protonmotive
force (∆p) which is comprised of a membrane potential and a proton concentration gradient.

2.2. Protonmotive Force (∆p) and Complex I ROS

The mitochondrial protonmotive force (∆p) regulates RET ROS production. The ∆p is composed
of two potential energies—a proton concentration gradient (∆pH) and a charge separation known as
the membrane potential (∆ψm) [35]. Under normal conditions, the ∆ψm is the major component of
the ∆p [2]. During an energy demand mitochondria use the ∆p to produce ATP, and ROS generation
is low [36]. Likewise, protonophores, such as FCCP or DNP, dissipate the ∆p and decrease complex
I ROS production [35,37,38]. At rest conditions, when the ∆p is relatively high, ROS production is
higher [35]. Therefore, a high ∆p is associated with a large amount of complex I ROS generation,
and that decreasing the ∆p will inhibit complex I ROS production. However, it is unknown whether
∆pH and ∆ψm have different contributions to ROS production, or if total ∆p is all that matters.
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To determine the contribution of ∆pH and ∆ψm to complex I ROS, ion transporters were used
to experimentally test each parameter. For example, nigericin lowers ∆pH and increases ∆ψm to
maintain ∆p [35]. Under these conditions, complex I ROS decreased suggesting that complex I ROS
is driven by a high ∆pH [35]. Similarly, phosphate carrier activity decreased the ∆pH and ROS
production [35]. Recently, however, using both isolated heart and brain mitochondria, increasing the
∆pH and decreasing the ∆ψm simultaneously using a potassium ionophore was concomitant with
decreased ROS production [38]. Then using nigericin to perform the reverse experiment (decrease
the ∆pH and increase the ∆ψm), increased ROS production was observed. Importantly, these changes
were associated with changing pH levels [38], suggesting that the absolute pH, rather than the ∆pH
across the inner membrane is responsible for the high complex I ROS production [38].

2.3. Redox Ratios and Complex I ROS

The redox statuses of the QH2/Q and NADH/NAD+ ratios are also major determinants of
the amount of ROS produced at complex I. For example, when mitochondria are making ATP the
NADH/NAD+ ratio is low and ROS production is also low [2]. Conversely, a high NADH/NAD+ or
QH2/Q ratio is associated with a high level of ROS production [2,39,40]. In conclusion, there are various
factors that control the production of ROS and many of these factors are interconnected. For example,
changes in the ∆p can change redox ratios. Therefore, altering one of these factors in vivo can lead to
metabolic changes and introduce confounding factors.

3. Mitochondrial Complex I Reverse Electron Transfer (RET)

The electron flow in complex I is described in two modes—forward and reverse electron transfer
(Figure 2). Under conditions of normal respiration, forward electron transfer (Figure 2a) is the
energetically favored complex I-mediated transfer of electrons from NADH to Q. Reverse electron
transfer (RET) (Figure 2b) is the backward transfer of electrons from QH2 to NAD+ [2,12]. Under
normal conditions, RET is energetically uphill and requires a high ∆p and QH2/Q ratio [30,41,42]. RET
is not tissue or organ specific, as it occurs in mitochondria from different tissues [17,33,35,39,42,43].
In addition, though RET was first observed under conditions of succinate respiration in isolated
mitochondria, it is not linked solely to this condition. Mitochondria fueled with fatty acids or
α-glycerophosphate to reduce Q can undergo RET [1,21], suggesting that RET can be influenced by
multiple metabolic pathways.

RET is distinguished from other mechanisms of complex I ROS generation through the use of
inhibitors. RET generation of ROS is inhibited by Q binding site inhibitors, such as rotenone [35,42,44].
The specific site responsible for RET ROS production within complex I (e.g., FMN site or Q binding
site) is debated [1,2,35,44,45], but all of the likely sites of RET ROS production are located in the
mitochondrial matrix [44]. However, current O2•

− detection methods lack spatial resolution to
precisely distinguish matrix vs. IMS ROS production [26,27]. For example, biosensors, which can be
targeted to the matrix or intermembrane space, respond to the membrane permeable H2O2, not O2•

−.
Mitochondrial ROS plays a role in cell signaling yet, until recently, the importance of RET ROS in
modulating physiologic processes has been overlooked. Since the conditions required for RET (high ∆p
and QH2/Q ratio) are not often present in physiologic circumstances, RET has been largely associated
with pathologic conditions [41,42,46]. New studies are demonstrating a role for RET generated ROS in
physiologic processes [1,2,12,20,21,33,47].
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Figure 2. Complex I electron transfer. (a) Forward electron transfer. Electrons (dashed lines) are
transferred from NADH to ubiquinone (Q) resulting in ubiquinol (QH2). These conditions can generate
reactive oxygen species (ROS). The addition of FMN site inhibitors prevent, while Q binding site
inhibitors enhance complex I forward electron transfer generated ROS. (b) Reverse electron transfer
(RET). Electrons from ubiquinol (QH2) are transferred to NAD+ and generate ROS. Both Q binding
site and FMN binding site inhibitors suppress RET generated ROS. ∆p, protonmotive force; FMN,
flavin mononucleotide.

4. Detecting and Modulating RET ROS Generation

4.1. Detecting RET

RET generates O2•
−, which can dismutate to H2O2, both of which are commonly measured as an

output of RET [2]. Extensive analysis of ROS detection methods are reviewed elsewhere [48,49]. Here,
we will focus on detection methods that relate to measurements of physiologic RET. O2•

− is commonly
measured using dihydroethidium (DHE) or mitoSOX (i.e. mitochondria-targeted DHE) [50–52]. DHE
can be oxidized through many mechanisms to yield a range of oxidation products. Of the two
fluorescent DHE oxidation products, ethidium (E+) and 2-hydroxyethidium (2-OHE+), only 2-OHE+

is a selective marker of O2•
− [53]. The spectral overlap of E+ and 2-OHE+ and their propensity to

intercalate DNA limit the interpretation of fluorescent measurements of O2•
− as a readout for RET [53].

To accurately detect O2•
− using DHE, the oxidation products should be separated and quantified using

HPLC [50–52,54]. Recent advances minimized concerns by modifying structural features of mitoSOX
to create mitoNeoD [55], which may limit the confounding factors associated with DHE fluorescence
readouts as a measure of RET generated O2•

− in vivo [55].
An alternative way to assess complex I RET ROS is to measure H2O2 using Amplex Red, which in

the presence of horseradish peroxidase will react with H2O2 to give the fluorescent product resorufin [2].
While the use of Amplex Red is well established, studies are generally limited to isolated mitochondria.
In vivo studies use ROS biosensors targeted to specific cellular regions or compartments to measure
H2O2 [56–60]. The oxidation of biosensors such as HyPer or redox-sensitive GFP-based probes
results in a reversible change in fluorescent signal [61,62]. Like most fluorescent proteins, however,
biosensors can be sensitive to pH and require appropriate control experiments [61]. For example,
the pH gradient across the mitochondrial inner membrane can confound interpretation of ROS readouts
when comparing a biosensor signal in the mitochondrial matrix to the intermembrane space or cytosol
because of pH differences. Advances in biosensors are increasing the dynamic range and sensitivity to
H2O2 while limiting the influence of pH [61].

4.2. Modulating RET

In addition to detecting RET, ROS production can be modulated both pharmacologically with Q
site inhibitors, and genetically through expression of exogenous electron transfer systems. RET ROS
production can be differentiated from forward electron transfer by using rotenone. RET O2•

− production
is inhibited by rotenone, where forward electron transfer ROS production is not. Another way to
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probe RET is by manipulating the QH2/Q ratio to influence the rate of complex I ROS production [2].
This approach is implemented by using exogenous enzymes to mimic mitochondrial electron transfer.
Expression of Ciona intestinalis alternative oxidase (AOX) and the yeast NADH dehydrogenase (NDI1)
is a novel approach to control the QH2/Q ratio (Figure 3) [20,21]. AOX is a cyanide-insensitive oxidase
that transfers electrons from QH2 to oxygen (Figure 3b). The expression of AOX can decrease the QH2/Q
ratio [63]. Characterization of AOX in plants suggests that it is active only once the QH2/Q ratio reaches
a threshold, suggesting a regulatory switch [64]. NDI1 is a rotenone-insensitive NADH dehydrogenase
that transfers electrons from NADH to Q, resulting in a high QH2/Q ratio (Figure 3a) [65]. Together
AOX and NDI1 can bypass components of the ETC to directly alter the QH2/Q ratio. However, there are
many electron entry points to the Q pool, such as complex II, dihydroorotate dehydrogenase, electron
transfer flavoprotein-ubiquinone oxidoreductase, and glycerol-3-phosphate dehydrogenase. AOX
expression does not affect development in Drosophila melanogaster and suggests that AOX expression is
not detrimental [63,66]. However, it is unclear how the AOX-mediated changes in the QH2/Q ratio
can impact metabolism and subsequently, ROS production at other mitochondrial sites. Recently,
AOX expression was shown to decrease male fertility in Drosophila melanogaster [67]. While the role of
ROS in mediating fertility is unclear, it demonstrates that AOX can influence physiologic processes.
Additionally, AOX activity will consume oxygen and can effect ROS production at the substrate
level, since altering local oxygen concentrations can impact ROS production rates [68]. Overall,
multiple approaches and careful interpretation are warranted to determine the role of complex I RET
generated ROS.
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Figure 3. Genetic approaches to alter the QH2/Q ratio and modify complex I reverse electron transfer.
(a) The expression of NDI1 in the mitochondria can result in the reduction of the Q pool. NDI1 transfers
electrons from NADH to Q resulting in QH2. The resulting conditions favor reverse electron transfer
generation of ROS. Other proteins that can increase the QH2/Q ratio include complex II (CxII) or
glycerol-3-phosphate dehydrogenase (G3PDH). (b) Expression of alternative oxidase (AOX) decreases
the QH2/Q ratio. AOX transfers from QH2 to O2 to produce water (H2O). Together the activity of
complex III (CxIII), cytochrome c (C), and complex IV (CxIV) also decrease the QH2/Q ratio resulting in
conditions that do not favor RET formation of ROS.
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5. RET Generated ROS in Pathology

Most of what is known about RET was discovered in models of ischemia reperfusion (IR) injury.
The conditions for RET described herein occur in many pathologic situations, but we will focus IR
injury. Loss of blood flow to tissue (ischemia) and subsequent reestablishment (reperfusion) results
in IR injury. In mitochondria, depleted oxygen during ischemia combined with its rapid restoration
at reperfusion cause oxidative damage to tissue [69]. This damage can occur from ROS generated
in several places in mitochondria [70]. At complex I, metabolic substrates that accumulate during
ischemia [18] are rapidly oxidized at reperfusion, causing damage. Specifically, accumulated succinate
drives RET and ROS production, implicating complex I ROS in the oxidative damage from IR injury
(Figure 4a) [19].Antioxidants 2019, 8, x FOR PEER REVIEW 7 of 14 
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Figure 4. Dual role of complex I reverse electron transfer in pathology and physiology. (a) Complex I
(CxI) reverse electron transfer (RET) in pathology. Factors that affect RET in ischemia reperfusion (IR)
injury. During ischemia, succinate accumulation drives RET at complex II forcing electrons to complex
I, where ROS is subsequently overproduced. Complex I has two states, active (A) and dormant (D).
Ischemia drives an A-form that transition to D-form. During reperfusion D-form transition back to
A-form generating reactive oxygen species (ROS) that causes IR injury. The mitochondrial protonmotive
force (∆p) is a main driving force for RET. Therefore, decreasing the ∆p removes a main driver of RET
and ROS production at reperfusion. (b) Complex I reverse electron transfer contributes to diverse
physiologic processes. The site-specific ROS production has a role in oxygen (O2) sensing, lifespan
extension, cell differentiation, and supercomplex formation.
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Complex I has enzymatically active (A) and dormant (D) states under different conditions [71].
The A state has catalytic NADH/Q oxidoreductase activity, however, the D state is inhibited and more
susceptible to oxidative modification in vitro [72,73]. During ischemia there is a reversible transition
from the A to the D state. This transition is hypothesized to be a physiologic mechanism to limit ROS
production at reperfusion, as the D state makes less ROS by RET than the A state [74]. Oxidative
damage at reperfusion is driven by RET succinate oxidation at functional complex I in the A state [30].
Ischemic transition of complex I to the D state could be a preparation for reperfusion, serving to inhibit
complex I activity and RET (Figure 4a). In depth characterization of complex I A/D transition could
yield targeted therapies to prevent damage. Targeting specific sites of complex I ROS formation could
also yield targeted therapy.

During RET, one of the ROS production sites in complex I is the Q binding site (IQ) [75]. There are
many small molecules called suppressors of complex I site I(Q) electron leak (S1QELs), that inhibit
complex I at this site, preventing ROS production and protecting against IR injury [70,76,77]. The onset
of IR events is unpredictable, however. Using drugs to protect against IR injury would be most
clinically useful administered at or after reperfusion, when it is clear intervention is needed. In support
of this notion, metformin, an FDA approved diabetes drug, can inhibit complex I at reperfusion and
limit IR injury in animal and cell models [78]. Similarly, genetic knockout of a complex I subunit results
in altered ROS levels and decreased susceptibility to IR injury [79]. These results suggest diminished
complex I activity, and resulting diminished RET activity at reperfusion, is protective against IR. These
data are in line with the proposed beneficial role of D state complex I preventing oxidative damage
at reperfusion. While preemptively inhibiting complex I ROS production before an ischemic event
protects against IR injury, the inhibition could impair beneficial oxidative signaling, as discussed
in the following section. The dual roles of ROS damage and signaling may be the reason for the
failure of global antioxidant treatments for disease [80,81]. Again, targeted approaches to decrease
damaging ROS while preserving signaling ROS will be necessary for the successful development of
redox medicine. This approach requires in-depth understanding of the molecular mechanisms of RET
and complex I function.

Changes in the ∆p can also alter RET, where decreased potential results in less ROS production
(Figure 4a) [35]. Decreasing both components of the ∆p with small-molecule protonophores like FCCP
is protective in many models of IR injury [82–84]. The molecular details of these and similar results are
unclear but represent a promising targeted approach to understand mechanisms of pathology.

The research summarized here demonstrates how RET and complex I ROS production contribute
to IR injury, and shows that clarifying molecular mechanisms will be essential for clinical application.
The pathologic events in and around mitochondria during IR are interrelated and coupled to cellular
metabolism [36]. Thus, careful experimental approaches will isolate RET to discern mechanisms
in pathology.

6. RET Generated ROS in Physiology

Although RET is involved in pathology, it may have roles in well-coordinated physiological
processes that cause cellular adaption (Figure 4b). For example, RET generated ROS is
implicated in detecting cellular oxygen levels, cellular differentiation, lifespan extension, and ETC
rearrangement [12,20–24].

The ability to sense limited oxygen and initiate a rapid adaptive response is key to cellular
survival under low oxygen tensions. One way that an organism senses low oxygen is through the
carotid body [11,22,85]. The carotid body is a group of cells in the carotid artery responsible for
oxygen sensing that contain oxygen-sensitive K+ channels. During hypoxia, K+ channels are inhibited,
leading to cellular depolarization and the release of neurotransmitters, resulting in hyperventilatory
activity [22]. Hyperventilation (rapid breathing) is an acute way the body increases oxygen supply
to tissues [86]. The precise mechanism through which the carotid body senses low oxygen and
activates a response is still unfolding [22], however, RET generated ROS is involved [22,23]. This is
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based on the observation that high carotid body activity following low oxygen tension corresponded
with elevated ROS measured by mitoSOX fluorescence in carotid body cells [22]. In addition to
mitoSOX, a redox-sensitive fluorescent protein sensor (roGFP) was targeted to the mitochondrial
intermembrane space and to the cytosol to measure ROS levels in mice exposed to hypoxia [22].
The levels of H2O2 were high in the intermembrane space and low in the cytosol. The changes in
ROS levels in carotid body cells were sensitive to the loss of Ndufs2, which encodes the complex I
ubiquinone binding site, suggesting that ROS originates from complex I [22]. These results highlight the
importance of site-specific measurement of ROS [23]. Given that ETC inhibitors other than rotenone can
influence carotid body cell oxygen sensing [87], and that other sources of ROS can mediate responses
to hypoxia [88], understanding the site-specific nature of complex I ROS in the signaling process is
essential. In support of this notion, a recent paper reinforced the oxygen sensing role of Ndufs2 [89].

RET has also been implicated in muscle differentiation [24]. ROS produced at complex I stimulated
muscle differentiation in H9c2 rat cardiac myoblasts [24]. The increased mitochondrial O2•

− was
measured by mitoSOX fluorescence and was associated with an increase in SOD expression and H2O2

diffusion to the cytosol, where it stimulated differentiation [24]. Mitochondria-targeted O2•
− scavengers,

mitoquinone (mitoQ) and mitoTempol suppressed morphological changes, major histocompatibility
complex (MHC) expression in myotube formation, muscle creatine kinase (MCK) promoter activity and
H2O2 production, confirming the role of ROS in muscle differentiation. Moreover, the expression of
mitochondria-targeted catalase (mCAT) prevented differentiation, implicating the mitochondrial matrix
ROS production [24]. Three subunits of complex I were upregulated during muscle differentiation,
suggesting that complex I plays a role in O2•

− formation [24]. In agreement with these studies,
mitochondrial ROS and muscle differentiation were sensitive to rotenone and the knockdown of
the complex I subunits Ndufaf1 and Ndufs3 [24]. In addition, a single bout of exercise resulted in
increased mitophagy and mitochondrial function in both heart and skeletal muscle [90]. These increases
were in part due to the increase in mitochondrial H2O2 measured using Amplex Red [90]. Similarly,
dietary lutein, a carotenoid that aids vision, enhanced the differentiation of SH-SY5Y cells through
phosphoinositide-3-kinase signaling, which is triggered by mitochondrial H2O2 [91]. These results are
in line with conditions that favor RET, but a direct role of complex I ROS is unclear.

RET generated ROS also mediates lifespan extension, as observed in flies [20]. The role of RET
in lifespan extension was investigated by modulating the redox state of the QH2/Q ratio using NDI1
and AOX [20,92,93]. The expression of NDI1 altered the steady-state ratio of NADH/NAD+, reduced
Q, and extended lifespan [92]. In a pharmacologic approach, rotenone (a Q binding site inhibitor)
treatment or knockdown of complex I did not alter the beneficial effects of NDI1 [92], suggesting
that NDI1 compensates for endogenous complex I activity in flies [92]. Interestingly, NDI1 does
not compensate for lost complex I activity in C. elegans [94,95], suggesting that QH2/Q ratio can be
differentially regulated in various organisms. In support of this notion is the observation that AOX
inhibited the lifespan extension by NDI1 [20]. This indicates that QH2 is at the center of the lifespan
extension. In line with this, feeding flies rotenone reduced ROS production in NDI1 mutant flies but
not in wildtype flies [20]. Similar results were observed using protonophores to dissipate the ∆p. This
indicates the involvement of complex I RET as the source of NDI1 mediated ROS production that
extends lifespan in flies. If the mechanisms are conserved in mammals, manipulation of the QH2/Q
ratio provides a therapeutic target for the extension lifespan, or for treatment of aging and age-related
disease such as IR injury and diabetes [20].

RET can contribute to physiology through changes at the organelle level. During an energy
demand the ETC complexes can arrange into supercomplexes, which include groupings of complexes
I, III, and IV of the ETC, and their formation is associated with efficient respiratory activity [96]. RET is
implicated in the formation of supercomplexes following changes in fuel source, oxygen tension,
or stress [21,96,97]. When the ETC complexes are fueled through glycolysis, electrons from NADH
can increase the QH2/Q ratio via complex I. These conditions favor a supercomplex where complex I
is associated with complex III [12,21]. β-oxidation can further reduce the Q pool through the added
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contribution of FAD-dependent enzymes. The resulting increased QH2/Q ratio is associated with high
levels of ROS production and disassociated supercomplexes. Recent work demonstrated that the high
QH2/Q ratio during β-oxidation leads to RET produced ROS (Figure 3a) and the localized RET leads to
changes in supercomplex formation. The localized ROS were shown to oxidize complex I, resulting
in the degradation and dissociation of complex I from the supercomplex [21]. Without a privileged
location between complexes I and III, the dissociated complex III is hypothesized to favor electron flux
through FAD-dependent sources and limit overall ROS production [21].

Overall, RET ROS production has defined roles in physiology. Understanding the molecular
details of RET could provide new mechanisms of physiologic regulation.

7. Conclusions and Future Directions

Overall, where ROS are generated can greatly impact the cellular response. As such, ROS are
involved in heterogeneous cell processes, ranging from signaling events to death. Our understanding
of how RET generated ROS produces specific signals is limited. For example, it is unclear how RET
ROS increases lifespan, and the signaling mechanisms involved are not fully elucidated. Further, it is
unknown how each of these processes are selective for RET derived ROS. It is also unclear which sites
of ROS production within complex I impact physiologic outputs. Answering these questions will help
uncover the beneficial effects of site-specific ROS production. Careful experimental design and methods
that rigorously measure site-specific RET ROS would increase our knowledge of physiologic RET.
Methods of ROS detection are imperfect and are often used incorrectly, confounding interpretations.
Focusing on defined molecular outputs of ROS rather than imperfect bulk measurements will
advance the field in a complementary way. For example, measuring a specific ROS post-translational
modification may be more informative than observing increased or decreased ROS under experimental
conditions. This approach is important given the nuances of known microdomain effects [98,99].
The research described here highlights the importance of understanding molecular mechanisms of
site-specific ROS production in mitochondria, and serves as a starting point to develop new methods
to probe the many facets of ROS physiology.
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