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Purpose: This study aimed to develop machine learning models for the diagnosis of
Parkinson’s disease (PD) using multiple structural magnetic resonance imaging (MRI)
features and validate their performance.

Methods: Brain structural MRI scans of 60 patients with PD and 56 normal controls
(NCs) were enrolled as development dataset and 69 patients with PD and 71 NCs from
Parkinson’s Progression Markers Initiative (PPMI) dataset as independent test dataset.
First, multiple structural MRI features were extracted from cerebellar, subcortical, and
cortical regions of the brain. Then, the Pearson’s correlation test and least absolute
shrinkage and selection operator (LASSO) regression were used to select the most
discriminating features. Finally, using logistic regression (LR) classifier with the 5-
fold cross-validation scheme in the development dataset, the cerebellar, subcortical,
cortical, and a combined model based on all features were constructed separately. The
diagnostic performance and clinical net benefit of each model were evaluated with the
receiver operating characteristic (ROC) analysis and the decision curve analysis (DCA)
in both datasets.

Results: After feature selection, 5 cerebellar (absolute value of left lobule crus II
cortical thickness (CT) and right lobule IV volume, relative value of right lobule VIIIA
CT and lobule VI/VIIIA gray matter volume), 3 subcortical (asymmetry index of caudate
volume, relative value of left caudate volume, and absolute value of right lateral
ventricle), and 4 cortical features (local gyrification index of right anterior circular insular
sulcus and anterior agranular insula complex, local fractal dimension of right middle
insular area, and CT of left supplementary and cingulate eye field) were selected
as the most distinguishing features. The area under the curve (AUC) values of the
cerebellar, subcortical, cortical, and combined models were 0.679, 0.555, 0.767,
and 0.781, respectively, for the development dataset and 0.646, 0.632, 0.690, and
0.756, respectively, for the independent test dataset, respectively. The combined model
showed higher performance than the other models (Delong’s test, all p-values < 0.05).
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All models showed good calibration, and the DCA demonstrated that the combined
model has a higher net benefit than other models.

Conclusion: The combined model showed favorable diagnostic performance and
clinical net benefit and had the potential to be used as a non-invasive method for the
diagnosis of PD.

Keywords: Parkinson’s disease, machine learning, structural magnetic resonance imaging, logistic regression,
external validation

INTRODUCTION

Parkinson’s disease (PD) is a chronic progressive
neurodegenerative disease affecting over 1% of the population in
their 60s (Wang et al., 2018). Its pathogenesis is still unclear, but
genetics and environmental factors may play a major role (Koros
et al., 2017; Bhat et al., 2018). Besides the characteristic motor
symptoms, patients with PD also present a number of non-motor
symptoms including sleep disorders, cognitive impairment,
sensory dysfunction, and so on (Kalia and Lang, 2015). At
present, the clinical diagnosis of PD mainly relies on some
subjective evaluations, such as clinical symptoms, family history,
and dopamine therapy response, leading to a misdiagnosis rate of
25% approximately (Mandal and Sairam, 2013). Therefore, it is
very important to find an objective and efficient way to improve
the diagnosis rate of PD.

Recently, high-resolution structural magnetic resonance
imaging (MRI) has been frequently used to detect the subtle
changes of the human brain. In patients with PD, numerous
studies have found widespread brain atrophy in the cerebellar,
subcortical, and cortical regions by using various structural MRI
features, such as gray matter (GM) volume (GMV), white matter
(WM) volume (WMV), and cortical thickness (CT). In addition,
some cortical morphological features, including local gyrification
index (LGI), local fractal dimension (LFD), and sulcal depth (SD),
are also increasingly used to detect the structural changes of PD
(Chaudhary et al., 2020; Li et al., 2020; Wang et al., 2021b).
Compared with GMV, WMV, and CT, cortical morphological
features can not only provide information about the shape of the
cortical surface but also have higher accuracy and sensitivity in
aging people, which may provide a new perspective to explore
the neuropathological mechanism of PD (Li et al., 2020; Wang
et al., 2021a). Furthermore, PD has a typical clinical phenomenon
of lateral onset, which may be related to the asymmetry of the
cortical or subcortical structures (Kim et al., 2014; Lee et al., 2015;
Zhang et al., 2021). The asymmetry index (AI) can quantify the
degree of structural asymmetry between the two hemispheres,
providing a potential feature to characterize the brain of PD.
However, based on the aforementioned structural MRI features,
most of the previous studies have focused on exploring the
structural differences between PD and normal controls (NCs) at
the group level, which cannot assist in individualized diagnosis.

In recent years, machine learning (ML) technology based
on structural MRI features has developed rapidly and showed
huge advantages in assisting individualized diagnosis in various
neurological and psychiatric diseases, such as Alzheimer’s

disease (Wen et al., 2021), schizophrenia (Chand et al.,
2020), and depression (Kang and Cho, 2020). Compared with
traditional group-level analysis, ML technology takes inter-
regional correlations into account, thereby providing increased
sensitivity to subtle changes and spatially distribution differences
(Zhu et al., 2019). In patients with PD, some structural features
have been used to distinguish patients with PD and NCs. For
example, by using the GMV, WMV, and cerebrospinal fluid (CSF)
volume of substantia nigra, thalamus, hippocampus, frontal lobe,
and midbrain, Rana et al. (2015b) found that the ML model based
on the substantia nigra gained the highest accuracy, sensitivity,
and specificity in differentiating patients with PD and NCs. In
a multimodal ML study, Park et al. (2020) found patients with
PD have GMV loss in basal ganglia, thalamus, cingulate cortex,
insula, superior temporal cortex, and cerebellum. Furthermore,
Morales et al. (2013) discovered that the CT of the entorhinal
cortex was the most predictive region of the whole brain in
the diagnosis of patients with PD with dementia. As far as we
know, the LGI, LFD, SD, and AI features have not been used in
the individualized diagnosis of patients with PD, and external
validations were rarely observed in such studies to verify the
validity of the model.

Hence, in this study, by using multiple structural MRI features,
we constructed the cerebellar, subcortical, cortical, and the
combined ML models to investigate their diagnostic efficacy and
clinical net benefits, and the abnormal brain regions related to
PD. Furthermore, in order to verify the validity of the model,
external validation was employed in the study. We speculate that
the combined ML model based on all features may gain the best
classification performance compared to other models.

MATERIALS AND METHODS

Subjects
Sixty patients with PD were recruited from the Neurology
Department of the Second Affiliated Hospital of Soochow
University and diagnosed based on the United Kingdom
PD Brain Bank Criteria by an experienced neurologist. The
exclusion criteria included (1) Parkinsonism-plus syndrome,
such as multiple system atrophy and progressive supranuclear
palsy; (2) Parkinson’s syndrome secondary to drugs, metabolic
diseases, central nervous system infections, and head trauma;
(3) significant leukoaraiosis performance; (4) dementia, brain
tumors, stroke, and drug abuse; and (5) severe heart, liver,
lung, and kidney diseases. In total, 56 age- and gender-matched
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NCs were also recruited, and they had no obvious cognitive
impairment and neurological or mental illness. All subjects were
right-handed and had no contraindications to MRI examination.
The Unified Parkinson’s Disease Rating Scale-motor section
(UPDRS-III) and Hoehn–Yahr stage (H–Y stage) were used to
assess the severity of PD motor symptoms.

A total of 69 de novo patients with PD and 71 NCs from the
Parkinson’s Progression Markers Initiative (PPMI)1 (Marek et al.,
2011) dataset were also enrolled as an independent dataset for
the external validation of the predictive models. PPMI is a public
repository from various centers that provides neuroimaging and
associated clinical information of various modes of patients with
PD and matched NCs for identifying potential biomarkers of
disease progression.

All participants in the study have received approval
from the Institutional Review Board and have written the
informed consent.

MRI Data Acquisition
A Philips Achieva 3.0T MRI scanner (Philips, Best, Netherlands)
with a 32-channel phased-array head coil was used to collect
the 3D T1-weighted images. All subjects were in a supine
position with their heads still and eyes closed. Memory pads
and earplugs were used to reduce motion artifacts and scanning
noise, respectively. The MRI scan parameters include: sagittal
scan, repetition time (TR) = 7.1 ms, echo time (TE) = 3.5 ms,
acquisition matrix size = 220 × 199, reconstruction matrix
size = 352 × 352, flip angle = 8◦, the field of view
(FOV) = 220 mm2, slice thickness = 1.0 mm, slice gap = 0 mm,
and slice number = 155.

Extraction of Structural Features
First, MRIcron software2 was used to convert the MRI
images from the DICOM format to the 3D NIfTI format.
The images from all subjects were inspected by an
experienced neuroradiologist, and no subjects were excluded
from the analysis.

Then, the Ceres and volBrain (IBIME, Valencia, Spain3) online
software were used to extract the cerebellar and subcortical
features, respectively. Compared to similar software, Ceres and
volBrain are more competitive in calculation time and accuracy
(Manjón and Coupé, 2016; Romero et al., 2017). The processing
steps included denoising, coarse inhomogeneity correction,
Montreal Neurological Institute (MNI) affine registration, fine
inhomogeneity correction, intensity normalization, and region
of interest segmentation. Finally, the following features were
obtained: the absolute and relative value of the whole volume,
GMV and CT of the cerebellum (including the bilateral
Lobule I-II, III, IV, V, VI, Crus I, Crus II, VIIB, VIIIA,
VIIIB, IX, and X), and the subcortical volume (including the
bilateral caudate nucleus, putamen, thalamus, globus pallidus,
hippocampus, amygdala, nucleus accumbens, and the lateral
ventricles). In addition, the AI was also obtained to evaluate

1https://www.ppmi-info.org/data
2https://www.nitrc.org/projects/mricron
3https://www.volbrain.upv.es/index.php

the asymmetry degree of the aforementioned structures in the
left and right hemispheres. The lower the absolute value, the
smaller the asymmetry degree; when the two hemispheres are
symmetrical, it is 0.

The computational anatomy toolbox (CAT12,4 version r1733)
in the statistical parametric mapping (SPM12,5 version 7771)
was adopted to extract the cortical features. The extraction
steps of GMV and WMV indicators were image segmentation,
normalization and modulation (DARTEL algorithm), and space
smoothing (8-mm Gaussian smoothing kernel). In addition,
CAT12 used a projection-based thickness method to evaluate
CT and the central surface in one step (Dahnke et al., 2013).
Then, the central surface of the cortex was further used to
calculate the LGI, LFD, and SD features based on the methods
described in Luders et al. (2006), Yotter et al. (2011), and Yun
et al. (2013), respectively. LGI can quantitatively assess the degree
of gyrification at the vertex level, which represents the ratio
of the area of the cortex located within folded regions to the
total surface area. LFD can provide a quantitative description
of structural complexity in the cerebral cortex, which could
be a combination of sulcal depth, the frequency of cortical
folding, and the convolution of gyral shape. SD refers to the
linear distance from the inner surface of the brain (pia mater)
to the outer surface based on the Euclidean distance. In this
study, the automated anatomical labeling (AAL) template (80
regions, except for the cerebellar and subcortical regions) was
used to extract the cortical volume of GM and WM and the
Desikan-Killiany (DK40) (68 brain regions), a2009s (150 brain
regions) and human connectome project multimodal parcellation
(HCP-MMP) templates (360 brain regions) were used to extract
the cortical CT, LGI, LFD, and SD features, respectively. The
extraction process of all features is shown in Figure 1.

Machine Learning Model Construction
Feature Selection
Pearson’s correlation test was used to remove redundant features
between the two groups preliminarily. The significance threshold
was set at 0.85. If there was a pair of features with | r| > 0.85, the
one with a larger p-value calculated by the Mann–Whitney U test
between the two groups was excluded. Then, the least absolute
shrinkage and selection operator (LASSO) regression was used
to further remove the irrelevant and redundant features (data
dimensionality reduction), and the optimal penalty parameter
tuning was conducted by 10-fold cross-validation, which was
implemented in the Python programming environment using
the scikit-learn package (Pedregosa et al., 2012). LASSO is a
regularization technique, which penalizes the coefficients of the
regression variables (add an L1-norm penalty term) and shrinks
some of them to 0, thereby removing uninformative covariates
and retaining the most predictive features (Lombardi et al., 2020).
Compared with ridge regression (i.e., L2-norm), the LASSO
regression has sparse feature selection characteristics, stronger
robustness to outliers and noise changes, and higher calculation
accuracy (Moreno et al., 2011). After Pearson’s correlation test, 88

4http://www.neuro.uni-jena.de/cat12/
5http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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FIGURE 1 | The flowchart of data processing and extraction steps.

cerebellar, 31 subcortical, and 637 cortical features were kept. The
LASSO regression was applied to further reduce the dimensions
of the features, and 5 cerebellar, 3 subcortical, and 4 cortical
features with non-zero coefficients were finally selected for the
model development (Supplementary Figure 1).

Model Construction
In this study, the cerebellar model, subcortical model, and cortical
model based on corresponding features, separately, and the
combined model integrating all selected features, were developed.
All models were constructed and evaluated by using the logistic
regression (LR) with the 5-fold cross-validation scheme in the
development dataset, and their performances were also evaluated
in the independent test dataset.

The LR classifier is a statistical modeling technique that
estimates the probability of a dependent variable relating to a
set of independent variables through the sigmoid function, and
it has been widely used in biostatistics, medicine, econometrics,
and other fields (Hsu et al., 2019).

The 5-fold cross-validation method was performed to validate
the overall performance of the predictive models, in which the
whole dataset was randomly partitioned into five subsets of
similar size. Among these subsets, one subset was retained as
the validation data for validating, and the remaining four subsets
were used as the training data. The cross-validation procedure

was repeated five times (each subset was used as validating data
at least one time), and the averaged results were used to generate
a single estimation.

Diagnostic Performance and Clinical
Utility Evaluation
The classification results were assessed in terms of sensitivity
(Se), specificity (Sp), positive predictive value (PPV), and negative
predictive value (NPV). Their calculation formulas are defined as
follows:

Se = TP/(TP + FN)

Sp = TN/(TN + FP)

PPV = TP/(TP + FP)

NPV = TN/(TN + FN)

where true positive (TP) and true negative (TN) are the
number of cases that correctly divided into PD and NC
groups, respectively; false positive (FP) was the number of NCs
incorrectly identified as having PD; false negative (FN) was the
number of patients with PD incorrectly identified as NCs. Se
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and Sp represent the proportion of cases correctly classified into
PD and NC groups, respectively. PPV represents the probability
that the ML classification result is positive for PD, whereas NPV
represents that is negative for NCs.

In the classification, the receiver operating characteristic
(ROC) curve was performed to determine the performance of the
classifiers by plotting the rate of sensitivity and 1 − Sp. The area
under the curve (AUC) was used to evaluate the classification
performance of the models. The larger the AUC value (range
0–1), the better the model classification performance.

The consistency between the predicted PD probability and
actual PD rate was evaluated through calibration curve by using
1,000 times bootstrapping resampling method, and the Hosmer–
Lemeshow test was conducted to assess the goodness-of-fit of
the predictive models in both training and validation datasets
(Finazzi et al., 2011).

Decision curve analysis (DCA) is a graphical statistical
method, which can evaluate the clinical net benefit of the selected
model at different threshold probabilities in the validation set
(Liu et al., 2017). Unlike traditional performance evaluation
methods (such as the ROC curve), it considers the clinical utility
of specific models (two or more) and integrates the preferences
of patients or decision-makers into the analysis (Fitzgerald et al.,
2015). The DCA method can identify risk models for better
clinical decision-making, and it is worthy of further promotion
and application in clinical analysis. The illustration for the
study design and the development of machined learning-based
predictive models is presented in Figure 2.

Statistical Analysis
The demographic and clinical data were statistically analyzed by
SPSS 25.0 (IBM Corporation, Armonk, NY, United States). After
the normality test, the data conforming to the normal distribution
(expressed as mean ± standard deviation, x̄ ± s) was tested
for homogeneity of variance. Demographic and clinical data
were analyzed with the independent-sample t-test for continuous
variables and the chi-square test for categorical variables. The
significance level was set at p < 0.05. As mentioned in Subsection
“Diagnostic Performance and Clinical Utility Evaluation”, the
ROC curve was plotted, and Se, Sp, PPV, NPV, and AUC values
were calculated to evaluate the diagnostic efficiency of each ML
model. The difference between two AUC values of different
models in the same dataset was compared to Delong’s test
(DeLong et al., 1988). The Hanley and McNeil test was used
for the comparison of two AUC values from different datasets
(Hanley and McNeil, 1983). The HemI software (version 1.0) was
used to plot the heatmap of selected features. The calibration
curve was plotted using the “rms” package, and the decision curve
was plotted using the “rmda” package.

RESULTS

Demographic and Clinical Data
No significant difference was observed with respect to the age
(p = 0.211 and p = 0.276), gender (p = 0.564 and p = 0.958),
and education (p = 0.351 and p = 0.455) between patients with

PD and NCs in the development and independent test datasets,
respectively, as shown in Table 1.

Feature Selection Results
A total of 273 cerebellar, 56 subcortical, and 2,472 cortical features
were originally extracted from the structural MRI of both groups.
After the two-step feature selection of Pearson’s correlation test
and LASSO regression, 5 cerebellar, 3 subcortical, and 4 cortical
features were finally retained as the most discriminative regions
between PD and NC groups. The analysis of these selected
features in the development and independent test datasets is
summarized in Table 2. These regions included the cerebellar
(the absolute value of the left lobule crus II CT, the relative
value of the right lobule VIIIA CT, the relative value of the right
lobule VI/VIIIA GMV, and the absolute value of the right lobule
IV volume), the subcortical (the AI of the caudate volume, the
relative value of the left caudate volume, and the absolute value
of the right lateral ventricle), and the cortical features [the LGI
of the right anterior circular insular sulcus (ACIS) and anterior
agranular insula complex (AAIC), the LFD of the right middle
insular (MI) area, and the CT of the left supplementary and
cingulate eye field (SCEF)]. In addition, the heatmap of these
selected features was drawn based on the normalized feature
value (Figure 3).

Model Evaluation Results
The ROC curves and Se, Sp, PPV, NPV, and AUC values of each
model in the training, internal validation, and independent test
datasets are shown in Figure 4 and Table 3. The AUC values
of the cerebellar model, subcortical model, and cortical model
were 0.679, 0.555, and 0.767 in the internal validation dataset,
respectively. The combined model had achieved an AUC value
of 0.781 in the internal validation dataset, which was higher
than that of the cerebellar (p-value = 0.027), subcortical (p-
value < 0.001), and cortical model (p-value = 0.473). Similar
results were observed in the independent test dataset, with the
corresponding AUC values of the cerebellar, subcortical, cortical,
and combined models achieving 0.646, 0.632, 0.690, and 0.756,
respectively. The combined model also outperformed the other
three models (Delong’s test, all p-values < 0.05). These results
suggested that the combined model had the highest diagnostic
efficiency, followed by the cortical model. The combined model
also showed good robustness, as the Hanley and McNeil test
suggested no significant difference between the AUC values on
the internal and external datasets (p = 0.672).

The non-significant statistic of the Hosmer–Lemeshow test
suggested that all models showed no significant deviation from
an ideal fitting (p-values = 0.552, 0.917, 0.358, and 0.618 for
the cerebellar, subcortical, cortical, and combined models in
the internal validation dataset, and p-values = 0.423, 0.648,
0.579, and 0.212 for the cerebellar, subcortical, cortical, and
combined models in the independent test dataset, respectively).
The calibration curves of these models in the internal validation
and independent test datasets are shown in Supplementary
Figures 2, 3, respectively.

The DCA curves of each model based on both classifiers are
shown in Figure 5. Quantitative analysis of the clinical net benefit
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FIGURE 2 | The flowchart of the machine learning steps. Feature selection (data dimensionality reduction), model building (using the optimal discrimination features
set), and model evaluation were performed using the extracted structural features.

TABLE 1 | Demographic and clinical data of subjects in the development and independent test datasets.

Variables Development dataset Independent test dataset

PD (n = 60) NC (n = 56) p PD (n = 69) NC (n = 71) p

Age (years) 61.60 ± 6.93 63.07 ± 5.54 0.211 61.01 ± 9.89 59.10 ± 10.82 0.276

Gender (M/F) (30/30) (31/25) 0.564 (45/24) (46/25) 0.958

Education (years) 7.88 ± 3.76 8.55 ± 3.94 0.351 15.30 ± 2.84 15.66 ± 2.81 0.455

Duration of illness (years) 3.73 ± 2.05 – – 0.57 ± 0.53 – –

UPDRS III score 22.55 ± 12.52 – – 20.46 ± 9.21 – –

H-Y stage 1.91 ± 0.63 – – 1.52 ± 0.50 – –

PD, Parkinson’s disease; NC, Normal control; UPDRS-III, Unified Parkinson’s Disease Rating Scale-motor section; H–Y stage, Hoehn and Yahr stage.

under different threshold probabilities in the internal validation
dataset and the independent test dataset demonstrated that the
combined model using all the selected features showed higher net
benefit than that of other models (internal validation dataset, 15–
50%; independent test dataset, 10–60% and 65–90%), followed by
the cortical model.

DISCUSSION

Using multiple structural MRI features of the whole brain and ML
technology, the present study revealed that the combined model
based on all features obtained the highest diagnostic efficiency
and clinical application value. The most discriminative regions
between PD and NC groups included the cerebellar (the absolute
value of the left lobule crus II CT, the relative value of the right
lobule VIIIA CT, the relative value of the right lobule VI/VIIIA
GMV, and the absolute value of the right lobule IV volume), the

subcortical (the AI of the caudate volume, the relative value of
the left caudate volume, and the absolute value of the right lateral
ventricle), and the cortical features (the LGI of the right ACIS and
AAIC, the LFD of the right MI, and the CT of the left SCEF).

Compared to other single models, the combined model
significantly improved the diagnostic efficiency and clinical net
benefit in the development and independent test datasets, which
may highlight the importance of multiple structural features
in ML research. Similar to our study, some previous studies
also found the superiority of employing multiple features in
the ML studies. For example, Rana et al. (2016) and Cigdem
and Demirel (2018) revealed that modeling after fusing GM
and WM features achieved higher accuracy than using a single
feature, with an improvement of up to about 15 and 30%
in accuracy, respectively. By using multiple structural features
(GM, WM, CSF, CT, surface area, and the correlation index
of CT and surface area), Peng et al. (2017) adopted filter-
and wrapper-based feature selection method and the support
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TABLE 2 | Comparison of the selected features in the development and independent test datasets.

Model Key features Development dataset Independent test dataset

NC (x ± s) PD (x ± s) p NC (x ± s) PD (x ± s) p

Cerebellar The absolute value of the left lobule crus II CT –0.088 ± 0.922 0.082 ± 1.061 0.362 0.066 ± 0.987 0.487 ± 0.766 0.006

The relative value of the right lobule VIIIA CT 0.089 ± 1.088 –0.083 ± 0.902 0.358 0.105 ± 0.891 –0.286 ± 0.860 0.010

The relative value of the right lobule VIIIA GMV 0.097 ± 0.952 –0.091 ± 1.034 0.317 1.021 ± 1.393 0.565 ± 0.902 0.024

The relative value of the right lobule VI GMV 0.268 ± 0.973 –0.251 ± 0.959 0.005 0.807 ± 1.134 0.647 ± 1.157 0.415

The absolute value of the right lobule IV volume –0.069 ± 1.036 0.064 ± 0.961 0.480 0.336 ± 1.061 0.891 ± 0.957 0.002

Subcortical The AI of the caudate volume –0.044 ± 0.900 0.041 ± 1.083 0.654 –0.031 ± 1.041 0.508 ± 2.028 0.051

The relative value of the left caudate volume 0.101 ± 0.944 –0.094 ± 1.041 0.299 –0.070 ± 0.985 –0.476 ± 1.100 0.024

The absolute value of the right lateral ventricle –0.092 ± 0.939 0.086 ± 1.047 0.342 0.302 ± 1.702 0.882 ± 2.087 0.075

Cortical The LGI of the right ACIS 0.219 ± 0.796 –0.204 ± 1.121 0.023 0.750 ± 0.966 0.224 ± 1.129 0.004

The LGI of the right AAIC 0.307 ± 0.935 –0.286 ± 0.974 0.001 0.265 ± 1.129 –0.103 ± 1.097 0.054

The LFD of the right MI 0.299 ± 0.869 –0.279 ± 1.033 0.002 0.688 ± 1.036 0.240 ± 1.061 0.013

The CT of the left SCEF 0.316 ± 0.988 –0.295 ± 0.917 0.001 -0.315 ± 0.959 –0.775 ± 0.791 0.003

(x ± s): normalized mean ± standard deviation, value range [−1, 1]. CT, cortical thickness; GMV, gray matter volume; AI, asymmetry index; LGI, local gyrification index;
ACIS, anterior circular insular sulcus; AAIC, anterior agranular insula complex; LFD, local fractal dimension; MI, middle insular area; SCEF, supplementary and cingulate
eye field.

FIGURE 3 | Heatmap analysis of the selected features in both datasets. Each column corresponds to one label (PD or NCs), and each row represented a structural
feature; red represents a relatively high feature value, and the green represents a relatively low feature value. PD, Parkinson’s disease; NC, normal control.

FIGURE 4 | Receiver operating characteristic (ROC) analysis of the cerebellar model, subcortical model, cortical model, and combined model in the training dataset
(A), internal validation dataset (B), and independent test dataset (C).
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TABLE 3 | Detailed performance of the predictive models in the training, internal validation, and independent test datasets.

Dataset Model AUC (95% CI) P Threshold Se (%) Sp (%) PPV (%) NPV (%)

Training Cerebellar 0.690 (0.598–0.773) 0.017 >0.4535 86.67 50.00 65.00 77.78

Subcortical 0.583 (0.488–0.674) <0.001 >0.5280 48.33 67.86 61.70 55.07

Cortical 0.782 (0.696–0.853) 0.352 >0.6092 61.67 82.14 78.72 66.67

Combined 0.801 (0.717–0.870) reference >0.3496 96.67 53.57 69.05 93.75

Internal validation Cerebellar 0.679 (0.586–0.763) 0.027 >0.4642 85.00 50.00 64.56 75.68

Subcortical 0.555 (0.460–0.647) <0.001 >0.5271 48.33 66.07 60.42 54.41

Cortical 0.767 (0.679–0.840) 0.473 >0.5896 65.00 78.57 76.47 67.69

Combined 0.781 (0.694–0.852) reference >0.3823 93.33 53.57 68.29 88.24

Independent test Cerebellar 0.646 (0.560–0.725) 0.043 >0.5314 47.83 80.28 70.21 61.29

Subcortical 0.632 (0.547–0.712) 0.024 >0.5332 55.07 73.24 66.67 62.65

Cortical 0.690 (0.606–0.765) 0.008 >0.5959 47.83 83.10 73.33 62.11

Combined 0.756 (0.677–0.825) reference >0.4413 82.61 60.56 67.06 78.18

Se, sensitivity; Sp, specificity; PPV, positive predict value; NPV, negative predict value; reference, comparison reference for the Delong’s test.

vector machine classifier and obtained the highest accuracy
of 85.78%. Hence, it is speculated that multiple structural
features may provide more comprehensive information of the
brain from different perspectives than the single feature. In
our study, the cortical morphological features (LGI, LFD, and
SD) were first introduced into the ML models in patients
with PD. Changes in these cortical morphological features may
result from the combined effects of GM, WM, and corticortical
connections, likely reflecting more subtle changes of the brain

FIGURE 5 | Decision curve analysis of the predictive models in the internal
validation dataset (A) and the independent test dataset (B). Within a larger
threshold probability range, the combined model has the highest clinical net
benefit, followed by the cortical model.

(Van Essen, 1997; Im et al., 2008). In the cortical model, four
cortical morphological features but no GM or WM features
were retained as the most predictive features. Hence, our results
suggested that cortical morphological features may have higher
sensitivity than volume features in PD diagnosis. Moreover,
external validation was adopted to verify the robustness and
reproducibility of these models, which may not be employed
in previous PD ML studies, and the results suggested that
the combined model performed well and would be helpful in
assisting clinical diagnosis of PD.

This study found that the most discriminating cerebellar
features of patients with PD included the absolute value of the
left lobule crus II CT, the relative value of the right lobule VIIIA
CT, the relative value of the right lobule VI/VIIIA GMV, and the
absolute value of the right lobule IV volume. The cerebellum not
only plays a crucial role in motor function but also is responsible
for cognition and emotion processes (Li et al., 2019; Xu et al.,
2019). Many studies have suggested the abnormal structure and
function of the cerebellum in patients with PD (Deng et al., 2016;
Ma et al., 2018; Li et al., 2019; Xu et al., 2019; Park et al., 2020).
Furthermore, in an ML study based on the volumetric features of
the cerebellum, Zeng et al. (2017) gained excellent classification
performance of accuracy > 95% between patients with PD and
NCs, which highlighted the importance of the cerebellum in PD
diagnosis. Compared to Zeng’s research, our classification results
were not very satisfactory. The discrepancies among these results
may be related to the heterogeneity of patients with PD and the
variations in methodological approaches. For example, most of
the patients with PD in our study had a shorter duration of
disease relative to theirs(3.73 ± 2.05 years vs. 5.0 ± 2.4 years);
hence, the changes in brain structure may not be obvious. More
importantly, although satisfactory results were obtained, the
stability of their model was unknown; in contrast, we additionally
performed external validation to make the model more reliable.

As to the subcortical regions, the caudate nucleus was the
most discriminating structure between both groups. As a part
of the striatum, the caudate nucleus is primarily involved
in emotion regulation, reward processing, decision-making,
and executive functioning (Owens-Walton et al., 2018). Many
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previous ML studies have found its atrophy in patients with PD
(Long et al., 2012; Rana et al., 2015a, 2016; Adeli et al., 2016; Liu
et al., 2018; Song et al., 2021). The asymmetry of brain structure
is related to various aspects of language function, visual spatial
tasks, attention, and emotion, and it changes with aging (Sarica
et al., 2018). PD has a typical clinical phenomenon of lateral
onset, and some studies have found that the brain structural
changes of PD also have laterality (Kim et al., 2014; Claassen
et al., 2016), which implies that the AI has potential application
value in PD diagnosis. Additionally, the volume of the right
lateral ventricle also differed between the two groups. In brief,
the expansion of the lateral ventricle likely reflects atrophy of the
basal ganglia (Kocaman et al., 2019), which has been reported in
several previous ML and group-level researches in patients with
PD (Rana et al., 2015a, 2016; Solana-Lavalle and Rosas-Romero,
2021; Song et al., 2021). As an indirect sign, the enlargement of
the lateral ventricle may provide vital reference information for
the macroscopic structural changes of the PD brain.

In the cortical model, the LGI of the right ACIS and
AAIC, the LFD of the right MI, and the CT of the left SCEF
were retained as the most discriminating features. The insula
(including ACIS, AAIC, and MI) is a hub region of the salience
network and is mainly involved with a variety of brain functions
including perception, emotion, and cognition (Huang et al.,
2020). A number of ML studies have reported abnormalities of
the insula in patients with PD (Babu et al., 2014; Rana et al.,
2015a, 2016; Adeli et al., 2016; Peng et al., 2017; Park et al.,
2020). SCEF is a part of the supplementary motor area, which
is primarily related to the production of autonomous, complex,
and continuous movement (Jubault et al., 2011). Similar to our
results, some studies have also discovered the CT thinning of
the supplementary motor area in patients with PD (Jubault
et al., 2011; Hanganu et al., 2014; Guimarães et al., 2016).
Additionally, volume atrophy of the supplementary motor area
was also detected by some ML research works (Adeli et al., 2016;
Peng et al., 2017; Tang et al., 2018). Hence, these studies have
shown that the insula and supplementary motor area play an
important role in the pathogenesis of PD and could be used as
the discriminating regions in PD diagnosis.

This study has some limitations. First, the sample size is
relatively small, the expansion of samples is still needed to
verify the reliability of these experimental models. Second, this
study did not analyze the subtypes of patients with PD based
on clinical symptoms, and we will expand the sample size
for further research to understand the prognosis of various
subtypes. Finally, although we have fully explored the multiple
structural MRI features, ML studies based on multimodal MRI,
such as diffusion and functional MRI, may further improve the
classification performance.

CONCLUSION

In conclusion, the construction of ML models from different
perspectives based on multiple structural MRI indicators has
high diagnostic efficiency and clinical net benefits for PD in
both internal and external validation datasets, among which the

combined model performed best, followed by the cortical model.
The most diagnostic discriminating brain regions identified by
ML are expected to be served as potential neuroanatomical
markers of PD, further deepening our understanding of its
pathogenesis. The combined ML model based on multiple
indicators may be of great value in assisting the clinical
diagnosis of PD and may become an effective and clinically
applicable new method.
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