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Epithelial-to-mesenchymal transition (EMT), a complicated program through which
polarized epithelial cells acquire motile mesothelial traits, is regulated by tumor
microenvironment. EMT is involved in tumor progression, invasion and metastasis via
reconstructing the cytoskeleton and degrading the tumor basement membrane.
Accumulating evidence shows that resveratrol, as a non-flavonoid polyphenol, can
reverse EMT and inhibit invasion and migration of human tumors via diverse
mechanisms and signaling pathways. In the present review, we will summarize the
detailed mechanisms and pathways by which resveratrol and its analogs (e.g. Triacetyl
resveratrol, 3,5,4’-Trimethoxystilbene) might regulate the EMT process in cancer cells to
better understand their potential as novel anti-tumor agents. Resveratrol can also reverse
chemoresistance via EMT inhibition and improvement of the antiproliferative effects of
conventional treatments. Therefore, resveratrol and its analogs have the potential to
become novel adjunctive agents to inhibit cancer metastasis, which might be partly
related to their blocking of the EMT process.
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INTRODUCTION

In the past 10 years, a large number of studies have been conducted to determine cellular and
molecular mechanisms in cancer invasion and metastasis (1). Epithelial-to-mesenchymal transition
(EMT) has been widely reported to promote the acquisition of metastatic properties for tumor cells
by enhancing mobility and invasion (2). EMT, as an invasive phenotype, is a reversible cellular
program in which cells shed their epithelial features and adopt mesothelial traits (3), generating
both morphological and molecular changes (4). Moreover, EMT is not only associated with cancer
cell proliferation, invasion and metastasis, but also with chemoresistance and cancer cell stemness.
EMT is known as the initial step of the development of metastasis (5), existing in various tumors
such as lung, pancreatic, liver and prostate carcinoma (6–9). Resveratrol (RES) and its analogs
reverse EMT to inhibit metastasis and mitigate chemoresistance via different pathways and
mechanisms in human tumors (Tables 1 and 2). In the present review, we focus on
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TABLE 1 | Summary of mechanisms by which resveratrol inhibits the EMT process.

Disease condition Main mechanism Ref.year

Gastric cancer -reversing doxorubicin resistance by inhibiting mesenchymal markers (b-catenin
and vimentin) through modulating PTEN/AKT signaling pathway

(10) 2017

-prevention of EMT via down-regulating MALAT1 (11) 2019
-suppression of hedgehog signaling pathway (12) 2015
-declining HIF-1a protein levels caused by hypoxia (13) 2020
-targeting gastric-cancer-derived mesenchymal stem cells
-inactivating the Wnt/b-catenin signaling

(14) 2020

Colorectal cancer -down-regulating the expression of Slug and vimentin
-overexpression of E-cadherin and claudin-2
-blocking 5-FU-induced EMT by down-regulation of NF-kB activation
-down-regulation of MMP-2 and MMP-9

(15) 2015

-suppressing EMT through TGF-b1/Smads signaling pathway mediated Snail/E-
cadherin expression

(16) 2015

-down-regulation of MMP-9 and CXCR4
-down-expression of CSC markers (CD133, CD44 and ALDH1)
-inhibiting the TNF-b-induced EMT by prevention of the FAK/NF-kB activation

(17, 18) 2018, 2019

-prevention of EMT via AKT/GSK3b/Snail signaling pathway (19) 2019
-inhibiting EMT by increasing miR-200c expression (20) 2017

Pancreatic cancer -decrement of markers of EMT (ZEB-1, Slug and Snail) in CSCs (21) 2011
-preventing the expression of uPA and MMP2
-down-expression of HIF-a
-inhibited hypoxia-mediated activation of the Hedgehog signaling pathway

(22) 2016

-suppression of the PI3K/AKT/NF-kB signaling (23) 2013
-blocking hypoxia-induced pancreatic stellate cells (PSCs) activation
-inhibiting the interaction between PSCs and pancreatic cancer cells

(24) 2020

-blocking EMT process via the inhibition of NAF-1 (25) 2020
Cholangiocarcinoma -decreasing the secretion (IL-6) of CAFs

-reverting N-to E-cadherin switch by induction of autophagy (LC3-II/LC3I) in the
incubation with CAFs-CM

(26) 2018

Breast cancer -down-expression of mesenchymal markers (Fibronectin 1 and Vimentin)
-decreasing the expression of ANGPTL4 and CXCL8 mRNA levels
-antagonizing TGF-b signaling by activating SIRT7 deacetylase activity toward
SMAD4 degradation

(27) 2017

-reversing TGF-b1-induced EMT through the PI3K/AKT, Smad, and MMP
Pathways

(28) 2019

-preventing EGF-induced EMT by inhibiting Na+ channel expression (29) 2019
-inhibition of EGF-induced EMT by prevention of ERK activation (30) 2011
-inhibiting YB-1 phosphorylation induced by LPA and blocking EZH2/amphiregulin
signaling axis

(31) 2019

-inhibiting EMT via induction of Rad9 (32) 2019
-promoting the epithelial-type alternative splicing of Cd44, Enah, and FGFR2 pre-
mRNAs by upregulating KHSRP and hnRNPA1 expression

(33) 2017

-promoting sensitization to doxorubicin by inhibiting EMT through modulating
SIRT1/b-catenin signaling

(34) 2019

-overcoming acquired tamoxifen resistance by reversing EMT through suppressing
endogenous TGF-b1 production and Smad phosphorylation

(35) 2013

-reduction of MK-2206(AKT inhibitor)-induced EMT via inducing b-TrCP-mediated
Twist1 degradation

(36) 2016

-enhancing the sensitivity of FL118 in triple-negative breast cancer cell lines
through suppression of EMT process

(37) 2021

Lung cancer -suppression of TGF-b1-induced EMT via decreasing ROS and inhibiting
mitochondrial functions

(38, 39) 2018, 2013

-inhibition of EMT by prevention of miR-520h-mediated PP2A/C-AKT-FOXC2
signaling pathway

(40) 2013

-reversing hypoxia-induced EMT by abrogating the effect of PIASy and regulating
SIRT1 Transcription

(41) 2013

Ovarian cancer -inhibiting Cisplatin-mediated EMT by reducing ERK activation (42) 2014
-suppressing norepinephrine-induced EMT through the interference of a Src and
HIF-1a/hTERT/Slug signaling cascade

(43) 2016

Cervical cancer -preventing the EMT process by inhibiting STAT3Tyr705 phosphorylation (44) 2020
Prostate cancer -inhibition of EMT via blocking TRPM7 channel activity (45) 2018

-interfering the TRAF6/NF-kB/Slug axis (46) 2020
(47) 2014

(Continued)
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summarizing and analyzing the mechanisms by which RES and
its analogs affect EMT in different cancers, supporting their
potential to be promising therapeutic agents.
THE EMT PROCESS

EMT is an evolutionarily conserved process whereby epithelial
cells lose cell junctions and apical-basal polarity, and are
eventually converted into migratory mesenchymal phenotype
(64). As a key program, EMT participates in the development of
embryogenesis such as gastrulation and tissue morphogenesis, as
well as wound healing of adult (65). In addition, EMT has been
related to different cancer functions, especially for tumor
invasion and metastasis, tumor stemness and resistance to
Frontiers in Oncology | www.frontiersin.org 3
therapy (66). Correspondingly, the resulting mesenchymal cells
after migration also can reverse the process, known as
mesenchymal-to-epithelial transition (MET), transforming
epithelial cells to colonize a particular location (67).

In the EMT process, polarized and immobile epithelial cells
with cobblestone-like appearance acquire mesothelial traits with
a spindle-like shape and increased cellular motility, by which
they are separated from the epithelial basement membrane and
invade through surrounding tissues (68) (Figures 1A, B). Then
tumor cells intravasate into blood vessels and circulate in the
bloodstream, eventually leading to extravasation to distant
organs and form metastatic lesions (69) (Figure 1B). This
process starts from dissociating of cell-cell connection via the
loss of epithelial phenotype including adhesion molecule
(E-cadherin), gap- and tight junctions (claudin-2) and
TABLE 1 | Continued

Disease condition Main mechanism Ref.year

-suppression of LPS-induced EMT through inhibiting the Hedgehog signaling
pathway
-preventing DHT-induced EMT through interfering with the AR and CXCR4
pathway

(48) 2019

-blocking HGF-mediated interplay between the stroma and epithelium (49) 2020
Bladder cancer -attenuating CSE-induced EMT via suppression of STAT3/Twist1 (50) 2019
Glioblastoma multiforme -down-expression of Bmi1 and Sox2

-decreasing TGF-b1-induced Smad/a-SMA pathway
(51) 2019

-disturbing Wnt/b-catenin pathway in GSCs (52) 2017
Pituitary adenoma -down-regulation of the expression of CCNB1 (53) 2019
Head and neck cancer -down-expression of Oct4, Nanog, and Nestin

-down-regulating the expression of Slug, ZEB1, N-cadherin and vimentin
(54) 2012

Oral squamous cell carcinoma -prevention the expression of Smad2/3
-down-regulating the expression of EMT markers (Slug, Snail and N-cadherin)
-induction the expression of E-cadherin

(55) 2018

-reversing the up-regulation of RCP-induced ZEB1 and MT1-MMP expression (56) 2020
Nasopharyngeal Carcinoma -impeding EMT through p53 activation in CSCs (57) 2013
Melanoma -inhibition of LPS-induced EMT through the down-regulation of NF-kB activity (58) 2012

-preventing MRC5 fibroblast SASP-related protumoral effects on melanoma cells (59) 2017
Osteosarcoma -promoting HIF-1a protein degradation (60) 2015
April 2021 | Volume
AKT, protein kinase B; ALDH, aldehyde dehydrogenase; ANGPTL4, angiopoietin-like protein 4; AR, androgen receptor; CAFs, cancer associated fibroblasts; CAFs-CM, conditioned
medium from CAFs; CCNB1, cyclin B1; CSCs, cancer stem cells; CSE, cigarette smoke extract; CXCL8, chemokine C-X-C motif ligand 8; CXCR4, chemokine C-X-C motif receptor 4;
DHT, dihydrotestosterone; EGF, epidermal growth factor; EMT, epithelial-mesenchymal transition; EMT-TFs, EMT-inducing transcription factors; ERK, extracellular signal-regulated
kinase; EZH2, enhancer of zeste homolog 2; FAK, focal adhesion kinase; FGFR, fibroblast growth factor receptor; FOXC2, forkhead box C2; 5-FU, 5-Fluorouracil; GCSs, glioma stem cells;
GSK, glycogen synthase kinase; HIF-1, hypoxia-inducible factor-1; hTERT, human telomerase reverse transcriptase; HGF, hepatocyte growth factor; IL-6, interleukin-6; HKSRP, hnRNPK-
homology splicing regulatory protein; LC3-II/LC3I, light chain3; LPA, lysophosphatidic acid; LPS, lipopolysaccharide; MALAT1, metastasis-associated lung adenocarcinoma transcript 1;
miRNAs, miRs ,microRNAs; MMP, matrix metalloproteinase; NAF-1, Nutrient-deprivation autophagy factor-1; NF-kb, nuclear factor-kB; Oct4, octamer-binding transcription factor 4;
PI3K, phosphatidylinositol 3-kinase; PIASy, protein inhibitor of activated STAT 4; PTEN, phosphatase and tensin homolog deleted on chromosome ten; PSCs, pancreatic stellate cells;
ROS, reactive oxygen species; RCP, rab coupling protein; SASP, senescence-associated secretory phenotype; SIRT1 silent information regulator 1; SIRT7, sirtuin 7; STAT3, signal
transducer and activator of transcription 3;TGF-b transforming growth factor-b; TNF-b, tumor necrosis factor-b TRAF6, TNF-receptor associated factor 6; TrCP, transducing repeats
containing proteins; TRPM transient receptor potential melastatin; uPA, urokinase-type plasminogen; YB-1, Y-box binding protein 1; ZEB, zinc finger Ebox binding homeobox.
TABLE 2 | Summary of mechanisms by which resveratrol descendant inhibits the EMT process.

Drug(Disease condition) Main mechanism Ref.year

Resveratrol analogues
(Ovarian cancer)

-inhibiting AKT and MAPK signaling and reversing EMT induced by IL-6 and EGF (61) 2017

3,5,4’-Trimethoxystilbene
(Breast cancer)
Triacetyl resveratrol
(Pancreatic cancer)

-up-regulation of E-cadherin expression

-elevating the phosphorylation and ubiquitination of b-catenin by employing the PI3K/AKT/GSK3b-dependent pathway

-suppressing Zeb1 3’UTRluciferase activity through the upregulation of miR-200

(62) 2017
(63) 2013
11 | Arti
AKT, protein kinase B; EMT, epithelial-mesenchymal transition; EGF, epidermal growth factor; GSK3b, glycogen synthase kinase 3b; MAPK, mitogen-activated protein kinase; PI3K,
phosphatidylinositol 3-kinase.
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desmoplakin (70). With the overexpression of mesenchymal
markers (71) such as N-cadherin (N-cad), vimentin (VIM),
fibronectin (FN) and a-smooth muscle actin (a-SMA), tumor
cells could reconstruct the cytoskeleton, degrade the basement
membrane, and remodel extracellular matrix (ECM) by inducing
matrix metalloproteinases (MMPs), such as MMP-2 andMMP-9
(72), underlying metastasis to distant organs, stemness
maintenance and reversion of chemoresistance (73).

Several critical EMT-inducing transcription factors (EMT-
TFs), which include zinc-finger E-box binding homeobox 1
Frontiers in Oncology | www.frontiersin.org 4
(ZEB1), ZEB2 (also known as SIp1), Snail1 (also known as
Snail), Slug (also known as Snail2) and Twist-related protein 1
(Twist1; also known as Twist), have been demonstrated to play
significant regulatory roles in the EMT program of cancer cells
(74). In addition to activating the classic EMT traits and
promoting tumor metastasis, EMT-TFs are associated with the
induction to many other features, like maintenance of cancer
stem cells (CSCs) and resistance to therapeutic drugs (75). CSCs
are referred to tumor cells with the ability for self-renewal and
recapitulation of the tumor heterogeneity (76). The EMT
A

B

FIGURE 1 | Epithelial-to-mesenchymal transition (EMT) programme in cancers and the inhibitory role of RES. (A) Invasion and migration initiated by the EMT
process due to the factors (e.g., inflammation, stress and hypoxia) affect tumor microenvironment. (B) Resveratrol inhibits EMT which starts from diverse processes
(EMT inducer signaling pathways, growth factors, dysregulation of microRNAs and EMT transcription factors) and by which polarized epithelial cells acquire motile
mesothelial features. The EMT process is characterized by the loss of cell-cell contacts via downregulation of epithelial markers (i.e. E-cadherin in adherent junctions,
zonula occludens-1 (ZO-1) in tight junctions and desmoplakin in desmosomes) and upregulation of mesenchymal markers (N-cadherin, vimentin, fibronectin and a-
smooth muscle actin (a-SMA)). RES may also induce mesenchymal-to-epithelial transition (MET), a reversal of the EMT process.
April 2021 | Volume 11 | Article 644134
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process, as a key regulator of the cancer cell stemness, provides a
chance to research the nature of intratumoral heterogeneity and
offers a potential mechanistic basis for the resistance of anti-
cancer drugs (77).

Transforming growth factor-b (TGF-b1), a secret
multifunctional cytokine, is participated in the EMT process,
regulating EMT-TFs (78). TGF-b1 can contribute to the EMT
program through both Smad-mediated and non-Smad signaling.
Smad2 and Smad3 are phosphorylated by TGF-b1 signals, then
form hetero trimeric complexes about Smad4, translocating into
the nucleus, activating the expression level of EMT-TFs, and
cooperating with these transcription factors to regulate EMT-
related genes (79). In addition, non-Smad pathways are also
involved in the TGF-b1-induced EMT process, such as
phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian TOR
complex 1 (mTORC1), tumor necrosis factor receptor-
associated factor 6 (TRAF6)/TGF b-Activated Kinase 1
(TAK1), and Wnt/b-catenin signaling (80–82).
RESVERATROL: A BIOACTIVE
COMPOUND

Resveratrol (3,5,4’-trihydroxy-trans-stilbene), initially isolated in
1939 from Veratrum grandiflorum by Takaoka (83), is a phenolic
substance present in various plants, including grapes, soy,
peanuts and berries as well as the roots of Polygonum
cuspidatum, a traditional medicine in China. It has been found
to exert diverse pharmacological effects involving anti-
inflammation, anti-oxidation, anti-aging, anti-diabetes, anti-
obesity, anti-cancer, cardioprotection and neuroprotection (84–
86). Interestingly, resveratrol (RES) can regulate various
signaling pathways and target diverse effector molecules, as
well as alter phenotypes of disease models. RES acts as a
natural autophagy regulator for prevention and treatment of
Alzheimer’s disease (87). RES also has shown promising effects
on inflammatory bowel disease, as its anti-inflammatory and
anti-oxidant activity (88). Moreover, RES moderately diminishes
systolic blood pressure and blood glucose, exerts numerous
vasculoprotective effects by suppressing vascular smooth
muscle cell proliferation (89). Increasing evidence revealed that
RES had the wide range of preventive and therapeutic roles
against various types of tumor (90), including colorectal, breast
and lung cancers (15, 23, 27), and involved various phases of
cancer development, such as EMT. RES has been reported to
regulate numerous functional proteins, including growth factors,
inflammatory cytokines, transcription factors, as well as free
radicals, which are all participated in the initiation and
progression of human cancer (91).

RES exerts its anti-cancer and chemosensitivity effects
through regulation of the tumor microenvironment and the
malignant biological behaviors, including levels of reactive
oxygen species (ROS), proliferation, antiapoptosis, invasion,
migration, EMT progress, and stemness (92). As an effective
antioxidant, RES can scavenge intracellular ROS via suppression
of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38
Frontiers in Oncology | www.frontiersin.org 5
mitogen-activated protein kinase (p38 MAPK) (93). For the
proliferation and viability of tumor cells, RES can induce cell
cycle arrest and apoptosis by suppressing Wnt/b-cantenin
signaling and downregulating antiapoptotic proteins (Bcl-2 and
Bcl-XL), respectively (94, 95). Recent studies have been reported
that RES can directly target cytokines, and cellular signaling
molecules such as, forkhead box C2 (FOXC2), forkhead box O1
(FOXO1), human telomerase reverse transcriptase (hTERT),
glioma-associated oncogene 1 (GLI1), b-catenin, ERK1/2 and
nuclear factor-kB (NF-kB), which promote the EMT process in
different disorders with a variety of cellular signaling pathways
(Figure 2).
EFFECTS OF RESVERATROL ON EMT IN
HUMAN CANCERS

Digestive Cancers
Gastric Cancer
There have been accumulating clinical trials which demonstrated
that doxorubicin (DOX)-based regimens failed to attain the
favorable survival goal and brought about some side effects for
patients with gastric cancer (96, 97). EMT participates not only
in the cancer metastasis but also in the appearance of
chemoresistance (98). EMT-mediated drug resistance is
modulated by several signalings, among which PI3K/AKT
pathway is of high attention (99). RES can reverse DOX
resistance via the inhibition of EMT by suppressing
mesenchymal markers (b-catenin and vimentin) through
regulating phosphatase and tensin homolog deleted on
chromosome ten (PTEN)/AKT signaling pathway (10). Besides
RES can further promote apoptosis (10). That’s say, RES
combined with DOX can not only suppress the growth of
gastric cancer cells, but also alleviate the resistance of DOX
and prohibit cell migration through the reverse of EMT by
regulating PTEN/AKT pathway.

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), which is also named by nuclear-enriched
abundant transcript 2, has a strong function in EMT,
proliferation, apoptosis and so on (100). In Yang’s gastric
cancer cell model, RES was found to prevent EMT by down-
regulating MALAT1 (11), which provided new evidence for
anticancer mechanism of RES in vitro.

It is believed that the hedgehog signaling pathway could exert
a critical role in vertebrate growth. e.g. the homeostatic process
and tumorigenesis (101). Gli-1 is considered as a marker when
the hedgehog signaling pathway activates abnormally (102). RES
can prevent hypoxia-induced gastric cancer invasion and EMT
by suppressing the hedgehog signaling as proved that RES can
reduce the expression of Gli-1, Snail and N-cadherin, while
enhancing the expression of E-cadherin (12, 13). The
mechanism may be explained that Gli-1 directly induced Snail
which marks the process of EMT (103), so the expression of Snail
is decreased as soon as Gli-1 is suppressed. Moreover, RES can
target mesenchymal stem cells derived from gastric cancer by
inactivating the Wnt/b-catenin signaling pathway (14).
April 2021 | Volume 11 | Article 644134
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Colorectal Cancer
5-FU is routinely applied to the treatment of colorectal cancer,
but its toxicity and ineffectiveness in many patients limit its wide
application. Furthermore, over 50% of patients show resistance
to 5-FU in the therapeutic course (15). RES has been found to
Frontiers in Oncology | www.frontiersin.org 6
inactive the NF-kB signaling pathway potently in earlier
researches (104–106). The NF-kB signaling pathway not only
closely links to inflammation and cancer (107), but also propels
the process of EMT and metastasis (17). RES significantly
attenuated 5-FU-induced EMT by down-regulation of NF-kB
FIGURE 2 | Mechanisms of effects of RES through interference with signaling pathways affecting EMT, invasion, migration, metastasis, tumor stemness and
chemoresistance. protein kinase B (AKT); epithelial-mesenchymal transition (EMT); extracellular signal-regulated kinase (ERK); forkhead box C2 (FOXC2); glioma-
associated oncogene 1 (GLI1); glycogen synthase kinase 3b (GSK-3b); hypoxia-inducible factor-1 (HIF-1); inhibitor of nuclear factor kappa-B kinase (IKK); nuclear
factor-kB (NF-kB); MAP kinse-ERK kinase (MEK); protein inhibitor of activated STAT 4 (PIASy); patched (PTCH); phosphatidylinositol 3-kinase (PI3K); plasma
membrane intrinsic protein 3 (PIP3); receptor tyrosine kinases (RTK); sonic hedgehog (SHH); sirtuin1(SIRT1); smoothened (SMO); signal transducer and activator of
transcription 3 (STAT3); transforming growth factor-b (TGF-b); TGF beta-Activated Kinase (TAK); TNF-receptor associated factor 6 (TRAF6); zinc finger E-box binding
homeobox (ZEB).
April 2021 | Volume 11 | Article 644134
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activation, which is proved by the evidence that RES suppresses
EMT factors (down-regulating the expression of Slug and
vimentin as well as up-regulating of E-cadherin) and
overexpresses the gap and tight junctions (claudin-2) in
colorectal cancer cells (15). Based on these findings, RES may
perform as an anticancer agent in colorectal cancer.

The process of EMT can be triggered by many cytokines such
as TGF-b1, HGF and so on (108–110). Different signaling
pathways and mechanisms connected with EMT were studied,
like TGF-b1/Smads pathway Qing Ji’s team focused on (16).
They found that RES exerted an inhibitory role on EMT of
colorectal cancer cells both in vivo and in vitro. RES has the
potential to suppress EMT via TGF-b1/Smads signaling, as
proved by the up-regulating of E-cadherin and the down-
regulating of Snail and vimentin (16). Snail, a TGF-b1/Smad
signaling pathway modulated gene (111, 112), restrains the E-
cadherin expression and triggers the EMT process (16).
Furthermore, they also found that with the treatment of RES,
TGF-b1-induced MMP2 and MMP9 decreased through
expression analysis (16). These findings may explain how RES
inhibit invasion and metastases.

Previous studies reported that inflammatory cytokines like
members of the tumor necrosis factor (TNF)-superfamily could
change the tumor microenvironment and promote the
progression of colorectal cancer through activation of EMT.
These pro-inflammatory mediators are modulated via the
transcription factor NF-kB (113–116). It has also been
reported that focal adhesion kinase (FAK) associated with NF-
kB regulates the cancer cells capacity of survival, invasiveness,
and metastasis (117–120). Buhrmann and co-workers showed
that RES inhibited the TNF-b-induced EMT as demonstrated by
suppressing EMT factors (up-modulating vimentin and slug,
down-modulating E-cadherin) in colorectal cancer cells through
preventing the FAK/NF-kB activation as proved by down-
regulation of MMP-9 and C-X-C motif chemokine receptor 4
(CXCR4) which are the NF-kB-dependent of tumor-promoting
factors (17, 18). Moreover, it has been reported that cancer stem
cells (CSCs) had stem cell characteristics like pluripotency, self-
renewal, invasion, motility (121–124). CD133, CD44 and
aldehyde dehydrogenase gene 1 (ALDH1), as molecules
associate with CSCs, are widely used to mark CSCs (125, 126).
The researchers also found that RES restrained CSC-like
phenotype (CD133, CD44, ALDH1) to suppress the formation
of CSCs (18). Targeting both stemness of cells and EMT
underscores the potential of RES to develop a new therapeutic
strategy for colorectal cancer.

Serine/threonine kinase (AKT) is closely linked to EMT (80)
and is also related to some biological and pathological
proceedings, like angiogenesis, invasion, and metastasis (127).
Moreover, it has been found that the glycogen synthase kinase
(GSK)−3b pathway often involves in the process of EMT because
it is the downstream pathway of AKT (128). Furthermore, the
AKT/GSK−3b signaling pathway can modulate the expression of
Snail and promote EMT in some cancer cells (129, 130). Li and
colleagues revealed that RES prevented EMT via AKT/GSK3b/
Snail signaling pathway in colon cancer, and they observed
Frontiers in Oncology | www.frontiersin.org 7
markedly increased E−cadherin, whilst the decreased
expression of N−cadherin both in vitro and in vivo (19).
Concordantly, the activation of phospho (p)−AKT1,
p−GSK−3b, and Snail also decreased (19). Taken together,
these findings demonstrate that RES may provide new
treatment for colon cancer.

More recently, it has been indicated that the miR-200 family
exerts a vital role on the modulation of the EMT process (131).
ZEB1, considered as the target gene of miR-200 family, can
repress E-cadherin to promote EMT process, subsequently bring
about cancer progression (132). Based on the data of Dermani’s
team, RES could inhibit EMT by enhancing miR-200c expression
in colorectal cancer cells, its mechanism might be explained as
targeting ZEB1 and vimentin expression (20).

Up to now, there are involving some clinical study of
resveratrol in cancer treatment. It was reported that long non-
coding (Lnc) MALAT1 was upregulated in colorectal cancer
tissues and RES inhibits invasion and metastasis via Lnc
MALAT1 mediated Wnt/b-catenin signal pathway (133). Patel
et al. found that daily oral doses of resveratrol at 0.5 or 1.0g
makes the resected tissues keep resveratrol and its metabolite
resveratrol-3-O-glucuronide with proper concentrations,
exerting antitumor effects for patients with colorectal cancer
(134). Moreover, Howells et al. conducted a phase I randomized,
double-b l ind pi lot s tudy and assessed the safe ty ,
pharmacokinetics, and pharmacodynamics of micronized
resveratrol (SRT501) for colorectal cancer patients with
patients with hepatic metastases. They revealed that SRT501
was well tolerated and cleaved caspase-3, a marker of apoptosis,
significantly increased by 39% in metastatic hepatic tissues from
the SRT501 -treated patients compared with tissues following
placebo treatment (135).

Pancreatic Cancer and Cholangiocarcinoma
The CSCs have the potential of renewal, proliferation,
clonogenicity, and multipotency as adult stem cells possess
(136). From the cancer stem cell theory, the dissemination of a
CSC induces sustained metastatic growth which represents the
primary tumor re-establishment in a secondary site (21). Recent
reports suggest the CSCs partly cause the emergence of EMT,
through implications from tumor stromal components. In
several human cancers including pancreatic cancer, CSCs and
cells with EMT-type exert a critical role in drug resistance and
early metastatic process (137, 138). In Shankar’s study, RES
brought the decrement of EMT markers (ZEB-1, Slug and Snail)
in CSCs (21). Moreover, Qin et al. reported that resveratrol
suppressed CSC-like properties and EMT on of pancreatic
cancer cells via downregulating the expression of nutrient-
deprivation autophagy factor-1 (NAF-1) (25).

Tumor hypoxia, a microenvironment usually found in the
central part of tumors (139), promotes the process of cancer
invasion and metastasis (140). Hypoxia-inducible factor-1
(HIF-1) is the most critical transcription factor of hypoxia
(141). Li et al. found that RES reversed EMT by inhibiting
hypoxia-mediated activation of the Hedgehog pathway and
observed RES restrained the expression of HIF-1a protein as
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well as uPA and MMP, which are known as metastatic-related
factors (22). For the above-mentioned reasons, RES may be a
potent ia l choice of prevent ion and treatment for
pancreatic cancer.

The PI3K/AKT signaling pathway has important influence in
pancreatic cancer metastasis (23). Recent studies indicate that
NF-kB transcription factor might regulate the PI3K/AKT
signaling pathway to trigger the metastasis-mediated effect
(142). The authors show that RES reduces the expressions of
p-AKT and p-NF-kB to suppress the PI3K/AKT/NF-kB
pathway, inhibiting the invasion and migration of pancreatic
cells as proved by suppressing the level of EMT-related markers
(N-cadherin and vimentin) (23). Pancreatic stellate cells (PSCs)
are usually activated and become fibroblasts in the
microenvironment of desmoplastic stroma. RES is reported to
block hypoxia-induced PSCs activation and inhibit the
interaction between PSCs and pancreatic cancer cells (24).

Cancer associated fibroblasts (CAFs) bring about persistent
inflammation and an abnormal infiltration of a desmoplastic
stroma in cholangiocarcinoma (CCA) (143). CAFs also release
cytokine IL-6 drive the process of EMT (144). Recently, Ferraresi
et al. reported that IL-6 drove EMT through suppression of
autophagy (145). In further researches, they found that RES
could decrease the secretion (IL-6) of CAFs and make CCA cells
revert N- cadherin to E-cadherin switched by induction of
autophagy (LC3-II/LC3I) (26). These findings provide a new
view about CAFs secretion may change the malignant phenotype
of CCA cells through a functional food.

Non-Digestive Cancers
Breast Cancer
TGF-b1, which is found in various tissues and has function of
angiogenesis, provides cancer cells with oxygen and nutrients
and becomes an immunosuppressive agent to protect tumor cells
from the host immune system. So it has been linked to cell
growth, invasion and metastasis in a variety of tumors (146).
Tang et al. reported that RES could inhibit breast cancer
metastasis by activating silent information regulator 7 (SIRT7)
deacetylase activity toward Smad4 degradation (27),
antagonizing TGF-b1 signaling. They found that mesenchymal
markers involving Fibronectin 1 and vimentin, TGF-b
responsive gene angiopoietin-like Protein 4 (ANGPTL4) and
C-X-C motif chemokine ligand 8 (CXCL8) were significantly
down-regulated by RES (27). Moreover, Sun et al. reported that
RES could reverse TGF-b1-induced EMT of breast cancer cells
by regulating PI3K/AKT and Smad signaling (28). The drugs
targeting TGF-b1 ligand or receptor for the therapies of cancer
are under clinical trials. However, systemic anti-TGF-b
treatments might bring severe adverse effects (78). Drug
development specifically targeting the TGF-b downstream
signaling pathway is necessary. The findings can inspire that
RES selectively targets SIRT7 and PI3K in breast cancer
metastasis, which might provide new strategy for the treatment.

It is known to all that epidermal growth factor (EGF) can
induce the EMT process by repressing the expression of E-
cadherin, the main epithelial marker and up-regulating
Frontiers in Oncology | www.frontiersin.org 8
mesothelial markers vimentin and N-cadherin (147). González-
González L. et al. reported that EGF stimulated the migratory
capacity of breast cancer cells, by regulating the functional
expression of NaV1.5 channels. And RES can also affect Na+
channel activity to prevent the stimulatory actions of EGF (29).
Vergara D et al. also found that RES could repress EGF-induced
EMT by prevention of ERK activation (30). These findings
support the idea that RES prevents EGF-induced EMT through
different mechanisms and can exert a preventive role in breast
cancer metastasis.

Amphiregulin is high- and low-affinity ligand for EGF
receptor and can maintain epithelial characteristics as
efficiently as EGF (148). Cho et al. demonstrated that RES
downregulated amphiregulin expression caused by LPA as well
as blocked the Y-box binding protein-1 (YB-1)/enhancer of zeste
homolog 2 (EZH2) signaling pathway to inhibit the invasion of
breast cancer cell. They found EZH2 was associated with
amphiregulin expression and overexpression of YB-1 increased
EZH2 expression (31). Furthermore, Hartman et al. delineated
that EZH2 was participated in NF-kB activation in triple
negative breast cancer cells (TNBCs) and was critical for
anchorage-independent growth of TNBCs (149). These
phenomena reveal that RES has the potential to hamper EMT
stimulated by LPA through suppression of YB-1/EZH2 signaling
axis in breast cancer cells, preventing the invasion and
metastasis, as well as sensitizing the treatment of 5-FU (31).

Interestingly, more new mechanisms are found to reverse
EMT by RES. Rad9 belongs to the DNA damage response protein
family, and inhibition of Rad9 can cause the corresponding
downregulation of E-cadherin, and the upregulation of N-
cadherin and vimentin. A research has shown that Rad9 could
directly bind the Slug promoter and repress its transcriptional
activity to inhibit EMT (150). Chen et al. found that RES could
induce DNA damages and elevate ROS levels, which in turn
upregulate Rad9, and suppress Slug expression to inhibit the
EMT process in breast cancer cells (32). The alternative splicing
of specific pre-RNAs, involving Cd44, Enah and fibroblast
growth factor receptor 2 (FGFR2), exert a causative role in the
EMT process (151–153). RES promotes the epithelial-type
alternative splicing of Cd44, Enah, and FGFR2 pre-mRNAs in
breast cancer cells by upregulating KH-type splicing regulatory
protein (KHSRP) and heterogeneous nuclear ribonucleoproteins
A1 (hnRNPA1) expression (33).

Doxorubicin (DOX) is one of the most commonly used
chemotherapy drugs for patients of breast cancer. However,
drug resistance to DOX, partly due to the occurrence of EMT,
can lead to recurrence and metastasis of cancer (154). Jin et al.
reported that RES successfully alleviated cell invasion and
increased synergistic sensitivity to DOX via inhibiting the
EMT process and modulating the association between silent
information regulator 1 (SIRT1) and b‐catenin. They found
that DOX could increase expression of vimentin, N-cadherin,
b‐catenin and RES notably antagonized these EMT-markers,
which showed that RES overcame DOX resistance and offered
hope for breast cancer patients to extend their survival time (34).
Tamoxifen, as a selective estrogen receptor (ER) modifier, is also
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widely used in patients with breast cancer. However, tamoxifen
resistance contributes to a poor prognosis for breast cancer. Shi
et al. reported that an increased production of endogenous TGF-
b1 and constitutive activation of Smad signaling contributed to
the cancer cell phenotype switch, meanwhile decreased the
sensitivity to tamoxifen (35). The good news was that RES
inhibited TGF-b1 secretion and reduced phosphorylation of
Smad, eventually affecting the EMT process and reversing
tamoxifen resistance (35). Targeting AKT can provide an
important approach for cancer therapy and AKT inhibitor is
widely studied. However, the clinically used AKT inhibitor
has the side effect of promoting EMT, which might be part
of drug resistance. Li et al. reported that RES could promote the
b-transducin repeat containing protein (b-TrCP)-mediated
Twist1 degradation and reduce MK-2206 (AKT inhibitor)-
induced EMT (36). In addition, Yar et al. found that
resveratrol could enhance the sensitivity of FL118 in triple-
negative breast cancer cell lines by inhibiting EMT (37). It was
reported that resveratrol decreased mammary promoter
hypermethylation of the tumor suppressor gene Ras association
domain family 1a (RASSF-1a) in women at increased risk for
breast cancer (155).

Lung Cancer
Previous reports have pointed out that mitochondrial
dysfunction has been linked to cancer metastasis (156). During
the process of TGF-b1 induced EMT, mitochondria will be
damaged. Under the treatment of TGF-b1, ROS level increase,
while mitochondrial membrane potential and ATP content
significantly decrease. Furthermore, the authors found that
mitochondrial dysfunction promoted the expression level of
vimentin and a-SMA, as well as decreased the expression level
of E-cadherin and CK18. On the contrary, RES can protect
mitochondrial function shown by an elevation in mitochondrial
membrane potential, expression level of mitochondrial complex,
and ATP content, so as to inhibit the occurrence of EMT (38).
Wang et al. found that RES increased the expression of E-
cadherin inhibited by TGF-b1 and decreased expression of
fibronectin and vimentin, meanwhile RES also reduced the
level of TGF-b1-induced Snail1 and Slug, thereby suppressing
lung cancer invasion and metastasis (39).

Forkhead box C2 (FOXC2), a critical transcriptional factor
that affects EMT, induces tumor angiogenesis and metastasis
(157). Similarly, lung cancer patients with high expression of
FOXC2 also experience a poor prognosis. A study has found that
RES inhibited miRNA-520h, activated protein phosphatase 2 A/
C (PP2A/C), then through the AKT-NF-kB signaling axis, finally
down-regulated FOXC2 to inhibit distant metastasis of lung
cancer cells (40).

Sun et al. found that SIRT1 transcription was regulated by a
SUMOylation-dependent pathway, leading to lung cancer
metastasis. Activation of SIRT1 can inhibit the occurrence of
EMT. However, hypoxia repressed the transcription of SIRT1 in
a SUMOylation-dependent manner. RES, the agonist of SIRT1,
can antagonize the transformation of SIRT1 caused by hypoxia,
thus inhibiting EMT in lung cancer cells (41).
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Genitourinary Malignancy
A study reported that RES suppressed Snail expression and
prevented cisplatin-induced EMT through the MAPK/ERK
pathway in ovarian cancer cells. Meanwhile, RES can induce
cell death and enhance the cytotoxicity of cisplatin. These
findings suggest that RES combined with cisplatin may be a
more effective antitumor regimen (42). Previous study has shown
that human telomerase reverse transcriptase (hTERT)
upregulated in tumor cells and is related to cancer
development and poor prognosis. Noradrenaline (NE) can
induce the expression of hTERT, and overexpression of
hTERT can promote the expression of slug, thus speeding up
the process of EMT (158). And RES happens to block the process
by which NE causes EMT. Authors found that RES inhibited Src
phosphorylation and HIF-1a expression, downregulating
hTERT expression induced by NE. At the same time, RES also
can reduce Slug expression and inhibit EMT of ovarian cancer
cells. Moreover, the authors demonstrated that RES could
enhance the effect of b adrenergic receptor inhibitors on NE-
induced invasion of ovarian cancer cells (43). These results
provide preclinical evidence for the effectiveness of RES in the
treatment of ovarian cancer. Furthermore, it was reported that
resveratrol could reverse EMT of cervical cancer cell via
inhibiting STAT3Tyr705 phosphorylation (44).

It has been reported that changes of Mg2+ homeostasis
affected cell functions, such as proliferation, invasion,
migration, and angiogenesis (159). The transient receptor
potential melastatin-subfamily member 7 (TRPM7) plays, as
an Mg2+ influx channel, exerts tumor-promoting effects in
prostate cancer. With the addition of TGF-b, the expression of
TRPM7 increases, and TGF-b/TRPM7 axis is proved as one of
the mechanisms of EMT. Thus, RES was found to inhibit the
expression of TRPM7 induced by TGF-b, thereby inhibiting the
occurrence of EMT (45). Khusbu et al. studied an
unconventional E3 ligase named TNF-receptor associated
factor 6 (TRAF6) and found that RES could inhibit growth
and proliferation of prostate cancer cells by regulating the
expression of TRAF6, suppressing the EMT process through
NF-kB/Slug axis (46). Moreover, Li et al. found that RES could
prevent LPS-induced EMT through the Hedhehog signaling
pathway in prostate cancer cells (47). It is well known that
prostate cancer can be easily affected by dihydrotestosterone
(DHT) via androgen receptor (AR). Jang et al. reported that RES
could prevent the metastasis of prostate cancer and reverse its
process of EMT through AR and CXCR4 pathway (48).
Hepatocyte growth factor (HGF), secreted by the stroma, can
bind its receptor c-Met which is located in the epithelium,
promoting cell growth and scattering of various epithelial cells.
RES was found to suppress migration and invasion of prostate
cancer epithelial cells through inhibiting HGF secretion from
prostate stromal cells and to prevent the process of EMT (49).

Cigarette smoke (CS) is a main cause of bladder cancer. Sun et
al. used cigarette smoke extract (CSE) to induced EMT and CSE
can also promote the phosphorylation of signal transducer and
activator of transcription 3 (STAT3) and the expression of
Twist1, leading to the occurrence of EMT and cell invasion
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and metastasis. RES can promote the expression of E-cadherin
and ZO-1, and reduce the expression of N-cadherin and
vimentin through STAT3/Twist signaling pathway. These
findings provide new ideas for clinical prevention and
intervention of bladder cancer metastasis (50).

Brain Cancer
Song et al. reported that RES can inhibit TGF-b1-induced EMT
process, migration and invasion ability in glioblastoma cells.
They found that RES could downregulate EMT-related markers
by inhibiting the phosphorylation of Smad2 and Smad3 which
are the downstream of TGF-b1, thereby preventing the progress
of EMT. And they also found that RES could inhibit the
expression of cancer stem cell markers Bmil and Sox2, inhibit
the stem cell-like traits of glioblastoma cells, and affect the self-
renewal capacity of the cells. These findings provide
experimental evidence of RES for glioblastoma treatment (51).
In addition to the TGF-b1/Smad signaling axis, RES can also
affect the proliferation and motility of glioma stem cells through
the Wnt signaling pathway. It can also reduce the level of nuclear
b-catenin and induce the transcriptional up-regulation of MYC.
Finally, RES down-regulated the ribose of nuclear Twist1 and
Snail1, indicating its effects as a novel anti-EMT agent (52).

A previous study demonstrated that cyclin B1 (CCNB1) can
function as the control of the G2/M phase in the cell cycle (160).
In addition, they found that patients with invasive pituitary
adenomas share higher CCNB1 expression than these with
non-invasive pituitary adenomas. Li et al. found that the
knockdown of CCNB1 decreased the expression of N-cadherin,
but increased the expression of E-cadherin and p120-catenin.
Further analysis indicated that RES inhibited the expression level
of CCNB1, regulated the proliferation and apoptosis of pituitary
tumor cells, and changed the expression level of various EMT
markers (53).

Head and Neck Cancer
More and more evidence has manifested that head and neck
cancer has a subpopulation of cells which possess stem-like
properties and ability to trigger tumor metastasis as well as the
resistance of treatment (161). Cancer researchers pay huge
attention to stemness signature interacted with EMT. For
example, Hu et al. reported that RES could down-regulate the
expression of Oct4, Nanog, and Nestin identified as stemness
genes signatures and downregulate EMT markers (Slug, ZEB1,
N-cadherin and vimentin) (54). Because of the capability to
eliminate stem-like and EMT properties, RES may be a valuable
therapeutic candidate. Additionally, researchers also found RES
prevented the expression of Smad2/3 and down-regulated EMT
markers but induced the expression of E-cadherin in oral
squamous cell carcinoma (OSCC) (55). Rab coupling protein
(RCP) promotes OSCC metastasis via elevating the expression
level of ZEB1 and thereby upregulating membranetype 1 matrix
metalloproteinases (MT1-MMP) expression, and this
observation can be reversed by RES, revealing the potential
therapeutic effects of RES on OSCC (56). Shen et al. proved
that RES impeded EMT through p53 activation in CSCs of
nasopharyngeal carcinoma (57).Conclusively, RES may give
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beneficial information for the new therapies for head and neck
cancer treatment.

Melanoma, Osteosarcoma and Multiple Myeloma
Chen et al. found that RES exerted the antitumor effects in the
metastasis melanoma mouse model, including reducing the
tumor size and prolonging the survival. RES prevents tumor
metastasis caused by LPS and inhibits the expression of EMT
markers via the downregulation of NF-kB activity (58). In
another study, Menicacci et al. proved that RES prevented
MRC5 fibroblast senescence-associated secretory phenotype
(SASP)-related protumoral effects on melanoma cells and
inhibited the ability of EMT (59). In osteosarcoma cells, Sun
et al. found that RES promoted the degradation of HIF-1a
protein, abrogating the influence of hypoxia on proliferation,
invasion and EMT (60). In conclusion, RES represents a bright
prospect in the therapeutic strategies of cancers. A phase 2 study
for patients with relapsed and or refractory multiple myeloma
(MM) showed that the combination between SRT501
(resveratrol) and bortezomib exerted better overall response
rate than SRT501 monotherapy, and renal failure seemed
specific to MM patients (162).
RESVERATROL ANALOGS

Recently, some analogs of RES have been constructed with
enhanced anti-tumor effectiveness, bioavailability, and
pharmacokinetic characteristics (163). Here, we reviewed
several RES analogs which were associated with EMT in
different cancers. Daniele et al. developed trans-restricted
analogues in which the C–C double bond of RES is displaced
by diaryl substituted imidazole analogues and studied anti-tumor
effects of these analogues on ovarian cancer cells. Authors found
these analogues blocked the AKT and MAPK signaling,
inhibiting IL-6 and EGF-induced EMT in ovarian cancer cells.
These findings indicate the potential of analogues in the fight
against tumor metastasis (61).

3,5,4′-Trimethoxystilbene (MR-3), a natural methoxylated
analog of RES, changes the EMT-related phenotypes more
effectively than RES in MCF-7 cells (62). Authors found that
MR-3 could restore membrane-bound b-catenin as well as
suppress the nuclear localization and function of b-catenin in
breast cancer cells. Further, MR-3 significantly decreases the
phosphorylation of GSK-3b and the phosphorylated status of
AKT is blocked. Altogether, MR-3 reverses the occurrence of
EMT through the degradation of PI3K/AKT/GSK-3b signaling
and the synthesis of b-catenin proteasome. Simultaneously, this
finding suggests that methoxylation may increase the EMT-
inhibiting effect of RES.

Another RES analog, Triacetyl-resveratrol (TCRV), which
provides a better pharmacokinetics/pharmacodynamics traits
than parent RES, was studied in pancreatic cancer cells by
Junsheng Fu and his team (63). Authors found that TCRV
inhibited EMT by suppressing the expression of ZEB1 via the
upregulation of miR-200 family members and by the suppression
of the sonic hedgehog (Shh) pathway. These findings suggest
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TCRV might be a promising candidate for the prevention and
treatment of pancreatic cancer.
CONCLUSIONS AND PERSPECTIVES

More and more studies have demonstrated that the EMT process
exerts a significant role on tumor progression and metastasis (7–
9). The EMT program is associated with various pathways and
crosstalk between these signaling by key molecules. Interestingly,
EMT induction promotes the CSC characteristics and
contributes to recurrence and drug resistance. TGF-b1 has
widely been regarded as an effective inducer of the EMT
process via both Smad-dependent and other signaling. RTK
pathways also play essential roles in the process of EMT. Thus,
therapies targeting these signaling pathways might provide
promising approaches to inhibit invasion of cancer cells and to
prevent metastasis. RES has attracted increasing attention in
recent 20 years with its impact on preventing cancer and its
low toxicity for normal cells in vivo. In addition, the safety of
oral administration has also been proved by many preclinical
and clinical studies. Because of its low water-solubility
and bioavailability, some RES analogs, such as 3,5,4’-
Trimethoxystilbene and Triacetyl resveratrol, are constructed.
Several studies have confirmed that RES and its analogues inhibit
cancer cell growth, invasion, migration as well as promote the
apoptosis of tumor cells. RES can also reverse and prevent EMT,
increasing cell-cell tight junctions and eventually inhibiting the
metastasis of cancers. Recent data reveal that RES can show anti-
tumor effects by suppression of EMT via both TGF-b1-
dependent (e.g. breast cancer, lung cancer and glioblastoma
multiforme) and -independent (e.g. gastric cancer, pancreatic
cancer, ovarian cancer, melanoma and osteosarcoma) signaling
Frontiers in Oncology | www.frontiersin.org 11
pathways. Moreover, it has been reported that RES and its
analogs can abolish chemoresistance through EMT inhibition
and improve the antiproliferative effects of conventional
treatments (e.g. doxorubicin, 5-FU, tamoxifen and cisplatin).
Therefore, RES and analogs have the potential ability to be
applied as novel complementary and alternative agents to
hamper cancer invasion and metastasis, and it may partly be
attributed to their effectiveness to prevent EMT.
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