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Abstract

Butylparaben (BP) is an antimicrobial agent utilized for decades as a preservative in numerous
consumer products. The safety of parabens has recently come under scrutiny based on reports
of estrogenic activity and suggested adverse effects upon the reproductive system. Due to the
limited availability of studies that address the potential for BP exposure to induce reproductive
toxicity, and clear evidence of human exposure, the National Toxicology Program conducted a
multigenerational continuous breeding study to evaluate the impact of dietary BP-exposure at
0, 5000, 15,000, or 40,000 ppm on reproductive and developmental parameters in Hsd:Sprague
Dawley SD rats. BP-exposure was not associated with adverse alterations of fertility, fecundity,
pubertal attainment, or reproductive parameters in FO, F1, or F2 generations. Exposure-dependent
increases in liver weights, and incidences of non-neoplastic liver lesions suggest the liver is

a target organ of BP toxicity. No findings were observed that would support the purported
mechanism of BP-induced endocrine disruption in perinatally-exposed rodents.
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1. Introduction

Butylparaben (n-butyl-p-hydroxybenzoate; BP) is a member of the paraben class, which
is composed of differentially substituted esters of varying alkyl chain lengths (methyl-,
ethyl-, propyl-, butyl-, heptyl-, benzyl-paraben) at the C-4 position of p-hydroxybenzoic
acid. Parabens are chemically stable, and possess antimicrobial and antifungal properties,
likely attributed to their capacity to inhibit bacterial/fungal membrane transport, impair
mitochondrial function, and disrupt DNA/RNA/protein synthesis [1,2].

In general, parabens are classified as non-irritating, non-sensitizing, and non-toxic with a
high benefit to risk ratio relative to other commercial preservatives. The FDA has approved
the use of butylparaben as a direct food additive in food for human consumption at
minimum levels required to produce its intended antibacterial effect [3]. In a survey of

267 food samples, parabens (mean total parabens, 10 ng/g) were detected in greater than
90 % of analyzed samples [4]. In a screening of 215 cosmetic products by European

and Danish regulatory agencies found that 77 % of these products contained detectable
concentrations of parabens ranging from 0.01 % to 0.87 % (w/w), with BP levels reaching
a maximum concentration of 0.07 % (w/w) [5]. Parabens have been used as excipients in
drug formulations in a wide range of products and delivery routes since 1924 [6]. In the
United States, BP is currently approved for use to a maximum concentration of 0.4 % (w/w)
in topical creams, 0.08mg/mL in oral solutions, and 28.4mg/mL in oral syrups [7].

Detectable levels of four parabens (methyl, ethyl, propyl, and butyl) have been quantitated
in human urine samples from the National Health and Nutrition Examination Survey
(NHANES). The NHANES data reported the 95th percentile of urinary BP concentrations
in 2012 and 2014 of 10.0 and 4.39 ug/g creatinine respectively, suggesting that exposure

to BP is declining in the U.S. population [8,9]. The 2014 NHANES data also reported
24-fold higher levels of urinary BP (95th percentile) among female respondents (10.2 ug/g
creatinine) when compared to males (0.417 ug/g creatinine) [9]. Gender-bias in BP exposure
may be associated with disproportionate use of cosmetics between men and women, and is
further supported by higher concentrations of BP in cosmetics relative to food products or
pharmaceuticals [10].

Numerous /n vitroand /n vivo studies have reported parabens to possess estrogenic activity
[11,12]. Additional studies found that multiple parabens were competitive estrogen receptor
ligands and induced transactivation of ER-dependent gene expression in MCF-7 cells [13—
16]. However, estrogenic potency of parabens was estimated to be 1,000-1,000,000 fold
less than that of 17-B-estradiol [17]. Structure activity relationship assessments found
parabens containing longer or increasingly branched side chains possessed increased
relative estrogenic potential [16]; which was observed in recombinant yeast assays, in
which methyl-, ethyl-, propyl-, butyl-, and benzylparaben, displayed relative responses of
1/3,000,000, 1/200,000, 1/30,000, 1/8000, and 1/4000 the potency of estrogen, respectively
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[18]. 17 vivo rodent uterotrophic assays indicate BP-associated estrogenic effects are many
orders of magnitude less potent than estrogen, although this disparity was lessened following
subcutaneous injection relative to oral administration [11].

Speculation regarding paraben safety was prompted by numerous reports of severe adverse
effects on the male reproductive system in rodents [19-21]. In one study, male Wistar rats
fed diets containing up to 10,000 ppm BP (1 % w/w) for 8 weeks presented dose-related
reductions in epididymal weights, testis and cauda epididymal sperm concentrations and
serum testosterone levels [21]. A similar study in Crj:CD-1 mice found BP exposure
decreased serum testosterone levels and daily sperm production at the highest dose tested
(1 % wi/w) [19]. Male Sprague-Dawley offspring from dams administered 100 or 200 mg
BP/kg/day daily subcutaneous injections from gestational day (GD) 6 until weaning on
postnatal day (PND) 20 displayed reductions in cauda epididymal sperm concentration and
motility in males on PND 90 [22]. In contrast to these findings, a study in male Wister (Crl:
(WI) BR) rats exposed to BP in feed (up to 1 % w/w) for 8 weeks, beginning at postnatal
day 22, found no impact on similar endpoints and reported no significant decreases in male
reproductive organ weights, sperm parameters, or serum testosterone [50]. Epidemiological
studies have been unable to find significant correlations between paraben exposure and
reduced semen quality in males among sub-fertile couples [23,24].

Currently, the available data on the endocrine disrupting potential and corresponding
reproductive toxicity of parabens is conflicting, demonstrating the need for an appropriately
powered and comprehensive reproductive toxicity study that included an in utero exposure
would inform assessment of human risk. Due to potential endocrine disruption, evidence of
human exposure, and reported effects upon male reproductive development, BP was selected
for further toxicological characterization by the National Toxicology Program (NTP). The
NTP conducted a reproductive assessment by continuous breeding (RACB) study to evaluate
the potential toxicity of continuous BP exposure on reproductive fitness and male/female
reproductive development over multiple generations. The successive breeding methodology
provides enhanced statistical power to the evaluate overall fecundity compared to standard
multigeneration studies and characterizes potential perturbations of pubertal development.

2. Materials and methods

2.1. Reproductive assessment by continuous breeding study design overview

The RACB study design utilizes a multiple breeding approach, described by Morrissey et al.
(1989) and Chapin et al. (1997) [25,26]. In summary, exposure starts with the FO generation
and continues through the F2 generation. Multiple successive pairings (3 per generation) in
both the FO and F1 generations are conducted to evaluate test article induced reproductive
toxicity (Fig. 1). In this design, the successive number of matings and evaluation of offspring
provides increased statistical power to identify test article-related toxicities compared

to standard multigeneration studies [25]. Additionally, maturation of F1c offspring to
adulthood allows for the evaluation of the potential attenuation (or enhancement of) test
article-related effects on fertility and fecundity.
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2.2. Chemical procurement and characterization

Butylparaben (CAS# 94-26-8, Lot No. IF100205) was procured from lvy Fine Chemicals
Corporation (Cherry Hill, NJ). Chemical identity was confirmed by infrared spectroscopy,
nuclear magnetic resonance spectroscopy, and gas chromatography-mass spectrometry.
Chemical purity determined by high performance liquid chromatography with ultraviolet
detection (HPLC/UV) and gas chromatography with flame ionization detection was =99.7
%.

2.3. Animals and husbandry

Nine-week old male and female Sprague Dawley (Hsd:Sprague Dawley® SD®) rats (n

= 117/sex) were obtained from Harlan, Inc. (Now Enivgo; Dublin, VA). An additional

29 females were procured during the study for a cross-over mating assessment. Animals
were randomly assigned to exposure groups by stratified randomization of body weights
using Provantis™ and quarantined for 10 days upon arrival. This study was conducted in
compliance with FDA Good Laboratory Practice Regulations established by the Food and
Drug Administration. Animals were handled, cared for, and used in compliance with the
study protocol approved by the RTI International IACUC, and National Research Council
Guide for the Care and Use of Laboratory Animals (2011) [27]. Rats were housed in solid-
bottom, polycarbonate cages (8”x19”x10.5”) suspended on automatic watering racks with
filter sheets. All cages were bedded with Sani-chips® hardwood bedding (P.J. Murphy Forest
Products, Montville, NJ) for the duration the study. Nesting sheets or other enrichment
materials, which might contain endocrine-disrupting chemicals that could affect study
outcomes, were not placed in the cages.

All FO male and female rats were individually housed except during periods of
cohabitation (mating). Following weaning, F1c offspring were housed up to 3/sex/cage
until approximately PND 90. Following PND 90, F1c non-parental (F1cNP) interim
animals were removed from study for interim evaluations. F1c parental (F1cP) male and
female rats were housed individually except during periods of cohabitation. FO and F1c
dams were cohoused with offspring until weaning. Irradiated NIH-07 Certified Mouse/Rat
Diet (Zeigler Bros., Inc., Gardners, PA) was available ad /ibitum throughout the study.
Feed was delivered to animals via glass feed jars with stainless steel lids. Tap water

(City of Durham, NC) was available ad /ibitum via an automatic water delivery system
(Edstrom Industries Inc., Waterford, WI) except during sanitization of the waterlines. The
animal rooms were maintained on a 12 -h light/dark cycle per day (~0600/1800 on/off),
excluding daylight savings time adjustments. Temperature and relative humidity (%) were
continuously monitored and specified set points and ranges (i.e., 72 £ 3 °F and 50 % RH +
15 %) were observed.

2.4. EXposure

Throughout the study, unless otherwise noted, animals were exposed to BP via
supplementation in NIH-07 powdered feed at levels of 0, 5000, 15,000, or 40,000 ppm
(Zeigler Brothers, Inc., Gardners, PA). Feed formulations were analyzed using a validated
high-performance liquid chromatography method with ultraviolet detection at 256 nm (r
> 0.99; relative standard deviation (RSD), < 10 %; relative error (RE), < = 10 %); all
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formulations were within 10 % of target concentration and homogeneous (RSD, <5 %).
Prior to studies, stability of BP in the diet up to 43 d was established when stored at ambient
temperature, protected from light. All feed formulations were stored under these conditions
during study conduct.

FO adults were exposed to BP during a 2-week pre-breed exposure period, during
cohabitation, and gestation and lactation for the Fla, F1b, and F1c generations, until
necropsy. The Flc generation was exposed throughout life. The F2c generation was exposed
to BP via the mother during gestation and lactation until study completion on PND 21.
Body weights and feed consumption were measured throughout the study (pre-cohabitation,
cohabitation, gestation, lactation) and used to calculate chemical consumption (mg/kg/day).

2.5. Exposure concentration selection rationale

A preliminary study was conducted to select doses for the definitive reproductive and
developmental toxicity study. Males (aged 10 weeks) and females (aged 8 weeks) (n = 8/sex/
dose at 10,000/20,000 ppm, n = 11/sex/dose at 0/5000/40,000 ppm), were administered 0,
5000, 10,000, 20,000, or 40,000 ppm BP in the diet for 2 weeks prior to cohabitation and
during cohabitation, until evidence of mating or up to 15 days. Upon evidence of mating,
females were continually exposed throughout gestation and lactation, until study termination
on PND 4. There were no observed effects of BP exposure on viability, fertility or litter

size during the course of the study. These data supported the selection of 40,000 ppm as the
highest exposure concentration used in the definitive RACB study. All of the preliminary
study data are publicly available via the National Toxicology Program’s Chemical Effects

in Biological Systems (CEBS) database (https://doi.org/10.22427/NTP-DATA-NTP-DATA-
RACB-BP).

2.6. RACB study

Sprague Dawley rats, FO (aged 11 weeks, n = 22/sex/group) and F1c parental (F1cP) animals
(aged 12-13 weeks, n = 26—40) were assigned a non-sibling mating partner within the same
dose group (Fig. 1). The same pair of rats was paired each time to allow reproductive
performance to be evaluated over the three pairings (15 days per cohabitation), to allow
assessment of fecundity and fertility parameters. Females were examined daily by vaginal
smears during cohabitation for the presence of a copulation plug or sperm; the presence

of either was considered positive evidence of mating. The day of confirmed mating was
designated as Gestation Day (GD) 0, at which point cohabitation of males and mated
females was concluded.

Both FO and F1c females were allowed to litter generating a Fla, F1b, and F1c or F2a,
F2b, and F2c offspring, respectively. The day of littering was designated as PND 0. Litter
parameters, such as litter size, numbers of live and dead pups, sex ratio, and pup weights
were recorded for all litters from PND 0 to PND 4. Anogenital distance (AGD) was
measured on PND 1 in all litters using a stereomicroscope with a reticule. On PND 4,

the designated a and b offspring (Fla, F1b, F2a, F2b) of each generation were euthanized,
whereas the F1c and F2c offspring were standardized to a litter size of 12 pups (6/sex/litter
where possible). Following euthanasia of Fla, F1b, F2a, and F2b litters, mating pairs were
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re-cohabitated. PND 4 offspring were euthanized by intraperitoneal injection of euthanasia
solution or decapitation.

Following litter standardization of the F1c and F2c litters, pup body weights were recorded
during the lactational period (PND 4 to PND 21). The F1c and F2c male offspring were
evaluated for areolae/nipples beginning on PND 13 and testes descent beginning on PND

14. All F1 and F2 offspring that exhibited severe toxicity and were removed from study or
died received a gross necropsy. Initially, F1c offspring were weaned on PND 21. However,
weaning was postponed to PND 28 for approximately half of the 40,000 ppm group due

to increased incidence of mortality associated with inability to thrive following separation
from their respective dam. At the time of weaning, some of the F1c offspring were randomly
assigned to an interim assessment cohort (F1cNP) (up to 3/sex/litter). Remaining animals
were paired three times as mentioned above.

Following weaning of the F1c generation and prior to the crossover mating, vaginal smears
were collected from the FO females for 16 consecutive days for evaluation of estrous
cyclicity. Vaginal smears were also collected from F1c females for 16 consecutive days
(PND 52-67) for evaluation of estrous cyclicity. Estrous stage was determined using
previously established guidelines for evaluation of vaginal cytology in rodent species [28].
The acquisition of Vaginal Opening (VO) was evaluated in all F1c females beginning on
PND 23, and acquisition of Balaneo-pre-preputial Separation (BPS) was evaluated in all F1c
males beginning on PND 35.

2.7. Crossover mating

Due to a reduction in mean live litter size of FO females at the highest exposure
concentration, a crossover mating was conducted to determine if BP effects on reproduction
were due to susceptibility in a single sex. The crossover mating entailed pairing 40,000
ppm FO males (aged 37 weeks) with unexposed nulliparous females (aged 11 weeks), and
40,000 ppm FO females with 0 ppm FO males (both aged 37 weeks) (Fig. 1). Animals were
cohabitated for seven days and females examined for evidence of mating each morning.

All animals were provided ad /ibitum access to control NIH-07 diet during this period,

and upon confirmation of mating, females were returned to their respective diets. Females
were permitted to litter and their offspring were euthanized on PND 4. Live and dead pup
numbers and associated sex were recorded daily from PND 0 through PND 4, and live pups
were weighed on PND 1 and PND 4. Dams which did not deliver were euthanized 24 days
after the last day of cohabitation and received an examination to determine pregnancy status.
The uterus was examined for implantation sites, and stained with ammonium sulfide if none
were visible. Following crossover mating, FO males and females, and naive females were
euthanized.

2.8. Necropsy

The FO males and females were necropsied at 43-14 weeks of age. F1cNP (interim) males
and females were necropsied at 13—-14 weeks of age. F1cP (terminal) males and females
were euthanized at 30-31 weeks of age and 34—35 weeks of age, respectively. Adult rats
and PND 21 offspring were euthanized by CO2 asphyxiation. FO and F1c (parental and
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non-parental) terminal body weights were recorded and the respective weights of the adrenal
glands, liver, kidney, spleen, thymus, thyroid, ovaries, seminal vesicles with coagulating
glands, epididymides, dorsal prostate, ventral prostate, seminal vesicles, and testes collected.
In addition to the aforementioned tissues, the pituitary gland, cervix, uterus, and vagina
were retained from females for histopathological evaluations. Tissues were fixed in neutral
buffered 10 % formalin except the right testis and epididymis and left and right ovaries,
which were initially fixed in modified Davidson’s fixative for approximately 24 h prior

to transfer to formalin. Tissues were embedded in paraffin and stained with hematoxylin

and eosin except for the right testis and epididymis, which were stained with periodic
acid-Schiffs stain and counterstained with hematoxylin. Andrology measures including: left
cauda epididymal spermatozoa measurements (number, density, motility) and left testicular
spermatid counts were evaluated in FO and F1c (parental and non-parental) males. F2
offspring were necropsied at 3 weeks of age, and gross lesions collected for microscopic
evaluation.

Microscopic evaluations of the above tissues were completed by the study laboratory
pathologist to a no effect level, and the study laboratory report, slides, paraffin blocks,
residual wet tissues, and pathology data were sent to the NTP Archives for inventory, slide/
block match, wet tissue audit, and storage. The slides, individual animal data records, and
pathology tables were evaluated by an independent quality assessment (QA) laboratory.

The QA pathologist evaluated slides from all potential target organs (as identified by the
study pathologist and existing literature) in the control, highest dose group with 90 %
survival, and in lower dose groups to a no effect level; higher dose groups with less than

90 % survival were also evaluated. The tissues examined by the QA pathologist included
the liver of FO and F1 males and females, the testes and epididymides from F1 parental
males, the ovaries from F1 parental females, and the mammary glands from F1 non-parental
females. The QA report and the reviewed slides were submitted to the NTP pathologist, who
reviewed and addressed any inconsistencies in the diagnoses made by the study laboratory
and QA pathologist. The QA pathologist, who served as the coordinator of the Pathology
Working Group (PWG), presented representative histopathology slides containing examples
of lesions related to test agent administration, examples of disagreements in diagnoses
between the laboratory and QA pathologist, or lesions of general interest to the PWG for
review. The PWG consisted of the NTP pathologist and other pathologists experienced in
rodent toxicologic pathology. This group examined the tissues without any knowledge of
dose groups. When the PWG consensus differed from the opinion of the study laboratory
pathologist, the diagnosis was changed. Final diagnoses for reviewed lesions represent a
consensus between the study laboratory pathologist, QA pathologist, and the PWG. Details
of these review procedures have been described, in part, by Maronpot and Boorman (1982)
[29] and Boorman et al.(1985, 2002) [30,31].

2.9. Statistical analyses

All endpoints were tested for a trend across dose groups, followed by pairwise tests for
each dose group against the negative control group, unless otherwise noted. Statistical
significance was reported at the 0.05 level. In most cases, statistical methods differed for
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FO and F1 animals, since methods for the F1 animals needed to account for within litter
correlation where present.

For FO reproductive performance endpoints (CEBS, RACB R02), statistical analysis was
performed by Cochran-Armitage (trend) and Fisher Exact (pairwise) two-sided tests [41].
For F1 reproductive performance endpoints, analysis was performed using the Rao-Scott
Cochran-Armitage procedure for both trend and pairwise tests [43]. FO litter size and
survival endpoints (CEBS, RACB R03) were analyzed using Jonckheere’s test for trend
[33]. For pairwise comparison of dosed groups to controls, Shirley’s [34] (as modified by
Williams [35]) or Dunn’s [36] method was used depending on detection of a significant
trend. F1 litter size and survival endpoints were analyzed using a permutation test based
on the Jonckheere trend test [33], and pairwise comparisons were made using a modified
Wilcoxon test [39] with the Hommel procedure [40] to adjust for multiple comparisons.

To analyze attainment of developmental endpoints (testes descent (TD), vaginal opening
(\VO), Balaneo-pre-preputial Separation (BPS) in Table 5), trend and pairwise tests were
based on mixed models for age at attainment with dose as a covariate and a random

effect for litter followed by a Dunnett-Hsu adjustment for multiple comparisons. For VO
and BPS, weaning weight was included as a covariate in mixed models. To calculate age

at attainment adjusted for pup body weight, a linear model was fit to attainment age as

a function of body weight. Then the estimated coefficient for body weight was used to
adjust each pup’s observed attainment age based on the difference between its body weight
and the overall mean body weight. For epididymal sperm endpoints (Table 6), FO animals
were analyzed using the Jonckheere trend test followed by Shirley’s or Dunn’s method

for pairwise comparisons. F1 animals with littermates were analyzed with a bootstrapped
Jonckheere trend test where litters were permuted across dose groups, and animals with the
same maternal dam were sampled with replacement. Modified Wilcoxon tests were used for
pairwise comparisons, with the Hommel adjustment for multiple comparisons.

Organ and body weights (Tables 7; Supplemental Tables 4 and 5) in FO animals were
analyzed using a Jonckheere trend test and Williams or Dunnett (pairwise) tests. For organ
and body weight endpoints in F1 animals, mixed models were fit with a random litter effect
and a Dunnett-Hsu adjustment for both trend and pairwise analyses.

Lesion incidence for FO animals (Table 8) was analyzed using the Poly-3 trend and
pairwise statistics, as described below. The Poly-k test was used to assess neoplasm and
nonneoplastic lesion prevalence [37-39]. This test is a survival-adjusted quantal-response
procedure that modifies the Cochran-Armitage linear trend test to account for survival
differences. Following Bailer and Portier [39], a value of k = 3 was used in the analysis

of site-specific lesions. Variation introduced by the use of risk weights, which reflect
differential mortality, was accommodated by adjusting the variance of the Poly-3 statistic
as recommended by Bieler and Williams [40]. Poly-3 tests used the continuity correction
described by Nam [41]. Lesion incidence for F1c parental animals was analyzed using

the Cochran-Armitage test with a poly-3 adjustment for survival [39] and a Rao-Scott
modification for litter effect. Lesion incidence for F1c non-parental animals were analyzed
using Cochran-Armitage test for trend and the Fisher Exact test for pairwise testing, since no
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survival corrections or littermate adjustments were needed [42]. All p-values calculated for
histopathology data are one-sided.

Vaginal cytology data for FO animals (Supplemental Table 3) were analyzed using the
nonparametric multiple comparison methods of Shirley [34] (as modified by Williams [35])
and Dunn [36] (cycle length, number of cycles). Jonckheere’s test [33] was used to assess
the significance of the dose-related trends. F1 animals were analyzed using the modified
Wilcoxon test with Hommel adjustment.

A cumulative logit model was fit to the number of litters as a function of generation, with a
random effect for FO dam, to compare the number of litters per pair between FO and F1 dams
within each dose (Table 3; CEBS, RACB R22). Average live litter size per pair between

FO and F1 dams were analyzed using Datta-Satten modified Wilcoxon test with a Hommel
p-value adjustment [32] (Table 4; CEBS, RACB R22).

For continuous endpoints, extreme values were identified by the outlier test of Dixon and
Massey [43] for small samples (n < 20), and Tukey’s outer fences method [30] based

on three interquartile range intervals, for large samples (n > 20). To identify outliers

for continuous endpoints with litter effects, all observations across dose groups were fit
to a linear mixed effects model with random litter effect, and the residuals were tested
by dose group for outliers using Tukey’s outer fences method [30]. All flagged outliers
were examined by NTP personnel, and implausible values were eliminated from the final
analyses. Discrete count endpoints were manually reviewed for unusual values.

3. Results

Due to the extensive amount of data generated during the course of the study, key
findings are provided herein. All study data are publicly available via the National
Toxicology Program’s database: Chemical Effects in Biological Systems (CEBS) (https://
doi.org/10.22427/NTP-DATA-NTP-DATA-RACB-BP).

3.1. Butylparaben intake levels

BP consumption (mg/kg/day) during multiple life stages is summarized in Table 1 (CEBS,
RACB 108). An average daily dose (mg/kg/day) was calculated for the three gestation
(GD 0-21) and lactation periods (PND 1-4) that produced the F1 and F2 litters. Feed
consumption (g/kg body weight/animal/day) in the 40,000 ppm group was increased ~10—
37 % at various time points in FO animals and ~14 — 61 % in the F1c animals (CEBS,
RACB 106). Higher consumption in these groups did not coincide with increased growth
rates or increased absolute body weights relative to controls. In some cases, increased food
consumption corresponded to non-consumptive spillage of powdered feed and may reflect
palatability issues due to the high level of BP in the diet (4 %). Additionally, increased
feed consumption relative to body weight may be related to the magnitude of bodyweight
reduction observed in the 40,000 ppm exposure groups.

Reprod Toxicol. Author manuscript; available in PMC 2021 November 12.


https://doi.org/10.22427/NTP-DATA-NTP-DATA-RACB-BP
https://doi.org/10.22427/NTP-DATA-NTP-DATA-RACB-BP

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Hubbard et al. Page 10

3.2. Viability and clinical observations

In the FO generation there was no effect of BP exposure on survival (Table 2, CEBS,

RACB 101). High mortality was observed in F1c pups in the 40,000 ppm group weaned at
PND 21 (Table 2). Approximately one-half of the 40,000 ppm litters were weaned on PND
21, with 100 % mortality/moribund removal of those animals due to small size leading to
failure to thrive. Clinical observations of hypoactivity, dehydration, and cold to the touch
primarily occurred in 40,000 ppm pups that were unable to thrive following weaning on
PND 21 (CEBS, RACB 105 P). Weaning was extended to PND 28 for the remaining

40,000 ppm litters, relative to PND 21 for all other groups, resulting in 100 % survival

to scheduled removal. As a result, the 40,000 ppm F1c parental group had 35 % fewer
animals than controls (n = 26 per sex, relative to n = 40 per sex) so a limited number of
animals were assigned to the interim evaluation cohort (F1cNP). There were subsequent BP
exposure-related adverse clinical observations requiring F1c adults or F2 offspring removal.

3.3. Body weights

Dose-related decreases in mean body weights relative to controls were observed across
generations in groups administered 15,000 ppm or greater (CEBS, RACB 104/104 G). FO
male body weights were up to ~5 % and ~11 % lower than controls in the 15,000 and 40,000
ppm groups, respectively (Fig. 2A). FO 40,000 ppm female body weights were up to 7 %
lower than controls prior to mating (Fig. 2A). Body weights of FO 40,000 ppm dams were
up to 11 %, 12 %, and 14 % lower than controls during gestational intervals A, B, and

C, respectively (Fig. 2B). This effect corresponded to lower gestational body weight gains
relative to controls. Smaller litter sizes compared to the control group may have contributed
to lower gestation weight. During lactation (Lactation day (LD) 1-2 1, Litter C), FO female
body weights in the 40,000 ppm group were up to 16 % lower than controls (Fig. 2C).
Perinatal exposure to BP resulted in a dose-related decrease in F1c pup weights during their
respective preweaning interval (PND 1-21). The effect on pup weight in the 15,000 ppm
group was statistically significant (—11 %, relative to controls) just prior to weaning (PND
19). However, significantly lower pup weight in the 40,000 ppm group (=10 %, relative to
controls) was observed earlier, on PND 4 (CEBS, RACB R19/R19 G). At PND 21, F1c male
pup body weights were 11 % and 36 % lower than controls, and F1c female pups were 15

% and 37 % lower than controls in the 15,000 and 40,000 ppm exposure groups, respectively
(Fig. 2D). The considerable decrease in size of the F1c pups exposed to 40,000 ppm BP

was associated with decreased body weight gain, suggesting overt developmental delay

and toxicity at the highest administered dose. Notably the average pup weight of 40,000
ppm-exposed F1c pups was approximately 31.7 g on PND21, corresponding to a similar
weight observed in control pups between PND 13 and 16. This delay likely contributed to
the observed reduction in survival of this group following weaning on PND21.

Following weaning (PND 21 or 28 to scheduled removal), F1c body weights (F1cP and
F1cNP combined) recovered partially in the 15,000 and 40,000 ppm groups, decreasing the
magnitude of difference from controls observed at earlier timepoints (Fig. 3A). After the
F1cP pairings, body weights of F1cP 40,000 ppm dams were up to 17 %, 16 %, and 17

% lower than controls during gestational intervals A, B, and C, respectively (Fig. 3B). This
effect corresponded to lower gestational body weight gains relative to controls. Smaller litter

Reprod Toxicol. Author manuscript; available in PMC 2021 November 12.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Hubbard et al.

Page 11

sizes in the 40,000 ppm group relative to the control group may have contributed to lower
gestation weight. During lactation (LD 1-2 1, Litter C), F1c female body weights were up
to 7 % and 20 % lower than controls in the 15,000 and 40,000 ppm groups, respectively
(Fig. 3C). Similar to F1 litter observations, perinatal exposure to BP was associated with
significant decreases in F2c pup body weights during their respective preweaning interval
(PND 1-21). On PND 21, F2c male pup body weights were 11 % and 36 % lower than
controls in the 15,000 and 40,000 ppm exposure groups, respectively (Fig. 3D). F2c female
pup PND 21 body weights were 6 %, 15 %, and 40 % lower than controls in the 5000,
15,000, and 40,000 ppm exposure groups, respectively (Fig. 3D). There was minimal effect
of BP-exposure on pup weight on PND 1, indicating that the reduction in pup body weight
on PND 21 was due to lower weight gain during early postnatal development, presumably
through maternal transfer and then direct exposure through feed consumption [44].

3.4. Reproductive performance and littering parameters

There was no effect of dietary BP exposure on indices of fertility (mated/pair, littered/pair,
littered/mated) in any exposure group, relative to concurrent controls (Table 3, CEBS,
RACB R02). Positive trends observed in the F1c “A” pairing were likely due to abnormally
low mating/pair in the control group (CEBS, RACB R02). When the A,B,C pairings were
averaged for each generation, no exposure related effects were apparent (Table 3) (CEBS,
RACB R21). Additionally, there were no significant effects on the duration of the precoital
or gestational intervals (CEBS, RACB R02).

A significant decreasing trend in total litter size occurred in FO A and B pairings and F1cP
A pairing with increasing exposure concentration (Table 4, CEBS, RACB R03/R22). Total
litter size was significantly lower (~ 2 pups/litter) in the initial litters (litter A) produced

by 40,000 ppm-exposed FO and F1cP dams relative to controls. Additionally, a significant
decreasing trend in live litter size was observed in litter A of the FO breeding cohort. Smaller
litter sizes were also observed in 40,000 ppm exposed FO litter C and F1cP litters B and

C relative to concurrent controls, however these did not attain statistical significance. No
significant effects upon live litter size or pup survival were observed in 40,000 ppm FO and
F1cP litters. When looking at average live litter size across pairs, litter sizes were marginally
lower in the 40,000 ppm group.

3.5. Crossover-Mating

Due to the purported spermatotoxic effects of BP in the literature, and the observed
reduction in mean litter size of 40,000 ppm FO dams, a crossover-mating was conducted to
further evaluate reproductive performance and evaluate potential sex-related susceptibilities.
Treated males (40,000 ppm, aged ~37 weeks) were bred with unexposed nulliparous females
(aged ~11 weeks), and treated females (40,000 ppm, aged ~37 weeks) were bred with
control males (0 ppm, aged ~37 weeks). There was no overt effect on fertility (e.g. litter/
mated, litter size, etc.) associated with male or female exposure to BP, when comparing

the results to the C littering (Supplemental Table 1, CEBS, RACB R03). Reduced litter
sizes were evident in the 40,000 ppm females/O ppm male crossover-matings; however, it
appeared to be consistent with a trend of decreasing litter size with the aging FO females
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(e.g. total litter was 11.7, 11.8, 9.4, 9.4 for the A, B, C and crossover mating of exposed
females respectively).

3.6. Developmental and pubertal markers

Anogenital distance, a marker of developmental androgen activity, was not affected by
perinatal BP exposure in male or female offspring (Supplemental Table 2, CEBS, RACB
R04). Two male pups from separate litters in the F1c control group and two male pups
derived from a single litter in the F2c 40,000 group presented with retained areolae/nipples
(Table 5, CEBS, RACB R14). This observation was considered unrelated to BP-exposure.
A significant decreasing trend in time to onset of testicular descent occurred in F2¢ males
with increasing exposure concentration (CEBS, RACB R14). However, this effect was only
significant in the 15,000 ppm group by pairwise comparison (Table 5), and did not occur in
Flc generation.

Evaluation of markers of pubertal onset were limited to F1c males and females (CEBS,
RACB R16). Balaneo-pre-preputial Separation (BPS) and Vaginal Opening (VO) were
delayed in F1c male and female off-spring, respectively (Table 5). A significant delay

in the onset of BPS (~ 5 days) occurred in 40,000 ppm F1c males relative to controls.
Additionally, a significant delay in the onset of VO of ~ 3 days and ~ 9 days occurred in
15,000 and 400,000 ppm exposed F1c females, respectively. When evaluating effects upon
BPS and VO it is important to consider additional parameters such as body weights at
attainment and weaning, which are known to influence attainment independent of potential
chemical hormonal activity [45]. Male body weight at attainment of BPS was significantly
lower (~12 %) in the 40,000 ppm group relative to controls. Male weaning weights were

~ 14 % and ~30 % lower relative to controls in the 15,000 and 40,000 ppm groups,
respectively. When adjusted using body weight at weaning (PND 21) as a covariate, a
significant trend of delayed BPS with increasing exposure concentration was observed
without any corresponding significant pairwise differences between vehicle and BP-exposed
groups. Female body weight at attainment of VO was similar to controls at all exposure
levels tested. Female weaning weights were ~13 %, ~18 % and ~29 % lower relative to
controls in the 5000, 15,000 and 40,000 ppm groups, respectively. When adjusted using
body weight at weaning (PND 21) as a covariate, a trend of delayed VO with increasing
exposure concentration was observed and significant delays of ~2 days and ~7 days occurred
respectively in 15,000 and 40,000 ppm groups relative to controls. Given the magnitude of
the effect of BP exposure on body-weight, observed delays in attainment of BPS and VO are
likely secondary to growth retardation.

3.7. Sperm analysis and estrous cyclicity

Sperm quality parameters were evaluated at terminal necropsy in the FO (~Study day (SD)
225), F1cNP interim (~PND 95), and F1cP terminal (~PND 210) groups (Table 6, CEBS,
RACB R06). Exposure to BP did not affect any of the assessed sperm parameters in any

test group. Additionally, estrous cyclicity was not affected in either FO (~SD 161-176) or
Flc (PND 52-67) females at all exposure levels tested (Supplemental Table 3, CEBS, RACB
Vaginal Cytology Data).
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3.8. Organ weights

Organ weights were evaluated in male and female rats of the FO (Males ~SD 225, Females
~SD 218), F1cNP (~PND 91), and F1cP (Males ~PND 210, Females ~PND 235) groups at
necropsy (CEBS, RACB PAQO6GR). Alteration of liver weights in male and female rats was
associated with BP-exposure (Table 7). In male rats, there were decreasing trends in mean
absolute liver weights with increasing exposure concentration in all assessed generations,
and significant decreases in mean absolute liver weights were observed in the 15,000 (-3

% and —8 %) and 40,000 ppm (=12 and —15 %) groups of the interim and terminal
timepoints, respectively. This effect was not observed in female rats. However, liver weights
adjusted to body weights (relative liver weights) showed significant increasing trends in all
assessed male and female groups with increasing exposure concentration. Mean relative liver
weights were significantly increased in all 40,000 ppm-exposed male cohorts, and 15,000
ppm-exposed males of the FO and F1cNP cohorts relative to controls. Group mean relative
liver weights were significantly increased in the female FO/F1cP 40,000 ppm-exposure
groups and F1cP/F1cNP 15,000 ppm-exposure groups relative to controls.

Decreased reproductive organ weights in male and female rats were associated with
exposure to BP, but were generally considered to be secondary to lower body weights
(Supplemental Table 4/5, CEBS, RACB PA0O6R). Significant decreases in mean absolute
weights of the testes, epididymides, seminal vesicles, dorsolateral prostate, and ventral
prostate were noted in the 40,000 F1cNP cohort. However, these results were confounded
by the limited number of test animals assessed in this group (n = 6) relative to the FO/F1cP
cohorts (n = 22-26). Absolute ventral prostate weights were decreased 15 % and 37 %

in the 15,000 ppm and 40,000 ppm F1c interim males, respectively, and decreased 14 %

in the 40,000 ppm terminal male group. There was a decreasing trend in relative prostate
weights in the interim males, although without a significant pairwise comparison, a similar
response was not observed in terminal (parental) males. It is not clear if these effects

were secondary to body weight changes or direct action of the chemical. In female rats,
significantly decreased mean absolute left ovary weights in the F1cP cohort coincided with
significantly decreased terminal body weights relative to controls. Significantly increased
mean relative ovary weights (+ 70 %) occurred in the FO 40,000 ppm group. However, it
was determined that this effect was unlikely treatment-related, and related to the differential
completion of a crossover mating by the FO 40,000 ppm group, relative to the other assessed
FO female groups. FO 40,000 ppm females were necropsied 4-days post-parturition of the
crossover mating litter, whereas all other FO females had completed delivery of their final
litter (F1c) weeks prior. Therefore, it is plausible that the recent completion of parturition
and corresponding presence of residual corpora lutea in the ovary caused the increased ovary
weights.

3.9. Histopathology

Histopathologic lesions related to BP-exposure were limited to the liver in male rats, and the
liver and adrenal gland of female rats (Table 8, CEBS, RACB PA02R/03R/08R/10R).

3.9.1. Liver—Increased incidences of bile duct hyperplasia were identified in the 15,000
and 40,000 ppm F1c parental males and in the 40,000 ppm F1c parental females, relative to
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controls. Bile duct hyperplasia consisted of increased profiles of bile ducts within the portal
region; often the hyperplastic bile ducts were surrounded by a thin rim of fibrous connective
tissue. On occasion, mononuclear cell infiltrates were found in association with bile duct
hyperplasia; these were not recorded separately.

Incidence of mononuclear cell infiltrates were increased in the FO, F1cNP, and F1cP

males and females exposed to 15,000 or 40,000 ppm BP. They were generally of minimal
severity, and characterized by small clusters of lymphocytes, with fewer plasma cells and
macrophages, either randomly distributed in the liver, or located within the portal region,
distinct from areas of bile duct hyperplasia. While mononuclear cell infiltrates are a common
background finding in rats, they were only recorded when clusters of mononuclear cells
were present in numbers above what was considered a background level.

In FO males and F1c parental males, there were increased incidences of hepatocyte
cytoplasmic vacuolation in the 15,000 and 40,000 ppm groups; there was also a significant
increasing trend in F1c parental females with increasing exposure concentration. This
change was characterized by hepatocytes with small vacuoles consistent with microvesicular
lipid accumulation. Most of the affected hepatocytes were found in the periportal region,
especially in females, but in males, small to coalescing, randomly located areas of
cytoplasmic vacuolization were also present.

Increased incidences of hypertrophy of the periportal hepatocytes were recorded in FO
females exposed to 15,000 and 40,000 ppm BP, and in F1c parental females exposed to
5000, 15,000, and 40,000 ppm BP relative to controls; females in the F1c non-parental
cohort had a significant increasing trend with exposure concentration, but no pairwise
significance when compared to controls. Increased incidences were not seen in males. This
change was characterized by hepatocytes, in the portal region, that had increased amounts of
pale eosinophilic to amphiphilic cytoplasm.

When compared to controls, there were an increased number of F1c parental males in the
40,000 ppm group with increased hepatocytes undergoing mitosis. There was a significant
increasing trend in increased mitoses in FO females and males and males with increasing
exposure concentration. While occasional mitotic figures can be found in the normal rat
liver, the number observed was increased over background levels in animals in which
increased mitoses were recorded. However, the severity of the increases was minimal in all
cases.

In F1c parental females, there was an increased incidence of animals in the 40,000 ppm
group with cytoplasmic inclusions in the hepatocytes compared to the control group. These
inclusions were found within periportal hepatocytes and were small, round and brightly
eosinophilic; typically, one to three inclusions were present in the cytoplasm of an affected
hepatocyte.

3.9.2. Adrenal cortex—Increased incidences of cytoplasmic vacuolation of the zona
glomerulosa were present in the adrenal cortices of the 15,000 and 40,000 ppm groups of
F1c parental females. The vacuolation was bilateral and was a diffuse change throughout
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the zona glomerulosa; the zona fasciculata and zona reticularis were not affected. Within
the zona glomerulosa the cells had a distended cytoplasm due to prominent vacuoles, which
caused an overall thickening of the zona glomerulosa. There was no apparent increase in the
number of cells in this region.

4. Discussion

Public concern regarding potential endocrine disrupting effects of the paraben class of
chemicals have been on the rise. Numerous studies of butylparaben report estrogenic
activity and possible adverse effects upon the reproductive system, while other findings

are contradictory and indicate little concern surrounding the safe use of these chemicals
[19,21,46-50]. Due to the inconclusiveness surrounding the potential developmental and
reproductive toxicity of butylparaben and wide-spread human exposure, this test article was
evaluated by the NTP using the multigenerational RACB testing paradigm.

In this study, BP exposure concentration was associated with effects on bodyweight in

both sexes and across all three generations. The highest magnitude of lower body weights
were noted in perinatally exposed rats of the F1c and F2c cohorts. Generally, the effect

on weight occurred late in lactation (~PND 19) in the 15,000 ppm group, while the

effects were present earlier (~PND 4-7) in lactation in the 40,000 ppm group. Weight
decrements observed in the 40,000 ppm offspring on PND 21 corresponded to severely
decreased body weight gain, such that their body weights were equivalent to that of PND

14 unexposed controls. The significant mortality observed in this group likely corresponded
to the inability to thrive without further maternal intervention, following weaning on PND
21. This hypothesis is further supported by the 100 % survival of 40,000 ppm offspring
whose weaning was delayed to PND 28. Interestingly, no significant differences in offspring
birthweight were observed, indicating that lower body weight gain coincided with lactational
exposure (40,000 ppm group) and the onset of direct consumption of dosed feed (15,000
and 40,000 ppm) in developing offspring. The NTP previously conducted studies to evaluate
potential for gestational and lactational transfer of butylparaben to offspring in rats [44].

BP displayed low gestational/lactational transfer potential; however, higher concentrations
of the BP parent molecule, relative to conjugated metabolites, were found in offspring
relative to dams during the lactational interval. This suggests developing offspring may have
limited capacity to metabolize this substance, resulting in higher internal exposure to the BP
parent-molecule during the developmental period.

No effects on reproductive performance (e.g. mating or litter parameters) of the FO or Flc
were associated with BP-exposure in the current study. Although not always statistically
significant, the average total and live litter size on PND 0 of the 40,000 ppm group was
generally 1-2 pups fewer than controls across all three pairings of both the FO and Fl1c.

The marginal, but biologically significant decrease in litter size may have contributed to

the lower maternal body weights during gestation. There were no corresponding effects on
sperm parameters, and histological evaluation of the testis and epididymis did not reveal an
effect that would explain the smaller litter size. A crossover mating of the FO was conducted
to investigate a potential sex effect of the smaller litter size. Litter size of the 40,000 ppm
males mated with naive females was consistent with the control Fla,b,c litter size (13.1 vs
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12.5 pups/litter respectively), while 40,000 ppm females mated with unexposed males had

a total litter size in line with the 40,000 ppm group total litter size (11.7, 11.8, 9.4, 9.4
pups/litter for the 40,000 ppm F1la,b,c, and female crossover respectively). This is suggestive
of an effect in females, but not conclusive. Due to the reported rapid metabolism of BP, it is
unlikely that detriments to reproduction reflect a bioaccumulation of the test article, but may
be associated with the increased age of the dam at the time of third mating interval (litter C)
[51]. Previous lifetime breeding studies in female CFY Sprague Dawley rats found that total
litter size significantly decreases with increasing age of dams [52].

Markers of normal endocrine signaling during gestation (AGD, nipple retention) and
pubertal development (BPS, VO) were unaffected by BP-exposure. While onset of BPS was
delayed in F1c 40,000 ppm males, this effect was likely associated with the severe growth
delay induced in this group and not due to endocrine disrupting activity of the test article.

In support of this notion, when age at BPS was adjusted for weight at weaning, there were
no longer statistically significant pairwise differences between exposed groups and controls
[45,53]. Correspondingly, delays in age at VO of F1c 15,000 and 40,000 ppm females were
also likely attributed to growth retardation based on the observation that all dose groups had
nearly equivalent body weights at the age of vaginal opening [54,55]. Estrous cyclicity was
also unaffected by BP exposure. Estrogenic agents would be anticipated to accelerate onset
of VO and induce prolonged estrus in test animals, which did not occur in the current study,
indicating BP did not induce prototypical /n vivo estrogenic effects [56].

A recent human epidemiological study found that elevated urinary paraben levels had a
significant positive association with diminished sperm count and motility measures among
501 male participants [57]. However, other studies did not find significant correlations
between paraben exposure and reduced semen quality in males among sub-fertile couples
[23,24]. Decreased serum testosterone and spermatotoxicity in rats following BP-exposure
have been reported in numerous studies [19,21,22,58,59]. A 2002 study by Oishi reported
dose related decreases in testicular and epididymal sperm counts, and decreased serum
testosterone in Crj:CD-1 mice following exposure to BP in dosed feed from 4 to 14 weeks
of age, establishing a lowest-observed adverse effect level (LOAEL) of 10 mg/kg dietary
concentration (intake of 14.4 mg BP/kg/day). In contrast to these findings, all assessed
sperm parameters in the current study, including testicular spermatid count, matility, and
caudal sperm count were unaffected by dietary BP at daily exposures in excess of 300

mg BP/kg/day. Additionally, no histological findings and only sporadic weight effects were
noted in assessed male reproductive organs in exposed groups. The lack of functional effects
upon fertility throughout the RACB assessment and in the crossover mating of 40,000 ppm
exposed males with naive females provides further support to our conclusion that BP did not
adversely affect sperm number or quality.

In concordance with our overall findings, lack of BP-mediated reproductive/developmental
toxicity has been reported in two additional studies utilizing rats with exposure by

diet or oral gavage. Young male Wistar rats exposed to BP in diet containing up to

10,000 ppm BP for eight weeks displayed no effects on any male reproductive organ

or sperm parameters [50]. BP-exposure via oral gavage up to 1000 mg/kg/day during
gestation in Sprague-Dawley Crl:CD®BR VAF/Plus® rats did not affect litter size or induce
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developmental toxicity [48]. While, decreased sperm number/motility and altered testicular
Leydig cell number has been reported in rats following subcutaneous dosing of BP (up

to 200 mg/kg/day) during gestational and early postnatal development [22,59]. Different
routes of BP exposure among studies may contribute to the disparate toxicity findings in

the available literature. Metabolism and disposition studies found BP to be well absorbed
and rapidly conjugated or hydrolyzed to 4-hydroxybenzoic acid and 4-hydroxyhippuric acid
following oral gavage administration [60]. Subcutaneous injection of BP bypasses first-pass
metabolism in the liver and the intestinal tract, and could facilitate heightened exposure to
parent BP relative to oral-exposure [60]. The discordance of findings between this study and
that of the rat and mouse studies conducted by Oishi [19,21] may be related to the different
species or strain utilized.

Following necropsy, the liver was identified as the primary target organ of BP toxicity

due to dose related increases in relative liver weight and increased incidences bile duct
hyperplasia, mononuclear cell infiltration, periportal hepatocyte hypertrophy, hepatocyte
cytoplasmic inclusions, and hepatocyte cytoplasmic vacuolation. Incidence patterns of
some hepatic lesions varied across exposed FO, F1cNP, and F1cP cohorts. Increased
incidence of mononuclear cell infiltration was the only dose related microscopic finding
identified in F1cNP interim animals, suggesting onset of other hepatic lesions may require
a longer duration of exposure. Notably, higher incidences of bile duct hyperplasia and
periportal hepatocyte hyperplasia occurred predominantly in the exposed F1c cohort, relative
to the FO generation. These observations may be associated with a specific exposure
window of susceptibility to BP-mediated hepatic toxicity or heightened exposure during
the developmental period. To our knowledge, increased incidence of hepatocellular lesions
and hepatomegaly have not been previously ascribed to BP-exposure in animal models.
Evidence of hepatic toxicity in the current study may be associated with sustained adaptive
responses in the liver as a result of developmental/long-term exposure to BP. Additionally,
increased incidence of mild bilateral adrenal cortical vacuolization was noted in exposed
F1cP females. This lesion may be caused by a perturbation of the hypothalamic-pituitary-
adrenal hormone axis via altered secretion/metabolism of adrenocorticotropic hormone
(ACTH) [61] or could related to overall conditions of stress. Previous assessments of BP
disposition following oral exposure indicate low distribution of the radio-labeled test article
to tissues (~1 % of administered dose), but high tissue/blood ratios in target tissues (liver,
kidney/adrenal) identified in the current study [51].

Differences in BP safety assessment considerations among regulatory authorities have led to
regional discrepancies in the levels of BP allowed in consumer products. In 2010 Denmark’s
environmental ministry announced that both propyl- and butylparabens are now banned in
lotions and other products for children under age three years [62]. This change in policy was
mainly due to concerns of endocrine disruption and the possibility of heightened exposure
related to possible decreased carboxy-esterase activity in the skin of young children relative
to adults. The European Union Scientific Committee on Consumer Safety (SCCS) recently
established new cosmetic maximum concentration limits of 0.4 % for methyl paraben or
ethyl paraben (single esters/salts), 0.19 % for propyl paraben or BP (single esters/salts), and
0.8 % for mixtures of these four parabens, wherein each paraben component does not exceed
its individual limit. These levels were based on a no observed effect level (NOEL) of 2
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mg/kg/day derived from a study by Fisher et al. (1999) in which juvenile rats were exposed
to BP (2 mg/kg/day) via subcutaneous administration for 17 days (PND 2-18) exhibited no
alteration in the structure of the testicular excurrent ducts [58]. Decreased limits of paraben
use were established by the Scientific Committee on Consumer Safety to ensure a margin of
safety of at least 100-times that of anticipated human exposure [63]. However, in a recent
final safety assessment by the U.S. Cosmetic Ingredient Review (CIR) board, a no observed
adverse effect level (NOAEL) of 160 mg/kg/day was used, given the reported endocrine
effects in F1 rat offspring when dams were gavaged GD 7 through PND 21 [64]. Using

this NOAEL and a systemic adult exposure dose estimate of 0.35 mg/kg/day, a conservative
457-fold margin of safety was quantitated [65]. The NOEL/NOAEL determinations for both
assessments were based on observations of adverse effects on the reproductive system in
developmentally exposed male offspring. The European Food Safety Authority (EFSA) and
the Joint FAO/WHO Expert Committee on Food Additives (JECFA) concluded that more
data are required before the safe use of BP as a food additive can be evaluated [66].

In the current study, there were limited findings to support BP-endocrine induced
developmental or reproductive toxicity following dietary exposure. A lowest observed effect
level (LOEL) of 5000 ppm (approximately 325-740 mg/kg/day) was determined based

on F1 general toxicological findings of a dose-related increase in the incidence of mild
periportal hepatocyte hypertrophy in perinatally-exposed female rats. This was observed at
a lower exposure than the FO LOEL (15,000 ppm). Although, a NOEL was not identified in
the current study, all assessed /77 vivo measures of potential estrogenic and anti-androgenic
activity were unperturbed at exposure levels that far exceed those currently used for BP risk
assessments and margin of safety determinations.
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LOAEL lowest-observed adverse effect level
LOEL lowest observed effect level
NOAEL no observed adverse effect level
NOEL no observed effect level
PND postnatal day
RACB reproductive assessment by continuous breeding
SD study day
VO vaginal opening
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Representative diagram

depicting overall RACB study design.
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Fig. 2.
Summary of relative body weights (% control) of study animals measured across multiple

generations/reproductive intervals, (A) FO male/female, (B) FO females during gestation
intervals A, B, and C, (C) FO females during lactation interval (litter C), and (D) F1c male/
female pups prior to weaning.
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Fig. 3.

Summary of relative body weights (% control) of study animals measured across multiple
generations/reproductive intervals, (A) F1c male/female (post-weaning), (B) F1c females
during gestation intervals A, B, and C, (C) F1c females during lactation interval (litter C),
and (D) F2c male/female pups prior to weaning.
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Page 26

Butylparaben intake (mg/kg/day) based on feed consumption during the various intervals of the RACB studly.

Generation/Study Interval 5000 ppm

15,000 ppm 40,000 ppm

FO
Prior to Pairing (M)
Prior to Pairing (F)
Gestation?
Lactation (PND 1-4)%
Lactation (PND l—l3)b
Flc

. . c
Prior to Pairing (M)

Prior to Pairing (F)C
FlcP

Gestation?
Lactation (PND 1-4)%

Lactation (PND 1—13)b

324.8
338.7

335.6

572.2

730.9

427.6

467.6

343.2

546.3

686.8

1013.2
1016.1

990.8

1763.8

2062.1

1380.5

1455.8

1034.1

1700.4

2067.0

3095.4
2599.5

3170.2

5967.0

6116.6

4849.8

5214.6

3025.2

6325

6709.4

aAverage intake (mg/kg/day) of dams across the three breeding (A,B,C) periods.

blntake of the dams (mg/kg/day) during lactation period of the C litter.

DAverage intake (mg/kg/day) of all F1c males and females (parental and non-parental) post-weaning, prior to pairing or sacrifice (PND.35-84).
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Table 2

Animal removal summary and rational during the BP RACB study.

Generation/Sex Removal Oppm 5000 ppm 15,000 ppm 40,000 ppm

FO

Male Study Start 22 22 22 22
Moribund 2 1 1 0
Scheduled Removal 20 21 21 22

Female Study Start 22 22 22 22
Moribund 1 4 1 0
Scheduled Removal 21 18 21 22

FIc-Nonparental

Male Weaned 45 34 46 45
Unscheduled Removal 0 0 0 25a,b
Moribund 1 0 0 5
Found Dead 1 0 0 9
Scheduled Removal 43 34 46 6

Female Weaned 40 35 41 34
Unscheduled Removal 0 0 0 14ab
Moribund 1 0 0 6
Found Dead 0 0 0 14
Scheduled Removal 39 35 41 0

Flc-Parental

Male Weaned 40 40 40 26
Moribund 1 3 1 0
Scheduled Removal 39 37 39 26

Female Weaned 40 40 40 26
Moribund 3 2 4 0
Found Dead 0 0 1 0
Scheduled Removal 37 38 35 26

FZc

Male Scheduled Removal 121 133 130 97

Female Scheduled Removal 117 132 114 79
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a40,000 ppm pups weaned on PND21 were unable to thrive. All removals occurred within 7 days of weaning. Postponed weaning of half of 40,000
ppm pups (PND 28) increased survival.

Due excessive pup loss in 40,000 ppm offspring weaned on PND 21, surviving offspring, weaned on PND 28, were primarily assigned to the F1

parental cohort. A limited number of 40,000 ppm offspring were available for assignment to the nonparental cohort.
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