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Abstract
Background. Understanding the trajectory and development of disease is important and the knowledge can be 
used to find novel targets for therapy and new diagnostic tools for early diagnosis.
Methods. Large cohorts from different parts of the world are unique assets for research as they have systematically 
collected plasma and DNA over long-time periods in healthy individuals, sometimes even with repeated samples. 
Over time, the population in the cohort are diagnosed with many different diseases, including brain tumors.
Results. Recent studies have detected genetic variants that are associated with increased risk of glioblastoma and 
lower grade gliomas specifically. The impact for genetic markers to predict disease in a healthy population has 
been deemed low, and a relevant question is if the genetic variants for glioma are associated with risk of disease 
or partly consist of genes associated to survival. Both metabolite and protein spectra are currently being explored 
for early detection of cancer.
Conclusions. We here present a focused review of studies of genetic variants, metabolomics, and proteomics 
studied in prediagnostic glioma samples and discuss their potential in early diagnostics.

Keywords

genetic variants | glioblastoma | metabolites | prediagnositic sample | proteins.

Several reviews have highlighted that a liquid biopsy in the 
form of a blood sample could potentially be useful in glioma 
diagnostics either by screening of high-risk individuals or at 
certain symptoms.1–3 The development of cancer has been 
suggested to start 7–8  years before diagnosis in breast and 
colorectal cancer, and recent studies have suggested a sim-
ilar trajectory for glioma, which provides a strong rationale to 
study biomarkers that can be used for detection of these dis-
eases at an earlier stage.4,5 Worldwide there are several co-
horts with individuals that have given blood samples while 
healthy. These cohorts are followed over time and linkage to 
diagnostic registries allows the identification of individuals 
that later develop glioma, providing a unique opportunity to 
investigate the potential role of biomarkers for early detection 

of glioma. Studies nested within the cohorts are efficient, es-
pecially for investigating the useful biomarkers. Controls can 
be randomly chosen from the cohort who have not been diag-
nosed at the same time point as the corresponding case, that 
is, nested case–control study design. In addition to matching 
on the time of diagnosis, controls can also be matched on sev-
eral factors such as age at blood sampling, gender, and time 
point of blood sampling to reduce confounding. An alternative 
study design, case–cohort design, is using a case set for dif-
ferent diseases and comparing with cohort controls, that is, a 
subcohort that represents the whole cohort.6

The current review highlights some of the existing studies 
performed in prediagnostic samples with different omics 
techniques.

Prediagnostic biomarkers for early detection of 
glioma—using case–control studies from cohorts as 
study approach
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Methods

Search Strategy and Study Selection

We performed a comprehensive literature search in 
PubMed database to identify relevant studies published 
through February 23, 2022. The searches typically included 
4 key terms “glioma,” “biomarkers,” “early-detection,” 
and “pre-diagnostic sample.” We especially focus on the 
early-detection role of biomarkers. The references of the 
identified articles were also searched for other relevant ar-
ticles. Studies included into this review have to meet the 
following inclusion criteria: (1) Studies used prediagnostic 
samples to investigate the relationship between bio-
markers, including genetic variants, metabolites, and 
proteins, and glioma risk; (2) Studies in cohort design or 
nested within cohort design (ie, nested case–control study 
and case–cohort study). We excluded the studies that were 
not written in English, not conducted on humans and pub-
lished as letters, case reports, and meeting records.

Results

Table 1 summarizes the studies that were included in this 
review. The following section was divided into (1) genetic 
predisposition, (2) metabolites, and (3) proteins.

Genetic Predisposition

Glioma predisposition caused by highly penetrant gene 
mutations occurs at low incidence.7 In addition to these 

rare mutations, common genetic variants have been linked 
to the risk of developing glioma.8–11 The genetic variants 
may be deeply involved in the biological development of 
glioma, but the functional mechanisms are only known in a 
few cases.12 The fact that the genetic variants in most cases 
are located in or in close proximity to genes commonly so-
matically mutated in glioma suggests a functional impor-
tance (Figure 1).

The common genetic risk variants for glioma have been 
confirmed in several independent studies, of which most 
are using a case–control design. Since an individual’s 
germline genetic variants will not change during the 
course of disease, causation bias is not an issue in these 
studies. Selection bias and survival bias are however of 
more concern in case–control studies of a disease with 
high disease-related mortality such as glioma. Considering 
the potential survival bias, Rajaraman et  al. compared 
the findings from 7 susceptibility regions, including TERT, 
EGFR, CCDC26, CDKN2B, PHLDB1, and RETL1, between 
cohort and case–control design.13 The consistent findings 
were shown in both designs. However, greater association 
was found in 2 variants (rs6010620 in RETL and rs2736100 
in TERT) in cohort studies, which implied a certain extent of 
survival bias. Wibom et al. demonstrated the potential of 
using the nested case–control study design to validate the 
previous GWAS findings.14 Most genetic variants have an 
association in the same direction as previous studies, even 
if there is limited power for significant results.

Genetic variants with small effects can be combined and 
used as polygenetic risk score to estimate the glioma risk. 
However, due to low absolute lifetime risk, using genetic 
variants as biomarkers for early detection in the population-
level screening is not useful.15 Although the common genetic 
variants alone are not useful for risk prediction in the general 
population, the genetic variants have been associated with 
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Figure 1. Overview of genomic and metabolomic classification of glioma with hypothesized pathways of importance. The differentiation of glioma 
subgroups by genomics and metabolomics provides a potential avenue for early diagnoses of glioma by a combined biomarker risk score.
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different subgroups of glioma,16 lending some support that 
the variants could be included into future combined bio-
marker panels including other more predictive biomolecules.

Metabolites

Glioma can be defined as a metabolic driven disease both by 
in 1 subgroup detection of IDH mutations and the metabolic 
reprogramming of different subgroups.17 Prediagnostic 
samples are preferred as the samples taken at glioma diag-
noses and at surgery might be affected by several factors 
that might change, such as stress, treatment with cortico-
steroids, seizure control drugs, or the sample been taken 
with arterial or venous puncture.18 A standard protocol such 
as sample collection, storage, preparation steps, and op-
erating processes is therefore crucial to control the noise 
and variation in the experiments for reproducibility. Data 
preprocessing procedures, that is, identifying metabolites 
from raw data, and suitable multivariate analysis, also play 
important roles to find the true association.19 Few studies 
have investigated broader metabolite spectra in gliomas 
using prediagnostic samples. In a study of prediagnostic 
serum samples from JANUS biobank in Norway, we 

observed increased levels of several metabolites such as to-
copherol, erythritol, and myo-inositol in samples from indi-
viduals that later in life have developed glioblastoma.20 In 
this study, most of the cases had been sampled 5–20 years 
before diagnosis. A small study of 64 cases and 64 matched 
controls that covered wider spectra of metabolites identi-
fied 43 associated metabolites, including arginine/proline, 
antioxidant, and coffee-related metabolites.21 In another 
study, 64 glioma cases from Northern Sweden Health and 
Disease study with repeated plasma samples and 68 single 
time point cases were analyzed. Tightly matched controls 
were used from the same sampling year, similar thawing 
cycles, smoking, and body mass index to be able to sep-
arate differences clearly associated with disease. Fifteen 
significant metabolites associated with the glioma progres-
sion were identified by comparing the 2 repeated samples 
between cases and matched controls. A elevated metabolic 
pattern in glioma cases was observed in blood plasma of 
several metabolites for example myo-inositol, cysteine, 
N-acetylglucosamine, creatinine, glycine, and proline.22 This 
study highlighted the benefits of using repeated samples 
for progression pattern analysis. We combined the signifi-
cant metabolites identified from 3 studies to investigate the 
potential metabolic pathways (Figure 2). The results suggest 
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that glutathione metabolism, cysteine metabolism, urea 
cycle, inositol phosphate metabolism, ammonia recycling, 
glutamate metabolism, inositol metabolism, and glycine 
and serine metabolism might involve in glioma tumorigen-
esis. A common limitation of using collected sample from 
retrospective cohort is that participants often have been re-
cruited 10–20 years ago and some of glioma cases might not 
able to use new classification for example for IDH mutation 
status. Larger validation studies of the most promising me-
tabolites are necessary to understand the potential of meta-
bolic biomarkers in different diagnostic settings.

Proteins

Few studies have explored proteomics in prediagnostic 
samples from glioma cases, likely due to the fact that the 
techniques still are being developed to be able to study 
the full proteome. A suggested theory for glioma develop-
ment is that the innate immune system is of importance of 
glioma development. The innate immune system could re-
lease proteins before the development of symptoms that 
would render a radiological examination. One potential bi-
ological mechanism would be chronical inflammation as a 
mediator in tumor development. For example, release of in-
flammatory proteins such as cytokines that have been sug-
gested also for several other cancer categories.23 In glioma, 
studies which investigated few proteins have also been 
done such as immunoglobulin E (IgE), insulin-like growth 
factor (IGF), EGFR, and ErbB2. IgE and specific IgE are al-
lergy biomarkers which have been used in medical atopy 
diagnostics. There were 3 nested case–control studies that 
using prediagnostic samples to investigate the associa-
tion between serum IgE level and glioma risk.24–26 Two of 
them showed significantly negative association, especially 
in women. A  review study concluded negative associa-
tion between total IgE level but not respiratory allergen-
specific IgE.27 IGF plays important role in human growth 
and normal brain development and it was associated with 
increased risk of several cancers.28 Two nested case–con-
trol studies and 1 cohort have investigated the association 
between IGF-I and IGF-binding proteins and glioma risk in 
prediagnostic samples.29–31 Higher circulating IGF-I seemed 
to increase the risk of low-grade gliomas but reverse causa-
tion bias could not be excluded. Interestingly, a Mendelian 
randomization study using genetic instruments for serum 
IgE and plasma IGF-I levels could not support their etio-
logical roles of glioma.32 Späth et al. evaluated the soluble 
EGFR, a growth factor commonly amplified and mutated 
in glioblastoma, and ErbB2 concentration in 593 cases and 
590 matched controls in JANUS biobank and showed in-
creased levels long before glioma development.33 Brenner 
et al. evaluated 14 serum proteins in 457 case–control sets 
from a military cohort and found that IL-15 and IL-16 were 
associated with lower glioma risks.34 In a study of 277 
prediagnostic cytokines in the JANUS biobank an observed 
pattern of 12 cytokines that were stronger with a longer la-
tency before diagnoses, but they were not evident within 
5 years of diagnosis.35 In this study, the levels of 4 proteins 
were significantly different in glioma cases compared to 
controls, including sIL10RB, VEGF, IL4, and sIL4RA. In the 
small sample set of 55 cases that had sampling within 

5 years of diagnoses only LIF (leukemia inhibitor factor) and 
interleukin class protein were significant. In a recent study 
from our group, we performed a targeted analysis of 19 
proteins in repeat samples showing associations of other 
inflammatory proteins sVEGFR2, sTNFR2, sIL-2Rα, and 
sIL-6R in glioma patients and matched controls.36

Overall, the findings in the proteomic studies of 
prediagnostic samples so far are still limited due to small 
sample sizes and the number of proteins. Generally, there is 
little consistency between studies. A large-scale discovery 
analysis of protein expression with a broader platform is 
needed to find relevant candidates that may be validated in 
independent samples sets. As metabolites, measurement 
of proteins at the tumor diagnosis might be affected by the 
disease but an advantage of investigating proteins is that 
they are less dependent on fasting status than metabolites. 
However, the limitations are that some proteins might be 
difficult to detect in the samples that have long freezing 
periods. Along with the rest of the omics field, larger 
studies in proteomics with robust validation are warranted.

Conclusions

The development of broad omics analyses with need of 
limited amount of DNA and plasma have paved the way 
for good opportunities to explore both the etiology and 
early detection of disease in the era of personalized med-
icine and precision diagnostics. Genetic variants have 
been discovered that gives us an understanding of the eti-
ology of glioma but have limited contribution to risk pre-
diction. Metabolite studies show some promising results 
but needs further confirmation. Most importantly, the 
samples need to go along with adequate health data in-
formation of the cohort individuals, and information on all 
preanalytical sample conditions that are corner stones for 
being able to detect true biological relevant biomarkers. As 
glioma is a rare disease, collaborative efforts with several 
independent validations are necessary to find robust bio-
markers that can be taken forward to clinical trials.
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