
Article

In-Person Verification of Deep Learning Algorithm for
Diabetic Retinopathy Screening Using Different Techniques
Across Fundus Image Devices
NidaWongchaisuwat1, Adisak Trinavarat1, Nuttawut Rodanant1,
Somanus Thoongsuwan1, Nopasak Phasukkijwatana1, Supalert Prakhunhungsit1,
Lukana Preechasuk2, and Papis Wongchaisuwat3

1 Department of Ophthalmology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
2 Siriraj Diabetes Center of Excellence, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
3 Department of Industrial Engineering, Kasetsart University, Bangkok, Thailand

Correspondence: Papis
Wongchaisuwat, Department of
Industrial Engineering, Kasetsart
University, 50 Ngamwongwan Road,
Chatuchak, Bangkok 10900,
Thailand.
e-mail: papis.w@ku.ac.th

Received:May 11, 2021
Accepted: August 4, 2021
Published: November 12, 2021

Keywords: artificial intelligence;
deep learning algorithm; diabetic
retinopathy screening; retinal fundus
photographs

Citation:Wongchaisuwat N,
Trinavarat A, Rodanant N,
Thoongsuwan S, Phasukkijwatana N,
Prakhunhungsit S, Preechasuk L,
Wongchaisuwat P. In-person
verification of deep learning
algorithm for diabetic retinopathy
screening using different techniques
across fundus image devices. Transl
Vis Sci Technol. 2021;10(13):17,
https://doi.org/10.1167/tvst.10.13.17

Purpose: To evaluate the clinical performance of an automated diabetic retinopathy
(DR) screening model to detect referable cases at Siriraj Hospital, Bangkok, Thailand.

Methods: A retrospective review of two sets of fundus photographs (Eidon and Nidek)
was undertaken. The images were classified by DR staging prior to the development
of a DR screening model. In a prospective cross-sectional enrollment of patients with
diabetes, automated detection of referable DR was compared with the results of the
gold standard, a dilated fundus examination.

Results: The study analyzed 2533 Nidek fundus images and 1989 Eidon images. The
sensitivities calculated for the Nidek and Eidon images were 0.93 and 0.88 and the
specificities were 0.91 and 0.85, respectively. In a clinical verification phase using
982Nidek and 674 Eidon photographs, the calculated sensitivities and specificities were
0.86 and 0.92 for Nidek along with 0.92 and 0.84 for Eidon, respectively. The 60°-field
images from the Eidon yielded amore desirable performance in differentiating referable
DR than did the corresponding images from the Nidek.

Conclusions:Aconventional fundus examination requires intensehealthcare resources.
It is time consuming and possibly leads to unavoidable human errors. The deep learn-
ing algorithm for the detection of referable DR exhibited a favorable performance and
is a promising alternative for DR screening. However, variations in the color and pixels
of photographs can cause differences in sensitivity and specificity. The image angle
and poor quality of fundus photographs were the main limitations of the automated
method.

Translational Relevance: The deep learning algorithm, developed from basic research
of image processing, was applied to detect referable DR in a real-word clinical care
setting.

Introduction

The prevalence of diabetes has been increasing
rapidly, and the World Health Organization predicted
that its global prevalence will climb to 750 million
by 2030.1,2 Diabetic retinopathy (DR) is one of the
leading causes of preventable blindness. Its early

detection can lead to prompt treatment, which effec-
tively prevents irreversible visual loss. The American
Diabetes Association and the American Academy of
Ophthalmology recommended that an annual fundus
examination be conducted for patients with diabetes
without retinopathy. Patients who have developed
retinopathy with intraretinal hemorrhage or a compli-
cation (for example, diabetic macular edema) require
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more frequent follow-up visits, such as every 1 to
6 months, depending on the disease severity.3,4
However, the situation in Thailand is that the majority
of patients lack access to healthcare facilities due to
the limited number of ophthalmologists, especially
in remote areas. In Bangkok, only 38% of patients
at Siriraj University Hospital participate in screening
programs conducted by ophthalmologists.5 Although
a retinal examination by an ophthalmologist remains
the gold standard for screening, many other methods
have been developed to improve screening ability.
Among those are the use of fundus photographs with
trained readers for their interpretation, telemedicine,
and automated screening models based on artificial
intelligence (AI) technologies.6,7

AI with deep learning (DL) technology has been
utilized for various medical applications, such as
regular chest radiograph screening, DR screening
using retinal photographs, and skin lesion detection
and diagnosis.8–15 In 2016, Gulshan and colleagues16
proposed a novel DR screening software that received
desirable results (87%–90% sensitivity and 98%
specificity). The excellent performance of their DL
algorithm attracted attention in the field of ophthal-
mology, resulting in numerous studies to determine
the accuracy of AI in detecting DR in populations
around the world. For example, Ruamviboonsuk and
associates17 applied DL algorithm software developed
by Google to the Thai population. Their DR screen-
ing sensitivity reached 97%, compared with 74% for
manual observation by trained graders. To guaran-
tee a desirable performance, internal and temporal
validation processes are essential during the model
development.18 Internal validation, or reproducibility,
refers to the performance of the model based on hold-
out samples from the model-training step. Temporal
validation measures the performance on subsequent
samples obtained from the center at which the model
was developed. The current study aimed to perform
these validation steps to evaluate the performance
of our model in preparation for its real-life clinical
application.

Materials and Methods

A single-center, cross-sectional study was conducted
at the Ophthalmology Outpatient Clinic and the
Diabetes Center at Siriraj Hospital, Mahidol Univer-
sity, Bangkok, Thailand, from March 2018 to March
2020. The study adhered to the tenets of the Decla-
ration of Helsinki, and its protocol was approved by

the Medical Ethics Committee of Siriraj Hospital,
Mahidol University (872/2562 [IRB2]).

Study Participants

The study was divided into two phases: phase 1, DL
algorithm software development and verification; and
phase 2, clinical verification (in-person study design
and interpretation). For phase 1, the inclusion criteria
were patients with diabetes with good-quality retinal
photographs or images with distinct retinal vessels,
optic nerve, and retinal backgrounds. Fair-quality
photographs were defined as images with partial visibil-
ity of these retinal components. As a result, abnormal
lesions were onlymoderately detectable from the retinal
background or the photograph-edge was not clearly
visible. Images with blurred components where abnor-
mal lesions could not be distinguished were defined
as poor-quality photographs. A retrospective review
was conducted of the hospital medical records and of
retinal fundus photographs that had been made using
two fundus cameras.

Two sets of image data were compiled and analyzed.
The first dataset was used to develop DL models, and
the second dataset was used to verify the performance
of the models (i.e., external validation). This exter-
nal validation was deemed to represent the temporal
validation process referred to earlier. In more detail,
all images in the first set of data were randomly
divided into three groups using stratified sampling. The
proportional distributions of the images were fixed at
80% for DL model training, 10% for model validation,
and 10% for model testing. The majority of the images
were used for training purposes. The second group of
images was intentionally employed to fine-tune the DL
model parameters. The resultant version of the model
was then tested with the third group of images. This
testing was regarded as internal validation of the first
set of data. Multiple DL models were experimented
with and fine-tuned until at least a 95% sensitivity and
80% specificity were guaranteed. In the next step, the
final model developed from the first dataset was applied
to the second set of data to verify the performance of
the model. As two separate datasets were utilized for
development and verification purposes, the second set
of data constituted external validation.

Phase 2 was a prospective, cross-sectional study
to evaluate the performance of the model in a clini-
cal setting. This phase represented a further tempo-
ral validation of the model. For phase 2, the inclu-
sion criteria were patients with diabetes who were
18 years or older and had come for DR screening.
Images were excluded if they were of poor quality
(due to, for example, unsuccessful picture taking,
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dilation failure during the retinal examination, media
opacity, or limited patient cooperation). The partic-
ipants’ demographic and clinical data were recorded
(age, gender, laterality, quality of images, types of
fundus camera, retinal findings, presence of diabetic
macula edema, and DR staging). Written informed
consent was obtained from each participant.

Fundus Cameras

The images in the Siriraj Hospital database had
been taken by two fundus cameras: Nidek (Non-
Mydriatic AFC-330; NIDEK Co., Ltd., Aichi, Japan)
and Eidon (Eidon AF TrueColor Confocal Scanner;
Centervue, Inc., Fremont, CA). Three, non-mydriatic
fundus photographs were specifically obtained from
each device. With the Nidek camera, the first image
was a single-field, 45°, macula-centered photograph.
For the Eidon camera, the first image was a single-field,
60°, macula-centered photograph. The remaining two
photographs from each camera were nasal and tempo-
ral overlapping images.

Classification of Images

DR staging of the Nidek and Eidon images was
thoroughly assessed in accordance with the modified
Airlie House classification system developed by the
Early Treatment Diabetic Retinopathy Study.19 Instead
of considering all DR stages, our study employed
a simplified, binary classification system. Its two
categories were (1) non-referable DR (no DR to a mild
level of nonproliferative DR [NPDR]), and (2) refer-
able DR and other retinopathies (moderate to severe
NPDR, proliferative DR, diabetic macula edema, and
other retinopathies).

Phase 1: DL Algorithm Software
Development and Verification

One, single-field, 45°, macula-centered, non-
mydriatic, fundus photograph from each patient
with diabetes at Siriraj Hospital was retrospectively
recruited and classified by DR staging by a single
retinal expert. The images were classified into the
binary groups (non-referable DR or referable DR and
other retinopathies) by the same retinal expert. The
patients’ identifications were masked to the algorithm
developer.

Previous work clearly established that DL exhibits
promising and acceptable performance in diagnosing
DR using retinal fundus images.16,17 Generally, DL
aims to mimic how neurons in the human brain behave

using multiple layers of networks. A convolutional
neural network (CNN) is a subcategory of DL that has
proven to be significantly effective in image classifica-
tion tasks. CNN was therefore adopted by this work
to classify the retinal fundus images, based on the
concepts of transfer learning and online active learn-
ing for the Nidek and Eidon images, respectively.

There are four main operations in the typical CNN
model: convolution, nonlinearity activation, subsam-
pling/pooling, and classification. For the present study,
each input image was initially converted into a two-
dimensional matrix of pixel values, with three channels
representing the colors red, green, and blue. Accord-
ing to the preprocessing step, each image was resized
and further normalized with predefined parameters.
Prior to training the model, additional data augmenta-
tions were utilized if necessary. They included random
affine transformation, center cropping, horizontal and
vertical image flipping, and changes to the bright-
ness, contrast, saturation, and hue of each image. The
convolutional operation extracted features from the
input by preserving the spatial relationships between
the pixels. An additional rectified linear unit (ReLU)
function was applied to feature maps constructed from
the convolutional operation to capture the nonlinear
relationships within the data. Spatial pooling was used
to reduce the dimensionality of the rectified feature
map before forming the next layer. Multiple sets of
convolutions, ReLUactivation, and pooling operations
were stacked to construct the overall architecture of the
network. Meaningful features were mainly extracted
from the original images. The output from the last
pooling layer was used as an input for the final classi-
fication operation. As the final step, a fully connected
layer with a Softmax activation function was utilized to
classify the input images into various classes.

Transfer learning is a technique involving the appli-
cation of the knowledge gained from one task (the
“model”) to the learning needed for a new task that
has limited data. For the purposes of the current
research, we retrieved pretrained source models that
had been well trained on an image classification task
based on a significantly large dataset. These pretrained
models were used as the starting point for the train-
ing with our fundus images; in other words, the
models were fine-tuned for our specific task, which
was based on the Nidek images. We drew upon
the pretrained models from Kaggle.20 Three specific
CNNs—SE-ResNeXt50_32 × 4d, SE-ResNeXt101_32
× 4d, and SENet154—had initially been trained on a
large dataset that was similar to our Nidek images, in
terms of both color and characteristics. The weighted
average of the three CNN models was further utilized
to compute initial results prior to fine-tuning the
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models with our Nidek image data set. According to
the training configurations, the mean square error was
used as the loss function with the RAdam optimizer.
CosineAnnealingLR was considered to adjust the
learning rate. The predicted class was finally obtained
from an ensemble model of the fine-tuned individual
models. A grid-search technique was attentively used
to find the optimized weights and cut-off probability
threshold that provided the best performance. These
individual models were equally weighted, and a 0.2 cut-
off threshold was selected.

We observed that the colors of the fundus
photographs extracted from the Eidon device differed
from those of both the Nidek images and the publicly
available datasets. In response to this observation,
the online active method proposed by Smailagic and
coauthors21 was utilized in addition to a traditional
DL. The online active learning, a sequential technique,
relies on a relatively small number of required labels
for training. In essence, we retrieved the feature embed-
dings learned from the ResNet baseline classifier on
the initial labeled data, and these were further used
to query the most informative, unlabeled examples.
The selected examples were labeled prior to itera-
tively retraining the model on the combined labeled
data. The hyperparameters used in our model were
similar to those stated in Smailagic et al.,21 such as
the number of max entropy samples of 59 and the
number of added images per iteration of 20. In accor-
dance with the training configurations, a stochastic
gradient descent optimizer with a momentum of 0.9, a
learning rate of 0.005, and a weight decay of 0.01 was
utilized. The number of epochs, the batch size, and
the early stopping patience were set to 50, 32, and 20,
respectively. A random search was employed to find
the online sample fraction and the cut-off probability
threshold hyperparameters; values of 0.875 (online
fraction) and 0.1 (cut-off threshold) were obtained.

Phase 2: Clinical Verification (In-Person Study
Design and Interpretation)

DuringDR screening visits by the participants, non-
mydriatic retinal photographs were taken by a well-
trained investigator and/or two research assistants.
After retrieving the required images, mydriatic eye
drops were instilled to achieve full pupillary dilata-
tion before the patient underwent a gold-standard
retinal examination by a retinal expert. The eight retinal
experts at Siriraj Hospital used a biomicroscopic slit
lamp with a non-contact lens, and they completed the
fundus examinations to zone 3 (i.e., beyond the equato-
rial zone). All examiners were masked to the DLmodel

output. The trials involved three main components:
output from the DL models based only on the central-
retinal images; output from the DL models for three
consecutive images; and output of the DR stagings
obtained from the gold-standard retinal examinations.
Only one positive result selected among three images
was graded as “referable DR and other retinopathies.”
The sensitivity and specificity of the algorithmwere the
primary objectives of the study. The accuracy, receiver
operating characteristic (ROC) curve and area under
the curve (AUC), and false-positive and false-negative
results of the study were also evaluated. The statistical
analyses utilized Python packages.

Results

A total of 3515 and 2663 eyes were enrolled for
the Nidek and Eidon groups, respectively. The distri-
bution of the DR staging is presented in Table 1. In
our proposed model, each fundus image was classi-
fied as “non-referable DR”or “referable DR and other
retinopathies.” Phase 1 considered gradable images,
which were separated into two datasets. The first
dataset was used for training, fine-tuning of the model
hyperparameters, and validation of the model until the
desired result (>95% sensitivity and >80% specificity)
was achieved. The model specifically trained with the
Nidek images reached a sensitivity of 99% and a speci-
ficity of 83%, whereas themodel trainedwith the Eidon
images achieved an 83% sensitivity and an 81% speci-
ficity. Themodel used for Eidon improved its sensitivity
to 96% and its specificity to 85% (Table 2). The second
image dataset was used for the external validation of
the trainedmodel. A sensitivity of 93% and a specificity
of 91% were attained for the Nidek group, while an
88% sensitivity and an 85% specificitywere achieved for
Eidon. We observed that the model for Eidon yielded a
lower sensitivity with the external validation data, but
its specificity remained the same as that obtained using
the first dataset (Table 2).

In phase 2, the photographs were taken before the
patients underwent dilated fundus examinations. In the
case of the Nidek group, good- and fair-quality images
represented 54% and 22% of the pictures, respec-
tively. However, 318 eyes from the Nidek group (24%)
were excluded due to poor-quality images; they mainly
resulted from the presence of cataracts, found in 59%
of the excluded images. As for the Eidon photographs,
52% and 31% were of good and fair quality, respec-
tively. A total of 140 eyes in the Eidon group (17%)
were excluded due to poor image quality, with 39% of
the rejections being due to the presence of cataracts.
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Table 1. Distribution of DR Gradings in Phases 1 and 2 of the Study

Phase 1 Phase 2

Internal Validation External Validation Clinical Verification

Nidek Eidon Nidek Eidon Nidek Eidon

Train, n 1075 898 — — — —
Validate, n 124 103 — — — —
Test, n 128 134 1206 854 982 674
Classification (%)
No to mild NPDR 52 78 84 78 70 68
Referable DR 39 14 12 15 21 23
Other retinopathies 9 8 4 7 9 9

Table 2. Accuracy Test Results of DL Algorithm in Detecting Referable Diabetic Retinopathy

Device n Sensitivity Specificity PPV NPV Accuracy

Internal validation (phase 1)
Nidek 128 0.99 0.83 0.89 0.98 0.92
Eidon 134 0.83 0.81 0.61 0.93 0.81
Eidon* 122 0.96 0.85 0.61 0.99 0.87

External validation (phase 1)
Nidek 1206 0.93 0.91 0.66 0.99 0.91
Eidon* 829 0.88 0.85 0.62 0.96 0.86

Clinical verification (phase 2)
Single photo

All
Nidek 982 0.82 0.92 0.82 0.92 0.89
Eidon* 674 0.89 0.84 0.73 0.94 0.86

Excluding other retinopathies
Nidek 893 0.86 0.92 0.77 0.96 0.91
Eidon* 612 0.92 0.84 0.66 0.97 0.86

Three photos
All

Nidek 964 0.97 0.3 0.37 0.96 0.5
Eidon* 626 0.95 0.66 0.57 0.97 0.76

Excluding other retinopathies
Nidek 877 0.97 0.3 0.29 0.98 0.46
Eidon* 574 0.97 0.66 0.5 0.99 0.74

NPV, negative predictive value; PPV, positive predictive value.
*Newmodel of Eidon.

Other reasons for inferior-quality images were a small
pupil, defocus, and a lack of cooperation by the patient
(Fig. 1).

The performance of the DL model in phase 2
contrasted with the first phase (Table 2). The sensitivity
for detecting referable DR for Eidon was almost identi-
cal to that from the first phase, with an 89% sensitiv-
ity and an 84% specificity. A potential improvement to

the algorithm was observed when other retinopathies
were excluded, which resulted in the sensitivity climb-
ing slightly to 92%. On the other hand, the results of
the Nidek group showed a substantial decline in sensi-
tivity, from 93% to 82%, with a specificity of 92%.After
excluding other retinopathies, however, the sensitivity
rose to 86%. ROC curves giving 0.95 AUC for both
Nidek and Eidon are illustrated in Figure 2.
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Figure 1. (A,B) Fundus photographs of a diabetes patientwithmoderateNPDR in the right eye. An intraretinal hemorrhage in the temporal
area was observed in a fundus photograph using a 60° widefield Eidon camera (A,white arrows). Photograph of the same eye from the same
patient, taken with a Nidek camera (B). As the intraretinal hemorrhage could not be detected, the DL algorithm gave a false-negative result
for this eye. False-positive results were observed frequently with tigroid appearances of the retinal background, especially with myopia.
(C) Drusen are presented as a yellowish deposit underneath the retina; this could be misinterpreted as exudate in diabetic retinopathy
(D, arrowhead). Poor-quality images were frequent with small pupils (E, F) and dense cataracts (G, H). The Eidon performed better in these
conditions, giving better resolution fundus images (F, H) than the Nidek (E, G).

Figure 2. ROC curves of the proposed DL algorithms for the Nidek
and Eidon. The AUCs were calculated.

For the three consecutive fundus image results,
very high sensitivity with extremely low specificity
were observed in both the Nidek and Eidon groups
(Table 2). False-negative and false-positive cases were
further analyzed (Table 3). Almost every case from
both devices was classified as a moderate NPDR,
with only a few dots or blot hemorrhages seen. In
the Nidek group, 59% of the false-negative cases were
diagnosed with peripheral DR beyond the angle of
the field of view of the ability of the device to catch
an intraretinal hemorrhage or exudate. Although the
false-positive cases demonstrated a high proportion of
fair-quality images, some artifacts (such as an image
glare or a tigroid appearance in a myopic fundus) were
abnormally detected as DR. Interestingly, after review-
ing the false-positive images, we found that 17% of
the false-positive cases in the Eidon group and 2%
in the Nidek group derived from human error
during the dilated fundus examination, whereas the
output from the model gave the correct classification.
Examples of false-negative and false-positive cases are
presented in Figure 1.

Discussion

The application of DL to the detection of refer-
able DR is promising. Abundant research has already
established a good efficacy for DL compared with
retinal expert or trained human-grader interpretations
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Table 3. False Negatives and False Positives Were Demonstrated

Nidek Eidon

False negatives, n (%) 29 (3.2) 13 (2.1)
Moderate NPDR, n 28 13
Severe NPDR, n 1 –
Peripheral DR, n 17 3
Proliferative diabetic retinopathy, n – –

False positives, n (%) 53 (5.9) 72 (11.8)
No DR, n 42 45
Mild NPDR, n 1 6
Human error, n 1 12
Other retinopathies, n 9 9

of fundus photographs.Ourwork had the advantage of
utilizing a prospective setting. Thismeant that we could
compare the results obtained from DL models used to
triage retinal images with those of in-person clinical
examinations conducted at the same visit. Hence, we
were able to detect some limitations of the clinical use
of DL. The study also demonstrated the performance
of a new algorithm for widefield confocal scanner
imaging photographs.

We conducted the entire process of DL
development—from the training steps to validation
and finally to verification—in a real clinical setting.
The results for the retrospective training dataset (the
internal validation process) exhibited very high sensi-
tivity and specificity for both Nidek and Eidon images,
with separate models and cut-off thresholds. The
external validation process, which used a different
dataset, yielded a lower sensitivity and specificity for
Eidon due to overfitting. However, contrasting results
were presented in the clinical verification phase. To
be specific, the sensitivity declined significantly for
the Nidek group due to technical problems in taking
the fundus photographs. The main problems with the
Nidek camera were related to a patient factor and to
the ability of the camera to capture small pupil sizes.
It is relatively common for elderly diabetic patients to
present with early cataracts. The condition typically
interferes with the entry of light through the retina.
This is significant in that the flashlight source of Nidek
is a halogen xenon, which has a poorer ability to
transmit light through ocular media opacities than
the light-emitting diode of the Eidon light confocal
imaging system. As to the technical constraint of the
Nidek camera, a small pupil size is likely to make
taking photographs more challenging with a Nidek
camera than with an Eidon camera. This is because
an Eidon camera can take pictures with pupil sizes as
small as 2.5 mm. In contrast, a Nidek camera requires

at least a 3.3-mm pupil size to achieve an adequate
image quality.

Much research has confirmed the outstanding
performance of DL in detecting abnormalities in
retinal photographs. Some studies found that the
ability of DL was superior to that of trained human
graders.8–10,16,22,23 Ruamviboonsuk et al. and Google
AI reported a Google DL algorithm performance of
over 95% for the detection of referable DR in the Thai
population.17 However, the Google model was derived
from another population database while conducting
a geographic validation in the Thai population. Our
study purposely trained new models suited to the Thai
population, with model testing conducted on our own
data.

The performance of our DL models in the inter-
nal and the external validation processes showed results
similar to those reported by previous studies. Our
models achieved over 80% sensitivity and 80% speci-
ficity, which are highly desirable results for a screening
test. Nevertheless, we observed interesting drawbacks
in the clinical verification phase. The image quality and
the angle of field of view played important roles in
the screening. Eidon is an advanced fundus camera
that uses light-emitting diodes as its light source. The
light penetrates media opacity well, and the camera
has an automated operating system. Consequently, it
is easy for Eidon to take photographs, especially with
small pupil diameters (2.5 mm or wider), and it gives
sharp images with differences in color clearly repre-
sented. A earlier study reported that the image resolu-
tions and color discriminations obtained with Eidon
cameras were superior to those of Nidek cameras
(which use a xenon light source) and conventional
fundus cameras.24

Data regarding the diagnostic accuracy of DL
algorithms in widefield confocal scanning photographs
(Eidon) to detect DR are still limited. Only a study by
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Olvera-Barrios and coauthors reported a similar sensi-
tivity for detecting DR (92%), compared with human
graders using the commercially available AI algorithm
EyeArt (version 2.1.0; Eyenuk, Inc., Woodland Hills,
CA).25 In contrast, our study used separate models for
Nidek and Eidon due to the poor diagnostic accuracy
achieved when using the same DR screening model.
The difference in the model accuracies of the two
fundus cameras might result from differences in the
color, image resolution, field of view, and lesion charac-
teristics observable in their respective images.

The image viewing angle had a significant effect
on the DR screening. The gold-standard photography
method for DR detection is seven standard fields (30°)
of stereoscopic color fundus photographs.19 However,
given the uncomfortable and time-consuming process
involved, a practical drawback is patient preferences.
A report by the American Academy of Ophthalmol-
ogy showed that screening for referable DR using a
single, 45° photograph with 61% to 90% sensitivity is
preferable.26 The advanced technology used in ultra-
widefield fundus cameras has demonstrated a favorable
performance in distinguishing DR staging relative to
seven standard stereoscopic fundus photographs and
dilated fundus examinations.27 Thus, in our study, one
single-field, macula-centered fundus photograph and
three consecutive photographs were considered. For
the three consecutive fundus images, extremely low
specificity was observed in both groups due to artifacts
arising from the non-mydriatic technique. Only the
single-field, macula-centered photographs were consid-
ered in our study. After excluding other retinopathies,
the ability of the models to detect referable DR
decreased by 3.2% and 2.1% for Nidek and Eidon,
respectively. The false-negative cases with the Nidek
camera primarily resulted from its narrow angle of
view, which was limited to 45°. Consequently, 1.9% and
0.5% of the peripheral DR images from Nidek and
Eidon, respectively, were missed. The 60°-field images
of Eidon provided better performance in distinguish-
ing referable DR. Specifically, the 60°-field images of
the camera were able to reveal more peripheral dots,
blots, and other abnormalities than the 45°-field images
obtained with the Nidek camera.Moreover, it has been
suggested that cases of peripheral DR have a 3.2-fold
higher risk of DR progression than cases of posterior
pole DR.28 It is apparent that advanced fundus photo-
graph technology does improve image quality, resulting
in a high screening sensitivity for DR.29 Although an
ultra-widefield fundus camera is a promising tool for
DR screening, there are still insufficient images for the
training of a DLmodel with outstanding performance.

The false-positive cases of both devices mainly
derived from fair-quality photographs—for example,

those with amild glare. Nevertheless, the overall quality
of the images was still good enough to detect findings
in the retinal background. Interestingly, small blot
areas in cases of moderate NPDR at an early stage
were successfully detected in 12 Eidon eyes and two
Nidek eyes, whereas they were missed by the dilated
fundus examinations. To address this issue in our
future work, an automated system to detect the photo-
graph quality can be added to the pipeline. With this
system, the quality of an input fundus photograph
would be automatically estimated in real time prior to
DR screening without the need for the opinion of a
specialist.

Applying the advanced technology to real-
world clinical practice has many limitations. Other
retinopathies, glaucoma, and optic nerve diseases
can be comorbidities in patients with diabetes, and
they require proper treatment. DL algorithms are
trained by learning from the retinal findings of
patients with DR. In view of the current perfor-
mance levels of automated systems, they might
not yet be safe enough to fully replace standard
dilated fundus examinations performed by humans.
Further development of DL for various diseases is
underway.

One limitation of this study was the possibility of
spectrum bias from the distribution of the DR staging.
The prevalence of DR in our research might differ
slightly from the prevalence in the general popula-
tion. The prevalence of the advanced stages of DR
is higher in tertiary-care hospitals, especially prolif-
erative DR. This situation could have affected both
the training of the models and the interpretation of
the results for the positive predictive value of the DL
model. The number of images used for further train-
ing was also limited. Although we developed the DL
model based on the active learning concept, which
requires less training data, Eidon is a new device
that currently has limited image resources. An overfit-
ting phenomenon was found in the external valida-
tion process, confirming that enhancing the model
performance when applied to Eidon cameras requires
additional data.

During the clinical verification phase, a difficulty
was found with the image preparation procedure and
the workflow setting. Taking photographs using both
devices could not be done in every case; therefore,
the accuracy of the models for the Nidek and Eidon
devices could not be directly compared in our study.
Only the trends of the data from both devices were
demonstrated. The image quality proved to be a
critical factor. The good-quality photographs repre-
sented approximately 50% of the images from both
devices, whereas the poor-quality photographs—which
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were excluded from Phase 2—accounted for 24% and
17% of the Nidek and Eidon images, respectively. A
model result should be thoroughly interpreted in a
real-life clinical application. However, patients with
poor-quality photographs will be classified as refer-
able and sent for dilated fundus examinations. Detect-
ing referable DR is a critical input when deciding
whether to transfer patients to ophthalmologists. With
a better screening ability, algorithms will be able to
more successfully distinguish sight-threatening DR
requiring urgent referral. As a result, patients will be
assessed early and receive prompt treatment before the
disease progresses to irreversible blindness. DL models
have confirmed their clinical effectiveness in screening
for referable DR and in improving visual outcomes.
Research is needed to establish the desirable perfor-
mance of DL models for use with high-definition,
widefield fundus photographs. Another direction of
future work is to establish standardized protocols for
DR screening programs.

Conclusions

Screening tools should be simple, safe, accurate,
time saving, and cost effective. Despite some limita-
tions, the use of an automatedDLmodel is a promising
alternative approach to distinguishing referable DR in
clinical settings. The image color, resolution, viewing
angle, and lesion characteristics varied between the
Eidon and Nidek cameras; all of these factors play
a role in determining the model performance. In
addition, more data collection will further improve the
performance of DL models for DR screening, which
will in turn further enhance human resource substitu-
tion.
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