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Objective: This study aimed to develop machine learning-based prediction models to

predict masked hypertension and masked uncontrolled hypertension using the clinical

characteristics of patients at a single outpatient visit.

Methods: Data were derived from two cohorts in Taiwan. The first cohort included

970 hypertensive patients recruited from six medical centers between 2004 and 2005,

which were split into a training set (n = 679), a validation set (n = 146), and a test set

(n = 145) for model development and internal validation. The second cohort included

416 hypertensive patients recruited from a single medical center between 2012 and

2020, which was used for external validation. We used 33 clinical characteristics as

candidate variables to develop models based on logistic regression (LR), random forest

(RF), eXtreme Gradient Boosting (XGboost), and artificial neural network (ANN).

Results: The four models featured high sensitivity and high negative predictive value

(NPV) in internal validation (sensitivity = 0.914–1.000; NPV = 0.853–1.000) and external

validation (sensitivity = 0.950–1.000; NPV = 0.875–1.000). The RF, XGboost, and ANN

models showedmuch higher area under the receiver operating characteristic curve (AUC)

(0.799–0.851 in internal validation, 0.672–0.837 in external validation) than the LRmodel.

Among the models, the RF model, composed of 6 predictor variables, had the best

overall performance in both internal and external validation (AUC = 0.851 and 0.837;

sensitivity = 1.000 and 1.000; specificity = 0.609 and 0.580; NPV = 1.000 and 1.000;

accuracy = 0.766 and 0.721, respectively).

Conclusion: An effective machine learning-based predictive model that requires

data from a single clinic visit may help to identify masked hypertension and masked

uncontrolled hypertension.

Keywords: ambulatory blood pressure monitoring, artificial intelligence, machine learning, hypertension, masked

hypertension, masked uncontrolled hypertension
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INTRODUCTION

Hypertension is a major global health risk, affecting 1.13 billion
people worldwide (1). However, almost half of people are
unaware that they have hypertension (2). It is therefore important
to improve the diagnosis and monitoring of hypertension for
better management of blood pressure (BP) and to reduce the risk
of developing future cardiovascular diseases (CVD) (3).

Masked hypertension (MH) or masked uncontrolled
hypertension (MUCH) is defined as normotensive office BP and
hypertensive out-of-office BP (4–7). MH refers to treatment-
naïve patients and MUCH to patients with prior hypertension
treatments. International registries show that MH/MUCH is
a highly prevalent condition, present in up to one in three
office-controlled patients (8). Patients with MH/MUCH have an
increased risk of mortality and cardiovascular events (6, 9, 10).

Currently, the diagnosis of MH/MUCH depends on out-of-
office BP measurement, including ambulatory BP monitoring
(ABPM) and home BP monitoring (HBPM) (4–7), which take at
least 24 h or 7 days, respectively. Whether MH/MUCH patients
can be diagnosed early based on the clinical features of a single
outpatient visit is still an open question.

Artificial intelligence (AI) approaches have revolutionized the
way data can be processed and analyzed. Several studies have
shown the potential benefits of AI in the prediction of cardiac
arrhythmias, coronary artery disease, heart failure, and stroke
(11, 12). However, the application of AI in hypertension diagnosis
or classification is still limited (13).

The current study aimed to develop machine learning-based
prediction models using accessible clinical characteristics as
input features to identify patients with MH/MUCH in actual
clinical settings. The models we developed may facilitate the
diagnosis of MH/MUCH.

MATERIALS AND METHODS

Data Sources and Patient Selection
Data for this study were derived from two cohorts. In the first
cohort (cohort 1), patients with hypertension were recruited
from six medical centers in Taiwan between 2004 and 2005.
The inclusion criteria were as follows: age 20–50 years; patients
with essential hypertension; body mass index (BMI) ≤35 kg/m2;
fasting glucose level <126 mg/dL without diabetes mellitus;
no medical history of severe diseases, including malignancy
or failure of the heart, lungs, kidneys, or liver; and no acute
disease within 2 weeks prior to the visit. Patients with secondary
hypertension were excluded from the study. The inclusion
and exclusion criteria were described in detailed in a previous
unrelated study (14). The study protocol was approved by the
ethics committees of Academia Sinica and the sixmedical centers.

In the second cohort (cohort 2, the external validation set),
patients with hypertension who visited the outpatient clinic of
Taipei Veteran General Hospital between 2012 and 2020 were
included. The inclusion criteria were as follows: age ≥20 years;
patients with essential hypertension; without a medical history
of severe diseases, including malignancy or failure of the heart,
lungs, kidneys, or liver; and no acute disease within 2 weeks

prior to the visit. Patients with secondary hypertension were
excluded from the study. The inclusion and exclusion criteria
were described in detail in a previous unrelated study (15).

All patients in the two cohorts agreed to participate and
signed the informed consent document for the study. Data
collection from both cohorts were conducted in accordance with
the principles of the Declaration of Helsinki.

Study Design
Data from cohort 1 were used to develop prediction models to
identify patients with MH/MUCH and for internal validation.
Data from cohort 2 were used for external validation. The study
flowchart is shown in Figure 1.

Data Collection and Candidate Variables
In total, 73 and 53 variables were recorded in cohort 1 and
2, respectively (Supplementary Table 1). Of these, 33 variables
were selected or derived as the candidate variables for the
model based on previous literature and taking into account
the accessibility of data from outpatient clinics (4, 5, 7, 16–
27). These candidate variables were as follows: 1. demographic
data [age, male sex, BMI, waist-to-hip ratio (WHR), current
smoker]; 2. office BP parameters [office systolic BP (SBP),
office diastolic BP (DBP), office mean arterial pressure (MAP),
office pulse pressure (PP)]; 3. antihypertensive drug usage
[angiotensin-converting enzyme inhibitor/angiotensin receptor
blocker (ACEI/ARB), beta-blocker, calcium channel blocker
(CCB), thiazide, spironolactone, alpha-blocker, combination
of ACEI/ARB and CCB, combination of ACEI/ARB and
thiazide, combination of ACEI/ARB and CCB and thiazide,
combination of CCB and thiazide, combination of ACEI/ARB
and beta-blocker and CCB and thiazide, antihypertensive drug
number]; and 4. biochemical profiles [total cholesterol (TC),
triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C),
low-density lipoprotein-cholesterol (LDL-C), creatinine, sodium,
potassium, alanine aminotransferase (ALT), uric acid (UA),
glucose, aldosterone, estimated glomerular filtration rate (eGFR)]
(Supplementary Material 1).

Definition of MH/MUCH
MH and MUCH were defined as office BP < 140/90 mmHg and
24-h average BP ≥ 130/80 mmHg and/or awake (daytime) BP ≥

130/80 mmHg and/or asleep (nighttime) BP ≥ 120/70 mmHg
in untreated and treated patients, respectively (5–7). MH and
MUCH were labeled as events based on the office BP and 24-h
ambulatory BP measured in each participant in both cohorts.

Prediction Models
Logistic regression (LR), random forest (RF), eXtreme Gradient
Boosting (XGboost), and artificial neural network (ANN)
were used as the classifiers to obtain a comprehensive
spectrum of prediction models. All the models were developed
using RStudio (version 1.3.1056, RStudio, PBC, Boston, MA,
USA). The algorithms and packages used are listed in
Supplementary Table 2. All models returned discriminative
outputs of 1 to indicate events or 0 to indicate non-events.
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FIGURE 1 | Study flowchart. The data set used in each step is indicated as colored columns on the right side (training set for step 2 and 3, validation set for step 4 to

6, test set for step 7, cohort 2 for step 8). Mean imputation was done to all data sets using the mean of the training set in the LR, RF, and ANN models after splitting.

Standardization was done to all data sets in the LR and ANN models after mean imputation. In step 5, 21 among 33 candidate variables were selected as predictor

variables in the LR model, 6 in RF, 27 in XGboost, and 24 in ANN. The predictor variables were written in descending order of importance. ACEI/ARB,

angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; ACEI/ARB_0, dummy variable of not taking ACEI/ARB; A+B+C+D, combination of ACEI/ARB

and beta-blocker and CCB and thiazide; A+C, combination of ACEI/ARB and CCB; A+C+D, combination of ACEI/ARB and CCB and thiazide; A+D, combination of

ACEI/ARB and thiazide; ALT, alanine aminotransferase; ANN, artificial neural network; Beta-blocker_1, dummy variable of taking beta-blocker; Beta-blocker_0,

dummy variable of not taking beta-blocker; BMI, body mass index; CCB, calcium channel blocker; CCB_0, dummy variable of not taking CCB; Current smoker_0,

dummy variable of not current smoker; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein-cholesterol; LDL-C,

low-density lipoprotein-cholesterol; LR, logistic regression; MAP, mean arterial pressure; PP, pulse pressure; SMOTE-NC, synthetic minority oversampling

technique–nominal continuous; Thiazide_0, dummy variable of not taking thiazide; RF, random forest; SBP, systolic blood pressure; TC, total cholesterol; TG,

triglyceride; UA, uric acid; WHR, waist-to-hip ratio; XGboost, eXtreme Gradient Boosting.
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Development of Prediction Models
As shown in Figure 1, the pipeline to develop the prediction
models consisted of the following steps: 1. data collection and
preprocessing; 2. oversampling; 3. training models; 4. tuning
hyperparameters; 5. importance ranking of 33 candidate variables
and feature selection for predictor variables; 6. tuning probability
threshold; 7. performance evaluation (internal validation); and 8.
external validation.

Participants in cohort 1 (n = 970) were randomly split into
training set (n = 679), validation set (n = 146), and test set
(n = 145) in a 0.7/0.15/0.15 ratio with balanced levels. Missing
values in the training set, validation set, test set, and external
validation set were replaced by the mean of all available values
for the same variable in the training set in the LR, RF, and ANN
models (only 3 missing data points out of 26,190 data points in
cohort 1 and 63 missing data points out of 11,232 data points in
cohort 2). In the LR and ANN models, all variables were scaled
(normalized) by subtracting the mean and then dividing by the
standard deviation (SD) of the training set.

Given that there was a class imbalance between events
and non-events and to overcome the accuracy paradox, we
performed the synthetic minority oversampling technique–
nominal continuous (SMOTE-NC) to equalize the number of
events and non-events in the training set (random oversampling
and random undersampling were also performed, but with
poorer performance) (28).

To obtain the maximum area under the receiver operating
characteristic curve (AUC) in the validation set during model
training, we tuned the hyperparameters using a random search
technique (29). Feature importance ranking and supervised
feature selection were performed to prevent overfitting and to
achieve the maximum AUC in the validation set (30). The details
of feature selection are presented in Supplementary Material 2.
We established the confusion matrix and calculated F1 score

(= 2 ×
precision×recall
precision+recall

) while changing the decision threshold

of the classifier from 0 to 1 (threshold-moving) in the
validation set. We then selected the optimal probability threshold
yielding the largest F1 score and published the final models
(Supplementary Material 3). The test set and the external
validation set were always independent of the training and tuning
processes during the development of the models.

Performance Metrics of Internal Validation
To evaluate the performance of various models in the test set,
we computed the sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), accuracy, and F1 score.
Receiver operating characteristic (ROC) curves were plotted
along with the AUC. For AUC calculation, all predicted results
were converted to probabilities.

External Validation
The external validity of the model was then evaluated with the
external validation set. Model discrimination was assessed by
plotting ROC curves and calculating the AUC. The sensitivity,
specificity, PPV, NPV, accuracy, and F1 score were also computed.

Statistical Analysis
Quantitative variables are expressed as mean ± SD, and
categorical variables are expressed as percentages. Continuous
parametric data between cohorts 1 and 2 were compared using an
unpaired Student’s t-test. Continuous parametric data between
the training set, validation set, and test set were compared
by one-way analysis of variance. Non-parametric data were
compared using the Mann-Whitney test. Categorical variables
were analyzed using the chi-square test or Fisher’s exact test.
Spearman’s rank correlation coefficients were calculated between
candidate variables. Statistical significance was inferred at a two-
sided P-value < 0.05. Statistical analysis was performed using the
SPSS software (version 21.0, SPSS Inc., Chicago, IL, USA).

RESULTS

Baseline Characteristics
In cohort 1, there were 970 patients with hypertension; their
mean age was 41.0 ± 7.2 years and 68.5% of them were male.
Heat map showing the Spearman’s correlation coefficients with
significance levels of pairwise comparison between variables is
presented in Supplementary Figure 1. In cohort 2, there were
416 patients with hypertension; their mean age was 62.0 ± 14.2
years and 57.7% of them were male. Compared to cohort 1,
cohort 2 patients had higher WHR (P < 0.001), office SBP
(P < 0.001), office PP (P < 0.001), but lower office DBP
(P < 0.001); used more antihypertensive drugs (P < 0.001),
including more ACEI/ARB (P < 0.001), CCB (P < 0.001),
alpha-blockers (P = 0.021), combination of ACEI/ARB and
CCB (P < 0.001), combination of ACEI/ARB and CCB and
thiazide (P < 0.001), and combination of ACEI/ARB and beta-
blocker and CCB and thiazide (P = 0.001), but less beta-blockers
(P < 0.001); had lower levels of TG (P < 0.001), TC (P < 0.001),
and potassium (P < 0.001), as well as lower eGFR (P < 0.001)
(Table 1). Baseline characteristics of the training set, validation
set, and test set were similar, except HDL-C (P= 0.038) (Table 2).

Proportion of MH/MUCH
In cohort 1, 386 patients fulfilled the criteria of MH/MUCH
(39.8%). In cohort 2, 140 patients fulfilled the criteria of
MH/MUCH (33.7%). The proportions of MH/MUCH were
higher in cohort 1 (P = 0.031) (Table 1).

The proportions of MH/MUCH were similar among the
training set (38.9%), validation set (43.8%), and test set (40.0%)
(Table 2).

Hyperparameters and Importance Rank of
Candidate Variables
The tuned hyperparameters in the four models are
presented in Supplementary Table 3. The top 10 important
variables and their importance in each model are listed in
Supplementary Table 4. The importance matrix plot of the RF
model is presented in Supplementary Figure 2.

Feature Selection
The validation plot showing the trend of AUC to the number of
features in the validation set is shown in Figure 2. Twenty one
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TABLE 1 | Baseline characteristics and the proportion of MH/MUCH in the two cohorts.

Cohort 1 (n = 970) Cohort 2 (n = 416) P-value

Demographic data

Age, years 41.0 ± 7.2 62.0 ± 14.2 <0.001

Male sex, n (%) 664 (68.5%) 240 (57.7%) <0.001

BMI, kg/m2 26.5 ± 3.4 26.1 ± 3.7 0.036

WHR, % 87.6 ± 6.1 91.5 ± 7.1 <0.001

Current smoker, n (%) 232 (23.9%) 22 (5.3%) <0.001

Office BP parameters

Office SBP, mmHg 126.1 ± 14.5 131.6 ± 16.8 <0.001

Office DBP, mmHg 84.9 ± 11.7 81.8 ± 10.5 <0.001

Office MAP, mmHg 98.7 ± 11.9 98.4 ± 11.0 0.671

Office PP, mmHg 41.2 ± 9.8 49.8 ± 14.6 <0.001

Antihypertensive drug usage

Antihypertensive drug number, n 1.5 ± 1.0 1.9 ± 0.9 <0.001

ACEI/ARB, n (%) 410 (42.3%) 276 (66.3%) <0.001

Beta-blocker, n (%) 437 (45.1%) 104 (25.0%) <0.001

CCB, n (%) 405 (41.8%) 306 (73.6%) <0.001

Thiazide, n (%) 157 (16.2%) 83 (20.0%) 0.089

Spironolactone, n (%) 7 (0.7%) 5 (1.2%) 0.276

Alpha-blocker, n (%) 22 (2.3%) 19 (4.6%) 0.021

Combination of ACEI/ARB and

CCB, n (%)

71 (7.3%) 96 (23.1%) <0.001

Combination of ACEI/ARB and

thiazide, n (%)

36 (3.7%) 12 (2.9%) 0.440

Combination of CCB and

thiazide, n (%)

13 (1.3%) 4 (1.0%) 0.557

Combination of ACEI/ARB and CCB and

thiazide, n (%)

26 (2.7%) 34 (8.2%) <0.001

Combination of ACEI/ARB and beta-blocker

and CCB and thiazide,

n (%)

13 (1.3%) 17 (4.1%) 0.001

Biochemical profiles

TC, mg/dL 195.8 ± 35.4 184.4 ± 30.9 <0.001

TG, mg/dL 166.1 ± 112.2 130.3 ± 90.0 <0.001

HDL-C, mg/dL 45.4 ± 12.1 48.6 ± 13.0 <0.001

LDL-C, mg/dL 126.0 ± 31.4 112.0 ± 27.1 <0.001

Creatinine, mg/dL 0.8 ± 0.2 0.9 ± 0.2 0.324

eGFR, mL/min/1.73 m2 129.4 ± 38.3 86.1 ± 19.2 <0.001

Sodium, mmol/L 141.3 ± 2.6 141.0 ± 2.5 0.076

Potassium, mmol/L 4.0 ± 0.3 3.9 ± 0.6 <0.001

ALT, U/L 27.6 ± 19.3 26.1 ± 16.6 0.167

UA, mg/dL 6.6 ± 1.7 6.1 ± 1.5 <0.001

Glucose, mg/dL 98.1 ± 9.2 101.9 ± 18.0 <0.001

Aldosterone, pg/mL 226.5 ± 121.0 122.0 ± 11.5 <0.001

Ambulatory BP parameters

24-h SBP, mmHg 123.2 ± 12.2 122.0 ± 11.5 0.068

24-h DBP, mmHg 82.6 ± 9.5 73.2 ± 8.3 <0.001

Daytime SBP, mmHg 126.1 ± 12.7 123.9 ± 11.9 0.002

Daytime DBP, mmHg 84.9 ± 9.9 74.8 ± 8.5 <0.001

Nighttime SBP, mmHg 114.0 ± 12.8 117.6 ± 12.9 <0.001

Nighttime DBP, mmHg 74.7 ± 10.0 69.5 ± 9.3 <0.001

MUCH/MH, n (%) 386 (39.8%) 140 (33.7%) 0.031

ACEI, angiotensin converting enzyme inhibitor; ALT, alanine aminotransferase; ARB, angiotensin receptor blocker; BMI, body mass index; BP, blood pressure; CCB, calcium channel

blocker; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; MAP, mean

arterial pressure; MH, masked hypertension; MUCH, masked uncontrolled hypertension; PP, pulse pressure; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; UA,

uric acid; WHR, waist-hip ratio.
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TABLE 2 | Baseline characteristics and the proportion of MH/MUCH in the training set, validation set, and test set.

Training set

(n = 679)

Validation set

(n = 146)

Test set

(n = 145)

P-value

Demographic data

Age, years 41.2 ± 6.8 40.5 ± 8.1 41.1 ± 7.8 0.634

Male sex, n (%) 462 (68.0%) 105 (71.9%) 97 (66.9%) 0.598

BMI, kg/m2 26.6 ± 3.4 26.3 ± 3.6 26.7 ± 3.4 0.599

WHR, % 87.6 ± 6.0 87.5 ± 6.8 87.6 ± 5.9 0.974

Current smoker, n (%) 174 (25.6%) 28 (19.2%) 30 (20.7%) 0.156

Office BP parameters

Office SBP, mmHg 126.5 ± 14.5 125.0 ± 15.5 125.3 ± 13.5 0.403

Office DBP, mmHg 85.2 ± 11.5 83.5 ± 13.2 85.3 ± 11.3 0.272

Office MAP, mmHg 99.0 ± 11.7 97.3 ± 13.1 98.6 ± 11.4 0.327

Office PP, mmHg 41.4 ± 9.9 41.5 ± 10.5 40.0 ± 8.6 0.295

Antihypertensive drug usage

Antihypertensive drug number, n 1.5 ± 1.0 1.6 ± 1.0 1.4 ± 0.9 0.250

ACEI/ARB, n (%) 279 (41.1%) 74 (50.7%) 57 (39.3%) 0.076

Beta-blocker, n (%) 308 (45.4%) 69 (47.3%) 60 (41.4%) 0.576

CCB, n (%) 286 (42.1%) 56 (38.4%) 63 (43.4%) 0.637

Thiazide, n (%) 105 (15.5%) 31 (21.2%) 21 (14.5%) 0.191

Spironolactone, n (%) 3 (0.4%) 2 (1.4%) 2 (1.4%) 0.290

Alpha-blocker, n (%) 16 (2.4%) 2 (1.4%) 4 (2.8%) 0.700

Combination of ACEI/ARB and

CCB, n (%)

48 (7.1%) 13 (8.9%) 10 (6.9%) 0.726

Combination of ACEI/ARB and

thiazide, n (%)

26 (3.8%) 7 (4.8%) 3 (2.1%) 0.449

Combination of CCB and

thiazide, n (%)

9 (1.3%) 3 (2.1%) 1 (0.7%) 0.598

Combination of ACEI/ARB and

CCB and thiazide, n (%)

21 (3.1%) 1 (0.7%) 4 (2.8%) 0.263

Combination of ACEI/ARB and

beta-blocker and CCB and

thiazide, n (%)

10 (1.5%) 3 (2.1%) 0 (0.0%) 0.269

Biochemical profiles

TC, mg/dL 194.5 ± 34.7 200.4 ± 36.0 197.0 ± 37.7 0.171

TG, mg/dL 168.2 ± 110.1 172.3 ± 135.0 150.0 ± 94.7 0.158

HDL-C, mg/dL 44.8 ± 11.1 46.2 ± 13.9 47.4 ± 14.0 0.038

LDL-C, mg/dL 125.1 ± 31.4 128.9 ± 31.5 127.2 ± 31.7 0.359

Creatinine, mg/dL 0.8 ± 0.2 0.9 ± 0.2 0.8 ± 0.2 0.553

eGFR, mL/min/1.73 m2 130.0 ± 38.1 126.4 ± 41.0 129.4 ± 36.5 0.594

Sodium, mmol/L 141.2 ± 2.6 141.6 ± 2.8 141.2 ± 2.4 0.273

Potassium, mmol/L 4.1 ± 0.3 4.0 ± 0.3 4.0 ± 0.3 0.421

ALT, U/L 27.8 ± 19.2 27.2 ± 18.9 26.8 ± 20.0 0.805

UA, mg/dL 6.7 ± 1.7 6.7 ± 1.8 6.5 ± 1.6 0.421

Glucose, mg/dL 98.1 ± 9.1 97.5 ± 9.0 98.4 ± 10.0 0.667

Aldosterone, pg/mL 225.4 ± 126.9 232.6 ± 97.0 225.1 ± 115.2 0.799

Ambulatory BP parameters

24-h SBP, mmHg 123.1 ± 12.1 123.0 ± 12.7 124.1 ± 11.8 0.659

24-h DBP, mmHg 82.6 ± 9.4 81.7 ± 10.0 83.0 ± 9.6 0.483

Daytime SBP, mmHg 125.9 ± 12.7 126.1 ± 13.3 126.9 ± 12.3 0.670

Daytime DBP, mmHg 85.0 ± 9.8 84.3 ± 10.4 85.2 ± 9.9 0.661

Nighttime SBP, mmHg 114.1 ± 12.7 113.0 ± 13.1 114.5 ± 12.7 0.568

Nighttime DBP, mmHg 74.9 ± 9.8 73.5 ± 10.4 75.4 ± 10.2 0.219

MH/MUCH, n (%) 264 (38.9%) 64 (43.8%) 58 (40.0%) 0.539

ACEI, angiotensin converting enzyme inhibitor; ALT, alanine aminotransferase; ANN, artificial neural networks; ARB, angiotensin receptor blocker; BP, blood pressure; BMI, body

mass index; CCB, calcium channel blocker; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density

lipoprotein-cholesterol; LR, logistic regression; MAP, mean arterial pressure; MH, masked hypertension; MUCH, masked uncontrolled hypertension; PP, pulse pressure; RF, random

forest; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; UA, uric acid; WHR, waist-hip ratio; XGboost, eXtreme Gradient Boosting.
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FIGURE 2 | Validation plot of feature selection in the LR (A), RF (B), XGboost (C), and ANN (D) models. First spot starts in two features. ANN, artificial neural network;

AUC, area under the receiver operating characteristic curve; LR, logistic regression; RF, random forest; XGboost, eXtreme Gradient Boosting.

predictor variables (spironolactone, alpha-blocker, beta-blocker,
ACEI/ARB, male sex, current smoker, TC, office DBP, TG, LDL-
C, office SBP, thiazide, CCB, office MAP, age, combination of
ACEI/ARB and CCB, creatinine, combination of ACEI/ARB and
thiazide, eGFR, HDL-C, and ALT, written in descending order
of importance) obtained the largest AUC in the LR model. Six
predictor variables (office DBP, office MAP, office SBP, office
PP, beta-blocker, and HDL-C, written in descending order of
importance) obtained the largest AUC in the RF model. Twenty
seven predictor variables (office DBP, office SBP, potassium,
office MAP, aldosterone, WHR, creatinine, TG, eGFR, HDL-
C, LDL-C, office PP, BMI, glucose, sodium, age, TC, ALT, UA,
dummy variable of taking beta-blocker, dummy variable of not
taking CCB, antihypertensive drug number, dummy variable of
not current smoker, male sex, dummy variable of not taking
ACEI/ARB, dummy variable of not taking beta-blocker, and
dummy variable of not taking thiazide, written in descending
order of importance) obtained the largest AUC in the XGboost
model. Twenty four predictor variables (office DBP, office MAP,
eGFR, office SBP, spironolactone, combination of ACEI/ARB and
beta-blocker and CCB and thiazide, current smoker, combination
of ACEI/ARB and CCB and thiazide, TG, beta-blocker, age,
office PP, thiazide, alpha-blocker, ALT, creatinine, combination
of ACEI/ARB and CCB, WHR, male sex, HDL-C, BMI, sodium,

combination of ACEI/ARB and thiazide, and aldosterone, written
in descending order of importance) obtained the largest AUC in
the ANNmodel (Figures 1, 2).

Probability Threshold
The optimal probability thresholds were 0.211, 0.112, 0.020, and
0.245 for the LR, RF, XGboost, and ANNmodels, respectively.

Performance of Prediction Models in
Internal Validation
Figure 3A presents the ROC curves and the AUC obtained in the
test set. The RF model exhibited the largest AUC (0.851, 95% CI
0.789–0.913), whereas the LR model exhibited the smallest AUC
(0.674, 95% CI 0.586–0.762).

The confusion matrix and performance metrics of the four
models in the test set were assessed (Table 3). All models had a
high sensitivity for the prediction of MH/MUCH (0.914–1.000).
The NPVs in the RF, XGboost, and ANN models were also
high (0.927–1.000). However, the specificity (0.333–0.609), PPV
(0.478–0.630), and accuracy (0.566–0.766) were relatively low in
the four models. Among the four models, the RFmodel exhibited
the highest sensitivity (1.000, 95% CI 1.000–1.000), specificity
(0.609, 95% CI 0.507–0.712), PPV (0.630, 95% CI 0.532–0.729),
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FIGURE 3 | Comparison of the ROC curves and the AUC among the developed models for MH/MUCH prediction in internal (A) and external validation (B). ANN,

artificial neural network; AUC, area under the curve; CI, confidence interval; LR, logistic regression; MH/MUCH, masked hypertension/masked uncontrolled

hypertension; RF, random forest; ROC, receiver operating characteristic; XGboost, eXtreme Gradient Boosting.

NPV (1.000, 95% CI 1.000–1.000), accuracy (0.766, 95% CI
0.688–0.832), and F1 score (0.773).

Supplementary Figures 3, 4 present the example decision
tree plots in the training set of the RF and XGboost
models, respectively.

Performance of Prediction Models in
External Validation
The ROC curves and the AUC are shown in Figure 3B. Similar
to the results in internal validation, the RF model exhibited the
largest AUC (0.837, 95% CI 0.800–0.874), whereas the LR model
exhibited the smallest AUC (0.571, 95% CI 0.515–0.627).

The confusion matrix and performance metrics of the four
models in the external validation set were assessed (Table 3). All
models had high sensitivity for the prediction of MH/MUCH
(0.950–1.000). The NPVs in the RF, XGboost, and ANN models
were also high (0.969–1.000). However, the specificity (0.178–
0.580), PPV (0.369–0.547), and accuracy (0.438–0.721) were
relatively low. Among the four models, the RF model exhibited
the highest sensitivity (1.000, 95% CI 1.000–1.000), specificity
(0.580, 95% CI 0.521–0.638), PPV (0.547, 95% CI 0.486–0.608),
NPV (1.000, 95% CI 1.000–1.000), accuracy (0.721, 95% CI
0.675–0.764), and F1 score (0.707).

DISCUSSION

In the present study, we developed four models for MH/MUCH
prediction using patient features obtained in a single outpatient

visit and tested them. All models had high sensitivity and NPV.
The RF, XGboost, and ANN models had AUC and F1 scores
that surpassed those of the LR model. Among them, the RF
model, composed of 6 predictor variables, exhibited the best
overall performance. In addition, age, male sex, current smoker,
office SBP, office DBP, office MAP, office PP, eGFR, creatinine,
TG, HDL-C, ALT, beta-blocker, and thiazide were selected as
predictor variables in more than three models, indicating their
close association with MH/MUCH.

Patients with MH/MUCH had a significantly higher risk
of cardiac/cerebrovascular events than those with controlled
hypertension but a similar risk to those with sustained
hypertension (9, 10). Identifying these patients and initiating
appropriate treatment is a priority. Currently, out-of-office BP
monitoring, either ABPM or HBPM, is the gold standard to
diagnose these patients (4–7). However, the use of out-of-office
BP monitoring is usually limited for many reasons, such as
the shortage of resources, great consumption of time, poor
compliance, and poor adherence of patients (31, 32). It is
important to find a more efficient way to identify this particular
patient group.

To the best of our knowledge, the present study is the first to
report the development and evaluation of prediction models for
MH/MUCH. The strength of the present study is the reasonable
discrimination of the RF model in the external validation set,
despite the high dissimilarity between cohort 1 and 2. The
temporal, geographical, and domain validation of our model (33)
prove its transportability and applicability to actual outpatient
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TABLE 3 | Confusion matrix and performance metrics among the developed models for MH/MUCH prediction (1 represents with MH/MUCH; 0 represents without

MH/MUCH).

Model Actual

MH/MUCH

Sensitivity

(95% CI)

Specificity

(95% CI)

PPV

(95% CI)

NPV

(95% CI)

Accuracy

(95% CI)

1 0

In
te
rn
a
l
v
a
li
d
a
ti
o
n

LR

P
re
d
ic
te
d
M
H
/M

U
C
H

1

0

53

5

58

29

0.914

(0.842–0.986)

0.333

(0.234–0.432)

0.478

(0.385–0.570)

0.853

(0.734–0.972)

0.566

(0.481–0.648)

RF 1

0

58

0

34

53

1.000

(1.000–1.000)

0.609

(0.507–0.712)

0.630

(0.532–0.729)

1.000

(1.000–1.000)

0.766

(0.688–0.832)

XGboost 1

0

54

4

36

51

0.931

(0.866–0.996)

0.586

(0.483–0.690)

0.600

(0.499–0.701)

0.927

(0.859–0.996)

0.724

(0.644–0.795)

ANN 1

0

55

3

39

48

0.948

(0.891–1.005)

0.552

(0.447–0.656)

0.585

(0.486–0.685)

0.941

(0.877–1.006)

0.710

(0.629–0.783)

E
x
te
rn
a
l
v
a
li
d
a
ti
o
n

LR

P
re
d
ic
te
d
M
H
/M

U
C
H

1

0

133

7

227

49

0.950

(0.914–0.986)

0.178

(0.132–0.223)

0.369

(0.320–0.419)

0.875

(0.788–0.962)

0.438

(0.389–0.487)

RF 1

0

140

0

116

160

1.000

(1.000–1.000)

0.580

(0.521–0.638)

0.547

(0.486–0.608)

1.000

(1.000–1.000)

0.721

(0.675–0.764)

XGboost 1

0

137

3

149

127

0.979

(0.955–1.003)

0.460

(0.401–0.519)

0.479

(0.421–0.537)

0.977

(0.951–1.003)

0.635

(0.586–0.681)

ANN 1

0

138

2

213

63

0.986

(0.966–1.005)

0.228

(0.179–0.278)

0.393

(0.342–0.444)

0.969

(0.927–1.011)

0.483

(0.434–0.532)

ANN, artificial neural network; CI, confidence interval; LR, logistic regression; MH/MUCH, masked hypertension/masked uncontrolled hypertension; NPV, negative predictive value; PPV,

positive predictive value; RF, random forest; XGboost, eXtreme Gradient Boosting.

settings. It was suggested that a high NPV, as in the present study,
is desirable when a condition is serious, largely asymptomatic, or
if treatment for a condition is advisable early in its course (34),
which matches the features of MH/MUCH (24).

The reason the RF model produced the best performance may
be attributable to its ability to overcome the multicollinearity
of our given data (35). The RF algorithm was previously used
to define SBP variability features for cardiovascular outcome
prediction in the Systolic Blood Pressure Intervention Trial
(SPRINT) trial (36). While interpreting the importance of multi-
colinear variables is still difficult in the RF algorithm, accuracy
is much less affected (37), making it a favorable algorithm.
Some of the given variables in our dataset are highly correlated
(Supplementary Figure 1), creating a significant hindrance to
linear algorithms such as LR (38).

It is interesting to point out that eGFR and creatinine
were included as predictor variables in three models. Several
studies have shown that MH/MUCH is associated with
the development of chronic kidney disease (CKD) and the
progression of kidney disease (16, 17). MUCH/MH is also
common in patients with CKD and associated with lower
eGFR (18), which is consistent with our finding that eGFR
and creatinine were important variables for the prediction
of MH/MUCH.

In the present study, HDL-C and TG were predictor variables
selected in all and three models, respectively. Previous studies
have found a correlation between metabolic syndrome and
MH/MUCH (6, 19, 20). Although one study reported that MH
patients had greater waist circumference and lower HDL-C than
normotensives (19), another study showed that only office BP

contributed significantly (20). Our results suggest that among
the criteria for metabolic syndrome, HDL-C and TG have higher
significance with the exception of office BP. These findings mark
the complexity of MH/MUCH pathophysiology, and also imply
that different parameters in metabolic syndrome have variable
degrees of impact or association with MH/MUCH, providing us
with further insights into the underlying mechanisms.

It has been suggested by previous studies that patients with
MH/MUCH tend to have a more active sympathetic tone out of
the office due to neurogenic abnormalities (21–23). In the present
study, beta-blocker and alpha-blocker are chosen in all and two
models, respectively, and these drugs are sympathetic antagonists
commonly used to treat CVD and hypertension. However, these
associations are indicated by cross-sectional comparisons, and
direct causal inferences cannot be ascertained.

As for demographic variables, previous studies showed that
smoking was associated with MH/MUCH (5, 6, 24–27). The
prevalence of MH/MUCH is also found to be greater in men
(5, 6, 24, 27). It is consistent with our finding that current
smoker and male sex were important variables for the prediction
of MH/MUCH.

In the present study, MH/MUCH was defined according
to daytime as well as nighttime ambulatory BP. Patients with
MH/MUCH increased from 276 (28.5%) to 386 (39.8%) in
cohort 1 and increased from 70 (16.8%) to 140 (33.7%) in
cohort 2 when we included nighttime BP as one of our criteria
to define MH/MUCH aside from office BP, 24-h average BP,
and daytime ambulatory BP. High prevalence of nighttime
MUCH (or masked uncontrolled nocturnal hypertension) was
also noted in the study by Coccina F et al. in which 357
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(48.5%) patients among 738 treated hypertensive patients were
reported to have nighttime MUCH (39). In their study, patients
with nighttime MUCH had an increased risk of cardiovascular
events compared to those with controlled hypertension.With our
models, physicians could identify patients with not only daytime
but also nighttime MH/MUCH.

Study Limitations
The current study has several limitations thatmust be considered.
First, external validation was only performed in patients
with hypertension in Taiwan. Data with more representation
of diverse populations, a larger sample size, and untreated
patients must be obtained to demonstrate better transportability.
Second, there were some differences between the inclusion
criteria of the two cohorts. Compared to cohort 2, cohort
1 had additional inclusion criteria of “age ≤ 50 years old,”
“BMI ≤ 35 kg/m2”, and “fast glucose level < 126 mg/dL
with no diabetes mellitus.” Despite the differences of baseline
characteristics between the two cohorts, the performance of
our models in external validation was acceptable. Third, HBPM
was not included in the diagnostic criteria for MH/MUCH.
Even though previous studies showed a greater importance of
ABPM to MH (24, 40), the present study may be limited by
not identifying all MH/MUCH patients. Forth, some variables
found to be related to MH/MUCH were not available in our
cohorts, such as echocardiographic variables (41). Finally, our
models were developed to predict MH and MUCH together.
However, there are potential different pathophysiology and
etiology behindMH andMUCH (6, 24). Although some previous
studies also did not differentiate MUCH from MH (41–44),
further studies should be considered to develop models of MH
and MUCH separately in order to increase the accuracy of
prediction models.

CONCLUSION

Patients with MH/MUCH are at an increased risk of CVD
compared to patients with controlled hypertension. Due to their
“masking nature,” they are, however, largely underdiagnosed
and often left untreated. Our machine learning-based prediction
models, especially RF, could assist physicians with their ability
to detect MH/MUCH patients using clinical data obtained in
a single outpatient visit. Through timely and proper handling
of these models, patients with MH/MUCH could be able to

receive early diagnosis and appropriate treatment to prevent
cardiovascular events in the future.
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