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Objectives: Identify alterations in gene expression unique to systemic 
and kidney-specific pathophysiologic processes using whole-genome 
analyses of RNA isolated from the urinary cells of sepsis patients.
Design: Prospective cohort study.
Setting: Quaternary care academic hospital.
Patients: A total of 266 sepsis and 82 control patients enrolled 
between January 2015 and February 2018.
Interventions: Whole-genome transcriptomic analysis of messenger 
RNA isolated from the urinary cells of sepsis patients within 12 hours 
of sepsis onset and from control subjects.
Measurements and Main Results: The differentially expressed 
probes that map to known genes were subjected to feature selec-
tion using multiple machine learning techniques to find the best 
subset of probes that differentiates sepsis from control subjects. 

Using differential expression augmented with machine learning 
ensembles, we identified a set of 239 genes in urine, which show 
excellent effectiveness in classifying septic patients from those with 
chronic systemic disease in both internal and independent external 
validation cohorts. Functional analysis indexes disrupted biological 
pathways in early sepsis and reveal key molecular networks driving 
its pathogenesis.
Conclusions: We identified unique urinary gene expression profile in 
early sepsis. Future studies need to confirm whether this approach 
can complement blood transcriptomic approaches for sepsis diagno-
sis and prognostication.
Key Words: cells; gene expression; machine learning; messenger 
ribonucleic acid; sepsis; urine

Sepsis, a dysregulated host immune response to infection 
leading to acute organ dysfunction, continues to be a sig-
nificant challenge for the healthcare system (1). The intro-

duction of the Surviving Sepsis Campaign (2) led to a decrease 
in hospital mortality rates, yet total sepsis deaths continue to rise, 
and its treatment carries significant resource consumption (3). 
Identification of altered molecular profiles and biochemical path-
ways in septic patients has generated enthusiasm for the discovery 
of novel blood biomarkers (4). Multiple studies have examined 
the gene expression of immune cells in the blood from sepsis 
patients (5), and the U. S. Food and Drug Administration recently 
approved the first diagnostic test for sepsis based on expression of 
four genes in peripheral blood (6).

Urine is a readily available biofluid that does not require 
invasive collection, yet its wealth of molecular information is 
underutilized. The kidney is one of the most commonly affected 
organs in sepsis with profound effect on outcomes (7) with both 
systemic and local inflammations playing a role in the patho-
physiology of sepsis-induced renal injury (8). The kidney filters 
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150 L of circulating plasma daily to produce 1.5 L of urine where 
highly concentrated potential biomarkers, such as metabolites, 
proteins, and nucleic acids, reflect both renal and systemic 
pathologies (9). Immune and renal cells appearing in the urine 
in response to systemic or renal inflammations have been used as 
prognostic markers in lupus, systemic vasculitis, and glomerular 
diseases (10–15) but not in sepsis. Previous work with urine in 
sepsis has focused on protein biomarkers of acute kidney injury 
(16, 17), whereas urinary RNA has been tested mainly for the 
diagnosis of transplant rejection and urologic cancers (18–20). 
We tested the hypothesis that application of machine learning 
(ML) for whole-genome transcriptomic analysis of RNA isolated 
from the urinary cells of septic patients can be used to identify 
alterations in gene expression unique to systemic and kidney-
specific pathophysiologic processes in sepsis. This work is not 
intended to provide a diagnostic tool for sepsis. The authors only 
want to highlight that cells leaching into the urine due to sepsis 
are enriched with molecular information capable of discerning 
sepsis from noninfected controls. Figure 1A shows how sepsis-
associated kidney injury can lead to leaching of immune cells 
and pathogen/damage-associated molecular patterns into the 
urine from blood.

MATERIALS AND METHODS

Participants
Sepsis patients were prospectively recruited between January 2015 
and August 2017 from a prospective longitudinal cohort of surgi-
cal patients with sepsis at the University of Florida Health (UFH) 
(NCT02276066) that examines the immunologic mechanisms of 
chronic critical illness in sepsis. For the control group, we used 
preoperative urine samples from patients prospectively recruited 
between July 2015 and February 2018 to a prospective observa-
tional study (Network Analysis of Urinary Molecular Signature 
Complements Clinical Data to Predict Postoperative Acute Kidney 
Injury [NavigateAKI]; NCT02114138), characterizing the urinary 
molecular response to surgical stress among patients undergoing 
high-risk vascular surgery at UFH (Supplementary Fig. S1 http://
links.lww.com/CCX/A265). The study protocols were finalized 
(21) and ethics approvals were obtained from the UF Institutional 
Review Board (IRB201400611 and IRB201400127) prior to the 
recruitment of patients. All study participants were provided writ-
ten informed consent. There was no overlap of patients between the 
two cohorts. The informed consent form for NavigateAKI permits 
the usage of these data in a limited way in other research projects.

The inclusion criteria for the sepsis cohort were admission 
to the surgical ICU, greater than or equal to 18 years old, and a 
diagnosis of sepsis (clinically adjudicated by attending physician 
and investigators according to the American College of Chest 
Physicians consensus criteria [22]) with subsequent initiation of 
the computerized sepsis protocol (23). Excluded patients fell into 
three categories: 1) patients taking immunosuppressive drugs or 
with a history of autoimmune diseases, 2) patients with advanced 
liver or heart disease, and 3) patients whose primary cause of sep-
sis was end-stage renal disease or urinary tract infection. All con-
trol patients were adjudicated as having no evidence of infection 
prior to surgery by attending surgeons and investigators.

All relevant clinical data were prospectively collected. Severity 
of illness was defined within the first 24 hours using the Sequential 
Organ Failure Assessment (SOFA) score (21). Patient outcomes, 
including hospital and 12-month mortality, were prospectively 
recorded for both studies (24). The first blood and urine samples 
for experimental analyses were collected within 12 hours of sepsis 
onset for sepsis patients and within 4 hours prior to scheduled 
surgery for control patients.

Discovery and Validation Cohorts
The discovery cohort consisted of RNA isolated from 238 patients 
recruited between January 2015 and March 2016 (Supplementary 
Fig. S1 http://links.lww.com/CCX/A265). The validation cohort 
consisted of RNA isolated from 110 patients recruited between 
February 2017 and February 2018. Complete data were available 
for 146 sepsis and 32 control patients in the discovery cohort and 
41 sepsis and 32 control patients in the validation cohort. This 
sample size enabled us to ensure that for at least 85% of probes, we 
have power greater than 80% to detect a two-fold change between 
the mean expressions for sepsis and control patients using a two-
sided independent t test with Bonferroni adjustment at a family-
wise type 1 error of 0.05.

Processing of Urine Samples and RNA Purification
Using standardized protocols to separate cell pellets from urine 
supernatant (Fig. 1A), approximately 50 mL of urine was collected 
in sterile manner at the bedside and processed within 2 hours of 
collection. We used previously described protocols to isolate total 
cellular RNA from the urinary cell pellet containing all cellular ele-
ments. In brief, the 50 mL of urine was spun down at 1,500 g for 30 
minutes at 4°C. The pellet was collected, lysed using 1-mL rolling 
liquid transporter lysis buffer with 10-uL β-mercaptoethanol from 
the kit, and processed according the manufacturer’s protocol. Total 
RNA was extracted using the RNeasy mini kit (Qiagen, Leusden, 
The Netherlands) (250) Catalog Number—74106 according to the 
manufacturer’s protocol. To determine the quality of isolated cel-
lular RNA, we measured the quantity (absorbance at 260 nm) and 
purity (ratio of absorbance at 260 and 280 nm). An RNA sample 
was classified as having passed quality control if the optical den-
sity 260:280 ratio was between 1.5 and 2.2 and final concentration 
was at least 8.7 µg/mL (25) (Supplementary Table S1 http://links.
lww.com/CCX/A275).

Microarrays
Biotin-labeled sense strand complementary DNA was prepared 
from 300 ng of total RNA per sample using an Affymetrix GeneChip 
Whole Transcript Sense Target Labeling Assay per standard proto-
col (more details of which are provided in Supplementary Methods 
http://links.lww.com/CCX/A264). Hybridization to GeneChip 
Human Transcriptome Array 2.0 (Affymetrix, Thermo Fisher 
Scientific, Santa Clara, CA) was carried out at 45°C for 16 hours, and 
the arrays were scanned on an Affymetrix GeneChip Scanner 3000 
7G using the Affymetrix GeneChip Command Console software, 
which produced a set of files with extensions .DAT, .CEL, .JPG, and 
.XML for each array. Image analysis and probe quantification were 
performed using the Affymetrix software that produced raw probe 
intensity data in the Affymetrix CEL files. Transcriptome Analysis 
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Console Version 4.0.1 (Thermo Fisher Scientific, Santa Clara, CA) 
was used for microarray signal summarization and normalization 
(Fig. 1B) using robust multiarray average (26). The final microarray 
dataset consisted of log2 transformed expression values for 67,528 
probes of which 33,494 were mapped to one or more known genes 

(available as GSE112098, GSE112099, 
and GSE112100 Gene Expression 
Omnibus series accessions).

Identification of Cell-Specific 
Transcripts
The 33,494 probes mapped to known 
genes were used to estimate the immune 
and kidney cell composition of the sam-
ples (Fig. 1B). The immune response in 
silico (IRIS) repository of 1,622 genes, 
classified by their specific expression 
in multiple immune cell lineages (27) 
and previously described transcript 
sets of 637 genes for kidney-specific 
cell lineages (28), was used to estimate 
the immune and renal cell composition 
in urine, respectively. Urine samples 
from 10 random septic patients were 
analyzed via flow cytometry using an 
Life Science Research II flow cytom-
eter (Becton Dickinson, Franklin, NJ). 
Approximately 50–200 mL of urine 
was collected and processed within 
30 minutes of sample collection. The 
samples were stained with CD3-AF488 
(Number 557694; Becton Dickinson), 
CD4-AF700 (Number 566318; Becton 
Dickinson), CD8-BV650 (Number 
565289; Becton Dickinson), CD14-PE 
(Number 561707; Becton Dickinson), 
CD19-APC (Number 561742; Becton 
Dickinson), and Sytox Blue (Number 
S34857; Invitrogen; Thermo Fisher 
Scientific, Waltham, MA).

Identification and 
Characterization of 
Discriminating Set of Genes in 
Sepsis
We applied empirical Bayes method 
in the linear models for microarray 
analysis (29) to identify differentially 
expressed probes between sepsis and 
control patients. The significance 
threshold was adjusted for mul-
tiple testings using the Benjamini-
Hochberg false discovery rate (FDR) 
(30). Probes with an FDR of less 
than or equal to 0.01 and an absolute 
fold change greater than or equal to 

2 were considered differentially expressed. Gene expression pat-
terns were elucidated using Euclidean distance heatmaps with 
ComplexHeatmap (31). The ingenuity pathway analysis (IPA) 
software (http://www.ingenuity.com) was used to identify signifi-
cantly enriched biologic functions, pathways, molecular networks, 

Figure 1. Workflow. A, Workflow for isolation of urinary markers. B, Conceptual workflow from data acquisition to 
analysis. FC = fold change, FDR = false discovery rate, ID = identity, LIMMA = linear models for microarray analysis, 
RFE-SVM = recursive feature elimination with support vector machine, ROC = receiver operating characteristics.

http://www.ingenuity.com
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and regulatory molecules concerning the differentially expressed 
genes (Fig. 1B).

The differentially expressed probes were subjected to feature 
selection using an ensemble of four ML algorithms deployed in par-
allel (random forest [32], recursive feature elimination using sup-
port vector classifier [33], logistic regression with lasso [34], and 
Boruta [35]) to find the best subset of probes that differentiate sep-
sis from control subjects (Fig. 1B). For random forest, we ranked 
selected probes by their importance score (the set was truncated 
when the cumulative importance of the model upon inclusion of the 
next probe did not increase by 0.1%) to select 200 probes. Recursive 
feature elimination recursively dropped low-importance features 
from the support vector machine algorithm to select 200 probes. 
Lasso used L1-regularization (36) on the coefficients obtained from 
logistic regression to select 266 probes. Boruta selected 49 probes at 
the end of 100 iterations based on rankings provided by an internal 
random forest (37). Each of the methods was parameterized inside 
a five-fold cross validation design (Supplementary Table S2 http://
links.lww.com/CCX/A276). To obtain the final feature set from 
the ensemble, we used a voting strategy that retained probes that 
appear in at least two, three, or all four algorithms (Supplementary 
Methods http://links.lww.com/CCX/A264).

The final subset of probes was validated using independent 
validation cohort normalized separately from discovery cohort to 
prevent any information leakage. We employed three ML mod-
els (support vector machine, random forest, and logistic regres-
sion) that were trained and tuned on the discovery cohort. We 
calculated multiple performance metrics including area under 
curve, sensitivity, specificity, accuracy, and positive and negative 
predictive values. The 95% CIs for every performance metric in 
each model were estimated by bootstrapping the validation cohort 
without replacement 100 times.

We used R, version 3.4.2 (R Foundation for Statistical Computing, 
Vienna, Austria) and Python language, version 2.7 (Python Software 
Foundation, Fredericksburg, VA) as programming software and 
SAS, version 9.4 (SAS Institute, Cary, NC) for descriptive analyses. 
PubMed was searched using text mining to identify articles that 
match this final subset of genes to the keyword “sepsis” using the 
R package “rentrez” (38). The resulting articles were reviewed by 
authors (S. Bandyopadhyay, K.F., H.V.B., A.B.) to provide an over-
view of biologic functions of identified genes in sepsis. Boruta was 
implemented using “BorutaPy” package in Python. An automated 
analytic framework for the entire process in Figure 1B was imple-
mented using Bioconductor (Version 3.7, Bioconductor Project, 
Roswell Park Comprehensive Cancer Center, NY) in R and scikit-
learn (Version 0.19.2) (39) in Python and is available on Github at 
https://github.com/Prisma-pResearch/Urinary-signature-of-sepsis-.

RESULTS

Patient Cohorts
Compared with control patients, sepsis patients were younger 
but had similar comorbidity burden (Table  1). None of the 
control patients experienced sepsis within 7 days of surgery. 
Supplementary Table S3 http://links.lww.com/CCX/A277 shows 
the different surgery types control patients were scheduled for. 
Proportion of patients who had preexisting kidney disease within 

sepsis and control cohorts was not significantly different. The 
groups did not differ in the SOFA score obtained on the day of 
urine sampling although sepsis patients had higher biomarkers 
of infection, as expected. For control patients, SOFA scores were 
obtained on the day of the surgery and included both preopera-
tive and postoperative evaluations. The initial urine samples were 
collected within a median of 7 hours (range 3–11 hr) of sepsis 
onset. We excluded patients whose primary cause of sepsis was 
urinary tract infection, because these patients had a significantly 
higher total RNA mass that is indicative of a greater urinary cell 
count. The p value of a single-tailed t test assuming equal vari-
ance between the two groups was 0.008. F test showed that the two 
groups have equal variance with an F value of 2.41E-6, whereas the 
F critical is 1.714. Furthermore, we did sensitivity analysis, which 
showed that the differentially expressed gene sets with and with-
out urinary tract infection (UTI) patients are nearly identical. If 
the UTI sepsis patients are added, eight genes, namely, ADGRE2, 
ADGRE5, IFITM1, IFRD1, KLHL2, LYST, MAPK14, and STX11, 
are added to the previous list of 1,048 differentially expressed 
genes, making the change insignificant.

The Acute Urinary Molecular Response to Sepsis
Within 12 hours of sepsis onset, we identified a distinct transcrip-
tomic profile in the urinary cells retrieved from the fresh pellet 
with 2,434 (3.6%) of 67,528 probes being differentially expressed 
compared with control patients (FDR ≤ 0.01 and absolute fold 
change ≥ 2) (Supplementary Fig. S2 A–C http://links.lww.com/
CCX/A266). Majority of probes were up-regulated (1,186 probes 
for 905 genes) compared with controls with a good separation in 
a principal component analysis (Supplementary Fig. S2D http://
links.lww.com/CCX/A266).

The IPA functional analysis showed up-regulation of pathways 
related to innate immunity, actin cytoskeleton, cell cycle, protein 
synthesis, and presence of reactive oxygen species in sepsis. Nuclear 
factor of activated T cells in regulation of immune response, cell 
division cycle 42 signaling, neuroinflammation signaling pathway, 
fragment crystallizable gamma receptor-mediated phagocytosis in 
macrophages and monocytes, integrin and hypoxia signaling were 
the top five up-regulated canonical pathways in sepsis patients. 
The peroxisome proliferator-activated receptor alpha/retinoid X 
receptor alpha pathway was significantly down-regulated (Fig. 2A).  
We used pathway overlap graph that connects pathways that 
have at least 10 molecules in common to reveal the presence of 
four major different clusters of genes related to innate immunity, 
cell cycle and metabolism, cell morphology, and motility and 
hypoxia (Supplementary Fig. S3 http://links.lww.com/CCX/
A267). Biofunctions concerning infection, cellular movement, 
and migration and leukocyte quantity, migration, invasion, and 
proliferation were significantly up-regulated in sepsis patients, 
whereas cell death, apoptosis, and necrosis were down-regulated 
compared with control preoperative patients (Fig. 2B). Interferon-
gamma, interleukin (IL)-1 beta, tumor necrosis factor, IL-6, and 
IL-5 were identified as key upstream regulators for the 1,048 
genes (Supplementary Table S4 http://links.lww.com/CCX/
A278). The primary gene coexpression network was associated 
with lipid metabolism and molecular transport (Supplementary 
Fig. S4 http://links.lww.com/CCX/A268). Approximately 23% of 
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TABLE 1. Clinical Characteristics of Patients in Discovery and Validation Cohorts

Variables

Discovery Cohort Validation Cohort

Sepsis Patients 
(n = 145)

Control Patients 
(n = 32) p

Sepsis Patients 
(n = 41)

Control Patients 
(n = 32) p

Baseline characteristics

Female sex, n (%) 67 (46) 9 (28) 0.076 17 (41) 16 (50) 0.488

Age, yr, mean (sd) 59 (15) 70 (9) < 0.001 55 (18) 64 (11) 0.019

Race, n (%)   0.457   0.175

 White 130 (90) 30 (94)  37 (90) 27 (84)  

 African American 12 (8) 1 (3)  4 (10) 2 (6)  

 Other 3 (2) 1 (3)  0 (0) 3 (9)  

Body mass index, median (25–75th) 29 (25–34) 26 (22–32) 0.064 29 (25–40) 27 (24–34) 0.114

Comorbidities, n (%)

 Charlson comorbidity index, median (25–75th) 1 (0–3) 1 (0–1) 0.084 1 (0–2) 1 (0–2) 0.826

 Chronic kidney disease 19 (13) 7 (22) 0.267 6 (15) 7 (22) 0.5478

 Hypertension 102 (70) 23 (72) 1 29 (71) 27 (84) 0.264

 Diabetes 43 (30) 6 (19) 0.277 9 (22) 10 (31) 0.427

 Chronic pulmonary disease 51 (35) 12 (38) 0.84 9 (22) 9 (28) 0.592

 Congestive heart failure 23 (16) 5 (16) 1 6 (15) 8 (25) 0.37

Interfacility hospital transfer, n (%) 72 (50) 10 (31) 0.078 16 (39) 7 (22) 0.136

Time between sepsis onset and sample 
collection (hr), median (25–75th)

7 (3–11) NA  7 (4–12) NA  

Acuity at the time of sampling

Sequential Organ Failure Assessment score, 
median (25–75th)

6 (3–8) 5 (3–8) 0.269 6 (3–7)  6 (5–8) 0.939

Primary sepsis source, n (%)

 Intra-abdominal sepsis 61 (42) NA  18 (44) NA  

 Pneumonia 31 (21) NA  8 (20) NA  

 Necrotizing soft-tissue infection 26 (18) NA  7 (17) NA  

 Surgical site infection 19 (13) NA  1 (2) NA  

 Othera 8 (6) NA  7 (17) NA  

Sepsis severity on enrollment, n (%)

 Sepsis 2 criteria

  Sepsis/severe sepsis 112 (77) NA  33 (80) NA  

  Septic shock 33 (23) NA  8 (20) NA  

 Sepsis 3 criteria

  Sepsis 108 (74) NA  32 (78) NA  

  Septic shock 28 (19) NA  5 (12) NA  

Lactate (mmol/L), median (25–75th) 1.8 (1.3–2.9) 0.7 (0.6–1) < 0.001 1.7 (1.2–2.5) 1.9 (1.1–4.6) 0.747

Serum creatinine (mg/dL), median (25–75th) 1.0 (0.7–1.5) 1.1 (0.9–1.3) 0.676 1.1 (0.9–1.7) 0.9 (0.7–1.1) 0.08

WBC count (thou/cu mm), median (25–75th) 17 (12–22) 10 (8–15) < 0.001 19 (14–26) 10 (8–16) < 0.001

Outcomes

Hospital mortality, n (%) 11 (8) 1 (3) 0.697 6 (15) 0 (0) 0.032

Days in ICU, median (25–75th) 8 (4–18) 6 (4–10) 0.245 10 (5–15) 5 (3–11) 0.064

Days in hospital, median (25–75th) 18 (9–28) 11 (6–16) 0.016 17 (11–30) 9 (7–16) < 0.001

NA = not available.
aOther primary sepsis source includes catheter-related bloods, empyema, bacteremia, and esophageal perforation.
Significance level is set to be 0.05.
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1,048 genes were cross-referenced with sepsis-related literature in 
PubMed (Fig. 2C) with greater than 150 citations associated with 
each of the top five cited genes. 

Immune and Kidney Cell–Specific Transcripts in the 
Urine
IRIS deconvolution methodology was used to examine leu-
kocyte populations in the urine cell pellet in the early sepsis. 

Deconvolution identified up-regulation of marker genes for neu-
trophils and monocytes and down-regulation for T-lymphocytes 
(Fig. 3, A and B and Supplementary Table S5 http://links.lww.
com/CCX/A279). We calculated an average expression of the sig-
nature transcripts of each immune subset and used it as a proxy for 
the relative amount of that cell type in the urine pellet. Cell propor-
tions by in silico deconvolution demonstrated significant increases 
in neutrophils and monocytes in septic patients (Supplementary 

Fig. S5A http://links.lww.com/
CCX/A269). Applying simi-
lar methodology on previously 
described signature transcripts 
for different nephron segments, 
we identified the up-regulation 
of marker genes for tubular epi-
thelial cells from the collect-
ing duct (Fig.  3, C and D and 
Supplementary Table S6 http://
links.lww.com/CCX/A280). Cell 
proportions demonstrated sig-
nificant increases in epithelial 
cells from all nephron regions in 
sepsis patients (Supplementary 
Fig. S5B http://links.lww.com/
CCX/A269). Flow cytometry of 
the urine samples from 10 ran-
domly selected septic patients 
demonstrated the presence of 
both CD4 + (3.3% of all cells) and 
CD8 + T cells (0.7% of all cells), 
CD14 + macrophages (0.7% of all 
cells), and CD19 + B cells (1.6% 
of all cells) (Supplementary Fig. 
S6 http://links.lww.com/CCX/
A270).

Identification and Validation 
of Best Discriminating Set 
of Genes
To identify the subset of probes 
that best discriminates sepsis 
patients from controls, we trained 
an ensemble of four ML algo-
rithms (Fig. 1B) using discovery 
cohort and performed voting to 
identify the probes that appeared 
in at least two (233 probes), three 
(64 probes), or all of the four (42 
probes) models. All three subsets 
were subsequently validated using 
validation cohort using random 
forest, support vector machine, 
and logistic regression models 
whose hyperparameters were 
tuned on the discovery cohort. 
The support vector machine 

Figure 2. Pathways and biofunctions in the acute response to sepsis (within 12 hr of sepsis onset), compared with 
control patients. A, Ingenuity pathway analysis (IPA) of differentially expressed probes showed up-regulation of pathways 
mainly related to innate immunity, actin cytoskeleton, cell cycle and protein synthesis, and presence of reactive oxygen 
species in sepsis. The few pathways that were down-regulated in sepsis patients mainly corresponded to peroxisome 
proliferator-activated receptor pathway. p values are calculated by IPA software using the right-tailed Fisher exact test 
to measure likelihood that pathways or functions are overrepresented by molecules in dataset. B, Ingenuity disease and 
biofunction analysis of differentially expressed probes in sepsis patients. 
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performed best across all gene subsets with similar performance 
between 233 and 64 probe sets, whereas reduction to the 42 probes 
resulted in a decrease in performance (Table  2, Supplementary 
Table S7 http://links.lww.com/CCX/A281 and Supplementary Fig. 
S7 http://links.lww.com/CCX/A271). The functional analysis of 
these 239 genes (Supplementary Fig. S8 http://links.lww.com/CCX/
A272) revealed up-regulation in pathways related to migration and 
adhesion of neutrophils and phagocytic cells, IL-8 signaling, and neu-
roinflammation, whereas peroxisome proliferator-activated receptor 
alpha/retinoid X receptor alpha pathways remained significantly 
down-regulated (p < 0.01) (Supplementary Fig. S9 http://links.lww.
com/CCX/A273). We investigated the presence of biologically inter-
connected subsets of genes among the 239 genes (Supplementary 

Methods http://links.lww.com/CCX/A264) and 
discovered that several gene products repeatedly 
co-occurred in the significant pathways, including 
transcription factor p65 (16 of 17 pathways), IL-1B, 
protein kinase C delta and prostaglandin-endoper-
oxide synthase 2 (eight of 17 pathways), transform-
ing growth factor beta 1, IL-8, and toll-like receptor 2 
(six of 17 pathways) (Supplementary Fig. S10 http://
links.lww.com/CCX/A274).

DISCUSSION
In a single-center prospective cohort of patients with 
sepsis, an ensemble of four ML algorithms identified 
239 gene expressions unique to systemic immune 
and kidney-specific processes using whole-genome 
transcriptomic analysis of cellular RNA isolated from 
urine samples within 12 hours of sepsis onset. The 
functional analysis of these genes displays the up-reg-
ulation of innate immune response, cellular motility 
and extravasation, cellular hypoxia, and production of 
oxidative species. This pattern resembles gene expres-
sion signatures observed in studies of circulating 
immune cells from the blood of septic patients with 
activation of the innate immune response (40–42), 
up-regulated cellular motility (43), cellular hypoxia 
(43), and production of oxidative species (44), and 
demonstrates the potential use of urinary immune 
cells as an indicator of systemic processes. The overall 
pathway activations exhibited by the urinary signature 
are comparable with functional analysis using blood 
transcriptomics reported in previous studies (45–48). 
Immune deconvolution analysis showed the ampli-
fication of gene markers for an array of immune cell 
types, particularly monocytes and neutrophils, under-
lining the role of innate immune response in early sep-
sis and confirming the ability to identify immune cell 
subsets in the urine. Additionally, the deconvolution 
analysis found kidney-specific transcripts in urine 
with up-regulation of tubular epithelial cells.

To our knowledge, this study represents the 
first urine-based gene expression study in sepsis. 
Although a readily available biofluid rich in cells and 

nucleic acids, urine has been underutilized for the development of 
biomarkers in sepsis. Previous studies have shown diagnostic and 
prognostic potential of urine messenger RNA and micro RNA in 
identifying acute and chronic graft rejection in kidney transplant 
recipients (18, 49, 50) and in diagnosis and risk stratification of 
urologic malignancies (51, 52). Unlike blood, urine can reflect the 
kidney response in sepsis, which shows damage associated with 
oxidative stress, hypoxia, and inflammation leading to cell death 
and epithelial-to-mesenchymal tissue remodeling (53).

Our study has several unique strengths. We applied an ensem-
ble of ML algorithms to find an optimal subset of genes discrimi-
native of sepsis while preserving relevant nonlinear relationships 
among them. This ensemble tuned to discovery cohort yielded 

Figure 2. (Continued)  C, Genes with the highest number of publications cross-referenced in 
PubMed with the term “sepsis.” Among 1,048 genes that were described by the differentially 
expressed probes, 23% were cross-referenced in PubMed. Genes that were cross-referenced with 
at least 50 PubMed references are shown here. AES = amino enhancer of split protein, AHR = 
aryl hydrocarbon receptor, APP = amyloid precursor protein, CAST = calpastatin, CD14 = cluster 
of differentiation 14, CD68 = cluster of differentiation 68, Cdc42 = cell division control protein 
42 homolog, CSF3R = colony stimulating factor 3 receptor, CXCR4 = chemokine (C-X-C motif) 
receptor 4, EIF2 = eukaryotic initiation factor 2, Fcγ = Fc gamma, fMLP = N-Formyl-methionyl-
leucyl-phenylalanine, FOS = FBJ murine osteosarcoma viral oncogene homolog B, HIF1A = 
hypoxia-inducible factor 1 alpha subunit inhibitor, HLA-B = major histocompatibility complex, class 
I B, ICAM1 = intercellular adhesion molecule 1, IL-1B = interleukin-1 beta, IL-8 = interleukin-8, 
iNOS = inducible nitric oxide synthase, ITCH = E3 ubiquitin-protein ligase itchy homolog, MSN = 
moesin, NFAT = nuclear factor of activated T-cells, NFE2L2 = nuclear factor, erythroid 2 like 2, 
NFKBIA = NF-kappa-B inhibitor alpha, PI3K/AKT = phosphoinositide 3-kinase/protein kinase B, 
PPARα = peroxisome proliferator-activated receptor alpha, PTGS2 = prostaglandin-endoperoxide 
synthase 2, RELA = V-rel avian reticuloendotheliosis viral oncogene homolog A, RXRα = retinoid 
X receptor alpha, STAT3 = signal transducer and activator of transcription 3 (acute-phase response 
factor), TGFB1 = transforming growth factor beta 1, TLR2 = toll-like receptor 2, TREM1 = 
triggering receptor expressed on myeloid cells 1, UBC = ubiquitin C, VIM = vimentin.

http://links.lww.com/CCX/A281
http://links.lww.com/CCX/A271
http://links.lww.com/CCX/A272
http://links.lww.com/CCX/A272
http://links.lww.com/CCX/A273
http://links.lww.com/CCX/A273
http://links.lww.com/CCX/A264
http://links.lww.com/CCX/A274
http://links.lww.com/CCX/A274
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Figure 3. Immune and kidney cell–specific transcript changes in the acute response to sepsis. A, Immune cell deconvolution showing the overall percentage 
differential regulation of immune cell-specific markers (selected from the 1,622 genes from immune response in silico [IRIS] resource; see Materials and 
Methods) between sepsis and control patients. There was predominant up-regulation of neutrophil and monocyte markers, a mixed-response in B cells and 
dendritic cells, and down-regulation of NK cells and T cells. B, Heatmap of immune cell-specific/enriched markers (selected from the 823 genes from IRIS 
resource) in the sepsis and control patients. Most of the signature genes in B cells, T cells, and NK cells are underexpressed, and most of the signature genes in 
neutrophils and monocytes are overexpressed in sepsis compared with controls. 
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Figure 3. (Continued) C, Kidney cell deconvolution showing overall percentage differential regulation of kidney cell–specific markers (selected from the 472 
genes selected from Chabardès-Garonne et al [28]; see Materials and Methods) between sepsis and control patients. This showed up-regulation of transcripts 
from the collecting ducts (CDs). D, Heatmap of kidney cell–specific/enriched markers in sepsis and vascular patients. No clear pattern was observed here.  
*p < 0.05, **p < 0.01, ***p < 0.001. DCT = distal convoluted tubule, NK = natural killer, TAL = thick ascending limb.
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very strong classification of sepsis from control subjects in the 
external validation cohort using a modest number of genes, thus 
confirming our hypothesis that changes in urinary cells may 
reflect ongoing systemic processes discovered in transcriptomic 
analyses of blood samples (6, 54).

There are some general clinical differences between our discov-
ery and validation cohorts.

This is expected as the validation cohort is a completely inde-
pendent sample collected at a different time point compared with 
the discovery cohort. The robust performance of our ML models 
on this independent validation cohort proves that our models have 
succeeded in extracting a general set of features representing the dis-
ease state compared with some cohort-specific idiosyncrasies. This 
is one of the largest sepsis cohorts with complete clinical, immuno-
logic, and molecular characterizations and long-term follow-up of 
the patients. We have applied rigorous methodology including the 
use of independent validation cohort to improve generalizability of 
our results and to overcome the limitation of a modest sample size.

Our study has limitations. The cost to prospectively enroll 
critically ill patients, obtain samples within 12 hours of sepsis 
onset, and analyze full-genome data was a determining factor for 
the limited size of the discovery and validation cohorts. We have 
taken multiple steps to ensure that class imbalance in the discov-
ery cohort does not hinder the accuracy of our results including: 
1) training using scikit-learn packages with class balancing ability 
wherein the ML model is biased toward the class with lower sam-
ples to a degree commensurate with the imbalance and 2) using 
a threshold that maximizes the Youden index rather than default 
threshold equal to 0.5 for calculating performance metrics. 
Although the current results are promising as they show dysregu-
lation of gene expression of key cellular subsets in sepsis, addi-
tional comparisons will need to be made with patients with more 
pronounced systemic inflammatory syndrome. Furthermore, our 
future work will include evaluating the ability of urinary metabo-
lomics compared with transcriptomics to differentiate sepsis from 
noninfected controls and to perform a complete comparison of 
pathways activated in urinary transcriptomics against those up-
regulated in blood transcriptomics of sepsis.

CONCLUSIONS
The whole-genome transcriptomic analysis of cellular RNA iso-
lated from the urine samples of septic patients reveals changes in 
gene expressions unique to systemic immune and kidney-specific 

processes as early as within 12 hours of sepsis onset. Future 
studies need to confirm whether this approach can comple-
ment blood transcriptomic approaches for sepsis diagnosis and 
prognostication.
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Raw and normalized expression data for discovery and validation cohorts 
discussed in this article have been deposited in National Center for Bio-

TABLE 2. Performance of Selected Probe Sets on External Validation Data Using Support 
Vector Machine

No. of 
Probes

Area Under the 
Curve (95% CI)

Accuracy  
(95% CI)

F1 Score  
(95% CI)

Sensitivity  
(95% CI)

Specificity  
(95% CI)

Positive Predictive 
Value (95% CI)

NPV  
(95% CI)

233 0.86  
(0.77–0.93)

0.77  
(0.70–0.88)

0.81  
(0.71–0.90)

0.84 
(0.72–0.95)

0.70 
(0.51–0.86)

0.77  
(0.67–0.91)

0.77  
(0.64–0.92)

64 0.87  
(0.80–0.93)

0.77  
(0.66–0.85)

0.76  
(0.66–0.86)

0.70 
(0.55–0.84)

0.85 
(0.70–0.95)

0.85  
(0.72–0.96)

0.69  
(0.53–0.84)

42 0.78  
(0.67–0.88)

0.71  
(0.61–0.82)

0.73 
 (0.61–0.83)

0.70 
(0.55–0.84)

0.75 
(0.61–0.93)

0.79  
(0.66–0.93)

0.66  
(0.51–0.83)

NPV = negative predictive value.
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technology Information's (NCBI’s) Gene Expression Omnibus (Edgar R, 
Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression 
and hybridization array data repository. Nucleic Acids Res 2002; 30:207–
210) and are accessible through Gene Expression Omnibus series acces-
sion numbers GSE112100 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE112100), GSE112099 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE112099), and GSE112098 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE112098).

For information regarding this article, E-mail: abihorac@ufl.edu
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