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Intermediate filaments (IFs) are a primary structural component of the cytoskeleton
extending throughout the muscle cell (myofiber). Mechanotransduction, the process by
which mechanical force is translated into a biochemical signal to activate downstream
cellular responses, is crucial to myofiber function. Mechanical forces also act on the
nuclear cytoskeleton, which is integrated with the myofiber cytoskeleton by the linker
of the nucleoskeleton and cytoskeleton (LINC) complexes. Thus, the nucleus serves
as the endpoint for the transmission of force through the cell. The nuclear lamina, a
dense meshwork of lamin IFs between the nuclear envelope and underlying chromatin,
plays a crucial role in responding to mechanical input; myofibers constantly respond
to mechanical perturbation via signaling pathways by activation of specific genes. The
nucleus is the largest organelle in cells and a master regulator of cell homeostasis,
thus an understanding of how it responds to its mechanical environment is of great
interest. The importance of the cell nucleus is magnified in skeletal muscle cells due to
their syncytial nature and the extreme mechanical environment that muscle contraction
creates. In this review, we summarize the bidirectional link between the organization
of the nucleoskeleton and the contractile features of skeletal muscle as they relate to
muscle function.
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INTRODUCTION

Intermediate filaments (IFs) contribute to force transmission, cellular integrity, and signaling in
skeletal muscle. IFs are flexible, rod-shaped fibers averaging 10 nm in diameter, a size that is
“intermediate” between microfilaments (7–8 nm) and microtubules (25 nm). IFs are classified into
major families, with types I–IV localized in the cytoplasm, type V comprised of the lamins inside
the nucleus, and type VI comprised of neural and lens proteins. In mature skeletal muscle, the IF
cytoskeleton is composed predominantly of type III IF proteins, with the muscle-specific protein
desmin being the most abundant. Desmin is an intracellular protein linking individual myofibrils
laterally to each other and is important for the transmission of active and passive forces within the
cytoskeleton (Shah et al., 2004). Other IFs in skeletal muscle include type IV IF proteins, such as
synemin, paranemin, syncoilin and nestin, and IF type I and II keratins, all of which are important
in cell integrity and cytoskeletal transmission of force (McCullagh et al., 2007; Lovering et al., 2011;
Garcia-Pelagio et al., 2015).

In addition to the cytoplasmic IF network, the nuclei contain a network of lamin IF proteins.
Like their cytoplasmic counterparts, the nuclear lamins are an important determinant of nuclear
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stiffness and are crucial in maintaining the integrity of the
nuclei in the mechanically intense environment of a contracting
muscle (Swift et al., 2013; Stephens et al., 2017). Many studies
have investigated how forces initiated at the sarcolemma are
transmitted throughout the cytoskeleton to activate downstream
cellular responses (i.e., mechanotransduction). The signaling
cascades that respond to changes in extracellular and intracellular
mechanics have garnered the most focus (Tidball, 1991).
However, recent studies show that forces acting on the cell, and
changes in stiffness within the cell, can be transmitted directly
to the nucleus and change the structure of the nuclear lamina
and the associated chromatin (Stephens et al., 2017, 2019). Thus,
the nucleus can act as an internal mechano-sensor in muscle cells
(myofibers) (Navarro et al., 2016).

Although most eukaryotic cells have a single nucleus,
myofibers are multinucleated. To support the large cytoplasm
in the skeletal myofiber, the nuclei are evenly positioned along
the cell periphery to maximize the distance between nuclei
(Bruusgaard et al., 2006). This even spatial distribution of nuclei
minimizes transport distances, such that each nucleus regulates
the gene products in a fixed volume of a muscle fiber, a concept
known as the myonuclear domain (Hall and Ralston, 1989).
There is some flexibility in the size of myonuclear domains, but
whether nuclear accretion is necessary for, versus the result of,
increased muscle fiber size is less clear (Murach et al., 2018).
Each nucleus contributes to the organization of the myofiber
cytoskeleton, but importantly the nuclei throughout a single fiber
also act as cellular mechano-sensors (Cho et al., 2017). Nuclear
spatial distribution distributes the “centers” that organize the
cytoskeleton and mechanical hubs that are critical mechanical
sensors and responders. These hubs are then integrated with the
force-producing myofibrils through the cytoplasmic IF network
(Roman and Gomes, 2018). Thus, understanding the individual
contributions of distinct IF networks and how these distinct
pathways interact is critical to understanding muscle weakness
with aging and disease.

LAMINA AND NUCLEAR ENVELOPE

The nucleus serves as the instruction manual for cells, containing
the vast majority of the genome and the site of gene regulation.
Thus, how it interprets stress to alter gene expression and its
position to deliver cellular materials clearly contributes to cell
behavior. Like most cell organelles, the nucleus is surrounded by
a membrane. However, the nuclear envelope (NE) is composed of
a double bilayer lipid membrane that forms a barrier between the
nuclear interior and the cytoplasm (Figure 1). This NE consists
of an outer nuclear membrane (ONM) and the inner nuclear
membrane (INM) that are separated by the small (∼40 nm wide)
perinuclear space. The two membranes are fused at the nuclear
pore complexes (NPCs), which form channels responsible for
nucleocytoplasmic trafficking.

The linker of nucleoskeleton and cytoskeleton (LINC)
complex is a series of proteins that physically links the
nucleoskeleton to the cytoskeleton and allows for transmission
of force from the cytoplasm to the nucleus for many functions

including nuclear spacing and gene regulation (Luxton and Starr,
2014). In mammals, nesprins (nuclear envelope spectrin repeat
proteins), which contain a KASH domain, span the ONM and
interact with microtubules, actin, and IFs on the cytoplasmic
side of the nuclear envelope. SUN proteins (Sad1 and UNC-
84 domain containing proteins) span the INM and interact
directly with both the nuclear lamina and chromatin on the
nucleoplasmic side of the nuclear envelope. Nesprins, specifically
their KASH domains, interact with the SUN domain proteins
within the perinuclear space (space between the INM and ONM).
Thus, these proteins directly link protein networks that are
critical to mechanotransduction. Furthermore, these proteins
interact and are responsive to the mechanical environment (Jahed
et al., 2021), adding a layer of complexity and tuning to this
integrated network. This complexity is particularly important in
muscle where LINC complex interactions are critical to maintain
spacing between the two nuclear membranes (Cain et al., 2014).

Within the nucleus, the lamina is composed of ∼3.5 nm
tetrameric lamin filaments and is approximately ∼14 nm thick.
The lamina lines the INM, connects chromatin to the nuclear
periphery, and directly interacts with transcription factors to
regulate gene expression (Turgay et al., 2017). In addition,
the NPCs, which allow for selective transport between the
nucleus and the cytoplasm, interact with the LINC complex, the
lamina, the cytoskeleton, and the chromatin to regulate gene
expression (D’Angelo, 2018). Thus, the complex of proteins that
regulate the movement of proteins in and out of the nucleus
contacts the regulators of gene expression and the primary
mechanotransduction networks. Furthermore, the NPC itself is
mechanically responsive demonstrating the ability to expand in
response to physical cues (Fichtman and Harel, 2014).

The lamin family consists of the A-type lamins and the B-type
lamins, and are expressed as products of three differentially
regulated genes. Lamin A, C, and less abundant, A110 and
C2, are all splice-isoforms of the LMNA gene. Lamin B1 is
encoded by LMNB1 and Lamin B2 and B3 are encoded by
LMNB2 gene. Different lamin isoforms interact to form the
lamina and have many binding partners, including chromatin,
LINC complex proteins and NPCs. Similar to other IF family
members, lamins are composed of a α-helical rod domain with
a short N-terminal head and a long tail domain containing
an Ig-fold. The rod and head domains are essential for lamin
assembly, but other regions are also important for proper protein
function. The tail domain with the globular Ig-fold contains
most of the interaction sites for lamin-binding partners. Lamins
govern numerous biological functions, both biophysical and
biochemical (Turgay et al., 2017). This includes determination
of nuclear size, shape, stiffness (Dahl et al., 2004), regulation
of transcription factors and chromatin, and control of cell
polarization and migration (Davidson and Lammerding, 2014).
However, the relative importance of individual lamin networks
remains an open question highlighted by the segregation of
lamin A and lamin B proteins within an integrated meshwork
(Guilluy et al., 2014).

Inside the nucleus are threads of chromatin composed of
DNA and associated proteins characterized as either open,
transcriptionally active euchromatin or condensed, inactive
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FIGURE 1 | Schematic representation of the linker of nucleoskeleton and cytoskeleton (LINC) complex. (A) The nuclear lamina is a meshwork of intermediate
filaments (lamins), localized on the inner aspect of the inner nuclear membrane and helps to stabilize the nuclear envelope. The lamina is in direct contact with the
chromatin, which is denser at the nuclear periphery. SUN proteins connect the inside of the nucleus to nesprins, which serve as a link between the nucleus and the
myofiber cytoskeleton (including but not limited to microtubules, the actin, and desmin IFs), directly or indirectly via plectin, a cytoskeletal link in the cytoplasm. INM,
inner nuclear membrane; ONM, outer nuclear membrane; NPC, nuclear pore complex. (B) Schematic showing only a few of the hundreds of myofibrils within a
single muscle fiber (aka myofiber). Nuclei are located along the periphery of myofibers. Note that the LINC complex is located circumferentially around the nuclear
membrane (aka nuclear envelope). Dotted white lines indicate the cytoskeletal IFs that connect the myofibrils to each other, to the sarcolemma, and to the nuclei.

heterochromatin. Chromatin associated with the NE has been
described as silent chromatin, which interacts with the nuclear
lamins, while active chromatin interacts with the nuclear pore
complex proteins (Kalverda et al., 2008). INM proteins interact
with the lamina and/or chromatin in a tissue-specific manner.

Although the interactions between lamins and chromatin
are critical to the organization of each, the network of
chromatin within the nucleus provides a functionally separate
mechanotransduction mechanism (Turgay et al., 2017; Dos
Santos and Toseland, 2021).
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NUCLEAR ENVELOPE AND NUCLEAR
MECHANOTRANSDUCTION

Mechanical forces are conducted through myofibers and into
nuclei to regulate muscle development, hypertrophy, and
homeostasis. One mechanism that allows myofibers to respond
to the constant mechanical force they are subjected to is
the regulation of protein levels. The stability, assembly and
transcription of the nuclear lamins, LINC complex, and the
NPCs are required for proper mechano-signaling, as all of
these components respond to mechanical stress (Dahl et al.,
2008). Although much remains to be learned, there is reason to
expect that the changes in protein levels are a direct response
to cellular mechanics. Extracellular and cytoplasmic forces are
transmitted across the nuclear envelope to the nuclear interior,
where they can cause deformation of chromatin and nuclear
bodies (Guilluy et al., 2014). Furthermore, the proportion of
phosphorylated lamin A, a proxy for the percentage of lamin
A that is incorporated into the network, is dependent on
cellular mechanics (Swift and Discher, 2014). Because gene
expression is dependent on chromatin organization (Nava et al.,
2020), which can be affected by interaction with the lamina
or directly by the application of force, it is likely that muscle
development and homeostasis are closely tied to the mechanical
state of the cell (Bronshtein et al., 2015). The nuclear lamina
is crucial to transducing mechanical signals to the nucleus and
plays an important role in DNA organization, DNA repair, and
transcriptional regulation [reviewed in Gruenbaum and Foisner
(2015)].

Beyond its gene regulation, the nuclear lamina provides
critical structural support that protects the nucleus against
nuclear rupture and damage (Cho et al., 2019). Additionally,
the nuclear lamina serves to receive mechanical signals and
thus has been called a molecular “shock absorber” of the
nucleus (Osmanagic-Myers et al., 2015). Mechanical stiffness
and viscosity of nuclei are dependent on A-type lamins,
while deformability and elasticity of nuclei are dependent on
B-type lamins. Protein expression of lamin A scales with
increasing tissue stiffness (Swift et al., 2013). In addition,
increased mechanical load of the nucleus suppresses lamin A/C
phosphorylation, with degradation of lamin A/C, downstream to
phosphorylation (Buxboim et al., 2014).

NUCLEAR ENVELOPE IN DISEASE AND
AGING

Changes to the nuclear envelope and its associated proteins
can result in unstable regulation of the mechanotransduction
pathway in response to mechanical stress, which drives
phenotypic changes in muscle, such as weakness seen with
sarcopenia and muscular dystrophies (Lacavalla et al., 2021).
Mutations in the LMNA gene are associated with diseases
having a wide range of phenotypes, including striated muscle
dysfunction, and are collectively referred to as “laminopathies,”
this includes effects on aging, for example Hutchinson-Gilford
progeria (Table 1). Mutations in the genes encoding LINC

complex proteins are also associated with a wide range of skeletal
muscle dysfunctions, many of which have phenotypes that
overlap with those of laminopathies (Bonne and Quijano-Roy,
2013). Interestingly, we recently reported reduced expression of
lamin-B1 in aged skeletal muscle (Iyer et al., 2021). Synaptic
nuclei (nuclei anchored underneath the neuromuscular junction)
in aged skeletal muscle have reduced expression of LMNA gene
(Gao et al., 2020). We have also observed changes in gene
expression of LINC complex proteins in murine models of
Duchenne muscular dystrophy (Iyer et al., 2016). However, the
mechanisms in this reduction and its effect on aging and diseased
skeletal muscle remain to be elucidated.

Muscles with mutations in the LMNA gene or absence of
LMNA gene also display aberrant nuclear morphology, stability,
mechanics, and DNA damage (Earle et al., 2020). Similarly,
muscles with mutations in genes for LINC complex proteins
such as emerin and nesprin-1 also display aberrant nuclear
morphology, mechanics, and DNA damage (Fidzianska et al.,
1998; Zhang et al., 2010). Mutations in the LINC complex
proteins, such as SUN and nesprin, are disease modifiers that
worsen the phenotype of laminopathies by further disrupting
mechanotransduction pathways due to insufficient linkage to
the cytoskeleton (Zhang et al., 2007; Meinke et al., 2014).
Nuclear positioning is also impacted in muscles with mutations
in lamin and nuclear envelope genes, with the appearance of
central and clustered nuclei, as well as a reduced number of
synaptic nuclei. The influence of the lamina and LINC appears
to be bidirectional. That is, alterations in the lamina result in
aberrant expression and organization of the LINC complex and
the cytoskeleton. Conversely, mutations/deficiencies in the LINC
complex or cell cytoskeleton can result in altered expression and
organization of the nuclear lamina (Meinke et al., 2014). Thus,
mutations of genes related to the nucleocytoskeleton pathway
can severely impact mechanotransduction, and ultimately
muscle function.

Proteins such as YAP and MLK1 are indicators reflecting
nuclear mechanotransduction, with increased signaling in the
nucleus in response to mechanical load. Interestingly, when
lamin A is depleted, nuclear levels of both YAP and MLK1 are
increased (Wiggan et al., 2020). Nuclear YAP is also increased in
muscle stem cells with mutations in the LMNA and SYNE-1 (gene
for nesprin-1 protein) genes (Owens et al., 2020a). Conversely,
overexpression of LMNA results in a decrease in nuclear YAP
accumulation (Swift et al., 2013). While cyclic strain typically
increases the nuclear accumulation of YAP (due to increased
mechanical load), with mutations in LMNA gene, cyclic strain
decreases the nuclear accumulation of YAP (Bertrand et al., 2014).
Such studies support the notion of a link between lamin IFs and
nucleo-cytoskeletal signaling. Recently, we and others observed
increased YAP nuclear accumulation and signaling in aging
skeletal muscles (Yoshida et al., 2019; Iyer et al., 2021), which also
had a reduction in lamin-B1, but whether such findings are linked
is still unknown.

Similar to YAP, ERK 1/2 signaling typically increases
in skeletal muscle with mechanical loading, such as after
exercise or repeated contractions (Kramer and Goodyear,
2007). Compared to healthy controls, ERK 1/2 signaling is
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TABLE 1 | Diseases associated with mutations in genes for lamin proteins and proteins associated with the LINC complex.

Disease Gene Protein Main clinical features

Emery-Dreifuss muscular dystrophy
2, autosomal dominant

LMNA Lamin A and C Formerly known as Limb-girdle muscular dystrophy type 1B; muscle weakness and
atrophy; neck, elbow and Achilles tendon contractures; cardiac conduction defects and
dilated cardiomyopathy

Emery-Dreifuss muscular dystrophy
3, autosomal recessive

Muscle weakness and atrophy; neck, elbow and Achilles tendon contractures; cardiac
arrhythmias

LMNA-related congenital muscular
dystrophy

Severe muscle weakness and atrophy; joint contractures

Dilated Cardiomyopathy, 1A Dilated cardiomyopathy

Charcot-Marie-Tooth disease, type
2B1

Muscle weakness and atrophy; peripheral neuropathy; reduced tendon reflexes

Heart-hand syndrome Limb deformities; dilated cardiomyopathy; tachyarrhythmia; progressive sinoatrial and
atrioventricular conductive disease

Hutchinson-Gilford progeria Premature aging

Lipodystrophy, familial partial, type
2

Abnormal subcutaneous adipose tissue distribution; metabolic abnormalities

Malouf Syndrome Hypogonadism; dilated cardiomyopathy

Mandibuloacral dysplasia Craniofacial and skeletal abnormalities; growth retardation; abnormal adipose tissue
distribution

Restrictive dermopathy, lethal Early neonatal death; tight, rigid skin with erosion and fissures; joint contractures; superficial
vessels; facial dysmorphism; intrauterine growth retardation

Leukodystrophy, adult onset,
autosomal dominant

LMNB1 Lamin B1 Slowly progressive; demyelination; autonomic dysfunction; pyramidal and cerebellar
abnormalities

Microcephaly 26, primary,
autosomal dominant

Microcephaly; developmental delay; variable intellectual development impairment

Acquired partial lipodystrophy LMNB2 Lamin B2 Genetic susceptibility; bilateral and symmetric loss of subcutaneous fat from face, neck,
upper extremities, thorax and abdomen

Microcephaly 27, primary,
autosomal dominant

Microcephaly; Moderate to severe development delay; impaired intellectual development

Progressive myoclonic epilepsy-9 Seizures; progressive neurological decline; early ataxia

Emery-Dreifuss muscular dystrophy
1, X-linked

EMD Emerin Slowly progressive muscle weakness and atrophy; joint contractures; cardiomyopathy with
conduction defects

Emery-Dreifuss muscular dystrophy
4, autosomal dominant

SYNE1 Nesprin-1 Variable phenotype with muscle weakness and atrophy; limb contractures

Arthrogryposis multiplex congenita
3, myogenic type

Hypotonia and muscle weakness; joint contractures; variable skeletal defects

Spinocerebellar ataxia, autosomal
recessive 8

Progressive neurodegenerative disorder with variable onset and phenotype; gait and
cerebellar ataxia

Emery-Dreifuss muscular dystrophy
5, autosomal dominant

SYNE2 Nesprin-2 Muscle weakness and atrophy; cardiac myopathy and arrhythmia

Deafness, autosomal recessive 76 SYNE4 Nesprin-4 Hearing loss

Mandibuloacral dysplasia with type
B lipodystrophy

ZMPSTE24 Zinc
Metalloproteinase

STE 24

Craniofacial and skeletal abnormalities; generalized loss of subcutaneous adipose tissue;
mottled pigmentation and atrophy of skin; short stature

Restrictive dermopathy, lethal Early neonatal death; tight, rigid skin with erosion and fissures; joint contractures; superficial
vessels; facial dysmorphism; intrauterine growth retardation

Atypical Hutchinson-Gilford
progeria

Severe progeria

Reynolds syndrome LBR Lamin B receptor Primary biliary cirrhosis; variable features of scleroderma

Greenberg skeletal dysplasia Skeletal abnormalities; fetal death

Pelger-Huet anomaly (PHA) Abnormal neutrophil nuclear shape and chromatin organization; homozygous mutation can
cause PHA with mild skeletal abnormalities or Greenberg skeletal dysplasia

increased in skeletal muscle with LMNA mutations (Muchir
et al., 2007), and cortical neurons depleted of lamin B1
(Giacomini et al., 2016). Such results point to the nuclear
lamina playing a pivotal role in nuclear mechanotransduction.
Interestingly, inhibition of ERK 1/2 in skeletal muscle

with LMNA mutations improves function (Muchir et al.,
2013). Future studies will hopefully determine whether
pharmacological interventions to nuclear mechanotransduction
pathways can help ameliorate skeletal muscle weakness in
laminopathies and sarcopenia.
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NUCLEAR ENVELOPE AND EXERCISE

Skeletal muscle has the ability to adapt to loading exercise, with
consequent increases in muscle mass (hypertrophy) and strength.
However, in muscles with mutations in the LMNA gene there is
a reduction in the amount of hypertrophy, presumably due to
abnormal mechanical signaling (Owens et al., 2020b). Mutations
in the LMNA gene also result in cardiac dysfunction following
exercise (Cattin et al., 2016). Patients with mutations in LMNA
gene who are active have more cardiac dysfunction compared to
patients with mutations in the LMNA gene who are sedentary.
This could be due to mechanically weakened nuclei, which
respond poorly to load, further exacerbating the dysfunction
(Earle et al., 2020). Thus, further studies are needed to determine
optimal exercise regimens for patients to maintain health and to
avoid adverse outcomes.

Increasing stiffness of the extracellular matrix results in
decreased phosphorylation of lamin A and consequently
decreased degradation of lamin A (Cho et al., 2019). Skeletal
muscle stiffness increases following loading exercise and injury
(Green et al., 2012; Silver et al., 2021), however, the direct
linkage between changes in lamin and exercise/injury in skeletal
muscle remains unclear. Expression of nesprin-1, but not SUN-
1, increases following endurance exercise in skeletal muscle
(Bostani et al., 2020). This increase in nesprin-1 expression
could be the result of myogenesis, which often occurs with
endurance exercise (Abreu and Kowaltowski, 2020). However,
in mature muscle fibers, nesprin-1 can be replaced in part
by nesprin-2, while the SUN proteins remained unchanged
during fiber maturation (Randles et al., 2010). Research into
the role of the nuclear envelope in skeletal muscle exercise
is still in its infancy and much more work is needed to

further elucidate the relationship between nuclear mechanics and
muscle performance.

CONCLUSION

How mutations in genes for lamin IFs and NE proteins affect
skeletal muscle function is complicated and studies are still
being performed to understand the underlying mechanisms.
Defects in the nuclear lamina, the LINC complex, and the NPCs
can impair the ability of nuclei, and therefore the muscle cell,
to respond appropriately to mechanical forces. Understanding
the mechanisms of impaired mechanotransduction in aging
and diseased muscle is likely to shed light on strategies
designed to prevent and treat skeletal muscle dysfunction with
disease and aging.
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