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Abstract

Background: Carbazole is a recalcitrant compound with a dioxin-like structure and possesses mutagenic and toxic activities.
Bacteria respond to a xenobiotic by recruiting exogenous genes to establish a pathway to degrade the xenobiotic, which is
necessary for their adaptation and survival. Usually, this process is mediated by mobile genetic elements such as plasmids,
transposons, and insertion sequences.

Findings: The genes encoding the enzymes responsible for the degradation of carbazole to catechol via anthranilate were
cloned, sequenced, and characterized from a carbazole-degrading Sphingomonas sp. strain XLDN2-5. The car gene cluster
(carRAaBaBbCAc) and fdr gene were accompanied on both sides by two copies of IS6100 elements, and organized as
IS6100::ISSsp1-ORF1-carRAaBaBbCAc-ORF8-IS6100-fdr-IS6100. Carbazole was converted by carbazole 1,9a-dioxygenase
(CARDO, CarAaAcFdr), meta-cleavage enzyme (CarBaBb), and hydrolase (CarC) to anthranilate and 2-hydroxypenta-2,4-
dienoate. The fdr gene encoded a novel ferredoxin reductase whose absence resulted in lower transformation activity of
carbazole by CarAa and CarAc. The ant gene cluster (antRAcAdAbAa) which was involved in the conversion of anthranilate to
catechol was also sandwiched between two IS6100 elements as IS6100-antRAcAdAbAa-IS6100. Anthranilate 1,2-dioxygenase
(ANTDO) was composed of a reductase (AntAa), a ferredoxin (AntAb), and a two-subunit terminal oxygenase (AntAcAd).
Reverse transcription-PCR results suggested that carAaBaBbCAc gene cluster, fdr, and antRAcAdAbAa gene cluster were
induced when strain XLDN2-5 was exposed to carbazole. Expression of both CARDO and ANTDO in Escherichia coli required
the presence of the natural reductases for full enzymatic activity.

Conclusions/Significance: We predict that IS6100 might play an important role in the establishment of carbazole-degrading
pathway, which endows the host to adapt to novel compounds in the environment. The organization of the car and ant
genes in strain XLDN2-5 was unique, which showed strong evolutionary trail of gene recruitment mediated by IS6100 and
presented a remarkable example of rearrangements and pathway establishments.
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Introduction

Carbazole is an N-heterocyclic compound that is known to

possess mutagenic and toxic activities [1]. To date, a number of

bacterial strains capable of degrading carbazole have been

isolated and characterized. Phylogenetically, almost all of these

strains belong to pseudomonads and sphingomonads. The

degradation of carbazole starts with angular dioxygenation in

all studied strains so far [2,3,4,5,6,7,8]. In this pathway, carbazole

is initially attacked at the 1 and 9a positions by carbazole 1,9a-

dioxygenase (CARDO), resulting in the formation of a highly

unstable hemiaminal, which gives rise to 29-aminobiphenyl-2,3-

diol after spontaneous cleavage and rearomatization. An extra-

diol dioxygenase attacks the hydroxylated ring of 29-aminobi-

phenyl-2,3-diol at the meta position to generate 2-hydroxy-6-(29-

aminophenyl)-6-oxo-2,4-hexadienoic acid, which is hydrolyzed to

produce anthranilic acid and 2-hydroxypenta-2,4-dienoic acid.

The resulting metabolite, anthranilate, is converted to catechol in

a single step by anthranilate 1,2-dioxygenase (ANTDO) (Figure 1)

[9,10]. In this upper carbazole degradation pathway, CARDO is

considered as the key enzyme. In Pseudomonas resinovorans CA10,

the most intensively studied pseudomonad, CARDO consists of a

terminal oxygenase, a ferredoxin, and a ferredoxin reductase,

encoded by carAa, carAc, and carAd, respectively. In pseudomo-

nads, the upper pathway genes, carAaBaBbCAcAd, are in the car

cluster, which is transcribed as a single transcriptional unit [6].

Interestingly, unlike the well-organized operons in pseudomo-

nads, the catabolic genes in sphingomonads are often dispersed or
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not coordinately regulated. For example, plasmid pCAR3

contains multiple gene sets, which are involved in the carbazole

degradation pathway in a carbazole-degrader Novosphingobium sp.

KA1 (previous Sphingomonas sp. KA1) [10]. These unusual

organizations of the degradative genes were often observed in

other sphingomonads [11,12].

Insertion sequences (ISs) are a subject of increasing interests for

biodegradation because of the variety of their structures, modes of

action, and the biodegradation abilities they confer bacteria [13].

ISs are small and mobile genetic elements that are ubiquitously

distributed within bacterial genomes, and play an important role

in evolution by facilitating horizontal gene transfers between

bacterial populations, which contribute significantly to the

diversity of bacteria by enhancing the organisms’ adaptive and

evolutionary capacities. IS6100 is an important IS that flanks a

range of catabolic operons, for example, the operons for

metabolism of various aromatic substrates [14,15]. In this work,

we report that two loci coding for the enzymes that convert

carbazole to catechol were found to be flanked by IS6100

elements. Evidence was given for the involvement of these genes in

the degradation of carbazole in Sphingomonas sp. XLDN2-5.

Results

Screening of the genomic library, DNA sequencing, and
genome walking

The car probe, labeled with DIG, was used for screening the

genomic library, and a positive clone, designated as pBY13

(Figure 2A), was sequenced and analyzed to contain a DNA insert

of 6.8 kb. BLAST search results revealed that there were five

intact open reading frames (ORFs), carR, carAa, carBa, carBb, and

carC, which were found to be 99% identical to the corresponding

genes of Novosphingobium sp. strain KA1 [10]. A closer look at the

left region suggested that an IS6100, exhibiting 100% identity to

that of Mycobacterium fortuitum [16], was interrupted by a novel

insertion element ISSsp1. Therefore, the interrupted IS6100 was

designated IS6100::ISSsp1. The putative transposase for ISSsp1

was transcribed in the same direction of the car cluster, but in the

opposite direction as the interrupted IS6100. ISSsp1 belongs to the

IS256 family of prokaryotic ISs, a subgroup of the mutator family

of transposases (Pfam00872). ISSsp1 which had imperfect inverted

repeats (32-bp in length, one mismatch) was flanked by two copies

of 8-bp direct repeat (Figure 2B).

Figure 1. Biodegradation of carbazole via the angular pathway by Sphingomonas sp. XLDN2-5 and other carbazole-utilizing
bacteria. The product in dashed square is unstable and has not been detected. Enzyme names: carbazole 1,9a-dioxygenase (carAaAcfdr); meta-
cleavage enzyme (carBaBb); hydrolase (carC); anthranilate 1,2-dioxygenase (antAcAdAbAa). Compound I: carbazole; compound II: 29-aminobiphenyl-
2,3-diol; compound III: 2-hydroxy-6-oxo-6-(29-aminobiphenyl)-hexa-2,4-dienoic acid; compound IV: 2-hydroxypenta-2,4-dienoate; compound V:
anthranilic acid; VI: catechol.
doi:10.1371/journal.pone.0010018.g001

Figure 2. Physical maps of car and ant loci. (A) Physical map of car locus, which is delimited by IS6100 elements. The upstream IS6100 is
interrupted by a novel insert element ISSsp1, and was designated IS6100::ISSsp1. (B) Schematic representation of the main features of the novel ISSsp1
sequence in Sphingomonas sp. XLDN2-5. The orientation of the ISSsp1 is shown by an arrow. The red and blue boxes represent the positions of two
direct repeats (DR) and two imperfect, 32 bp, terminal inverted repeats (the left inverted repeat [IRL], and the right inverted repeat [IRR]) with one
mismatch, which is indicated by lowercase letters. The nucleotide sequences of DRs and IRs are also given. (C) Physical map of ant cluster which is
franked by IS6100 elements along a base pair scale.
doi:10.1371/journal.pone.0010018.g002
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At the 39-end of pBY13, an incomplete ORF (238 bp) showed

100% identity to carAcI of KA1. In order to clone the full gene and

its flanking sequences, a 1-kb DNA was amplified by genome

walking. After ligation of the fragment to pMD18-T followed by

transformation to E. coli DH5a, a positive clone, designated

p6100-a, was obtained. DNA sequencing indicated that p6100-a

contained the left part of carAc, an ORF8, and interestingly a

partial IS6100 sequence. The presence of the partial IS6100

sequence led to the hypothesis that there was a complete IS6100

and might form a transposon, and therefore triggered further

study. The presence of an intact IS6100 copy downstream of

ORF8 was successfully validated by PCR using carC-sp3 and

IS6100-F2 and sequencing. This transposon-like context

(IS6100::ISSsp1-ORF1-carRAaBaBbCAc-ORF8-IS6100) was desig-

nated TnCar, tentatively.

IS-based PCR
The presence of IS6100 on both sides of the car gene cluster

motivated further investigations using IS-based PCR. An IS-based

PCR with primers IS6100-F1 and IS6100-R1 targeting the IS6100

element resulted in two distinct PCR products of about 4.3 and

2.8 kb, respectively (Figure S1B, lane 1). The 4.3 and 2.8-kb

fragments were ligated to pMD18-T to generate plasmid p6100-1

and p6100-2. DNA sequencing and BLAST search suggested that

there were two partial IS6100 at each end as expected in the 4.3

and 2.8-kb fragments. The 4.3-kb fragment contains ORF1carRAa-

BaBbCAcORF8 from TnCar.

BLAST search suggested that in the 2.8-kb fragment, there were

two truncated ORFs and one intact ORF (Fdr) that showed 62%

identity to the FdrI of strain KA1 [10]. A sequence comparison

showed that the amino acid sequence of Fdr was homologous over

its entire length to other members of the FAD-dependent pyridine

nucleotide reductase family, containing a flavin binding domain

for FAD (consensus sequence TX6AXGD) and two ADP binding

domains (for FAD and NADH, respectively) with the consensus

sequence GXGX2GX3A [17,18,19]. Two truncated ORFs encod-

ed for a putative uncharacterized protein and a transcriptional

regulator, were found upstream and downstream of fdr (Table 1).

Sequencing of PCR product revealed the existence of entire copies

of IS6100 at both ends of the 2.8-kb fragment. These two IS6100

were in the same direction and formed a composite transposon

(IS6100-fdr-IS6100) designated TnFdr, tentatively.

TnCar and TnFdr were each flanked by two copies of IS6100 in

tail-to-head configuration. Although tail-to-head was the most

abundant case for two copies of IS6100, other configurations were

also reported [14]. Early attempts to amplify head-to-head and

tail-to-tail configurations proved to be unsuccessful. Considering

that the amplification of head-to-head and tail-to-tail configura-

tions may be suppressed by intramolecular hybridization between

two IS6100 copies during the primer annealing phase of PCR,

TaKaRa LA Taq and GC Buffer I were used in the following

experiments. One specific fragment (5.2 kb in size, Figure S1C,

lane 3) was amplified using IS6100-R1, while no specific fragment

was amplified under the same PCR conditions using IS6100-F1

(Figure S1C, lane 2). The 5.2-kb fragment was gel-purified and

cloned to pMD18-T to generate p6100-3, and the nucleotide

sequence of the 5.2 kb insert was determined. In the sequenced

region, five intact ORFs were found to be almost identical (only

one bp mismatch) to andRAcAdAbAa genes of KA1 whose products

were expected for catalyzing the conversion of anthranilate to

catechol. The five ORFs were designated antR, antAc, antAd, antAb,

and antAa (Figure 2C). Strain XLDN2-5 ANTDO was a three-

component dioxygenase and composed of a two-subunit oxygen-

ase (antAcAd), a Rieske-type ferredoxin (antAb), and a ferredoxin

reductase (antAa). antR, encoding a putative transcriptional

activator, was in the same direction of antAcAdAbAa, which was

different from that of Burkholderia cepacia DBO1 whose antR is in the

opposite direction to its structure genes [20]. In the sequenced

region, there were two partial IS6100 at each end as expected.

The existence of intact IS6100 elements at both ends was

confirmed by PCR and PCR product sequencing. These two

IS6100 elements were in the head-to-head configuration and

formed a composite transposon designated TnAnt, tentatively.

The positional relation of TnCar, TnFdr and TnAnt
There were two copies of IS6100 elements at both ends of the

three transposon-like entities except that the upstream flanking

IS6100 on TnCar was disrupted by a novel insertion sequence

ISSsp1. It was likely that one IS6100 element was shared by two

transposon-like units. In order to analyze the positional relation of

TnCar, TnFdr, and TnAnt, five primers were designed outside of

the IS6100 elements (Figure S2A). If there was a shared IS6100

element, a 0.9-kb DNA fragment containing IS6100 could be

amplified by PCR using different primer pairs. As shown in Figure

S2B, the expected 0.9-kb fragment could only be amplified using

primers TnCar-F1 and TnFdr-R1. These results suggested that

TnFdr shared an IS6100 element with TnCar, but not with TnAnt.

The conclusion was confirmed by second-round PCR (Figure S2C

and S2D). Thus, we renamed TnCar and TnFdr to the car locus,

and TnAnt to the ant locus.

Description of car and ant loci
The structures of car locus and ant locus are depicted in Figure 2

and the ORFs are given in Table 1. Both car cluster and fdr gene

were sandwiched between two copies of IS6100. Interestingly, two

identical copies of the IS6100 element also flanked the ant gene

cluster, possibly making a composite transposon. All five

sequenced copies of IS6100 from strain XLDN2-5 were identical

over the entire 880 bp. Direct repeats (TGCGCAGG) were found

directly upstream and downstream of ISSsp1, whereas no direct

repeat was found outside of the IS6100 box. Furthermore, the

ISSsp1 consisted of inverted repeats of 32 bp, of which only one

base pair was not identical, and a 1224-bp ORF (tnpAISSsp1),

encoding a 407 aa putative transposase that showed similarities to

transposases of the IS256 family. In order to illustrate that the

genes on these two loci were really working in the degradation of

carbazole in strain XLDN2-5, transcriptional and functional

analyses were performed.

Transcriptional analyses of car and ant genes
The expression of the genes presenting on the two loci was

studied by reverse transcription (RT)-PCR experiments. The

primer sets for the carAaBaBbCAc, fdr, and antAcAdAbAa genes

could amplify DNA fragments with the expected sizes (Figure 3).

No fragments could be amplified using RNA from glucose-grown

XLDN2-5 cells as a template (data not shown). These results

revealed that carAaBaBbCAc, fdr, and antAcAdAbAa genes were

expressed in carbazole grown XLDN2-5 cells, suggesting that the

gene products should be involved in the transformation of

carbazole to catechol. These results also indicated that carAaBaBb-

CAc and antAcAdAb gene clusters were operonic. In order to

confirm that Fdr was active in the CARDO system, functional

analyses were performed.

Functional analyses of putative CARDO and ANTDO
Biotransformation experiments were carried out using E. coli

cells expressing putative CARDO components (CarAa, CarAc and

Carbazole-Degrading Genes
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Table 1. Coding regions of car locus and ant locus.

Protein
Position (bp) in
sequence (direction)

Length
(amino acids) Putative function Homologous protein

% Identity Protein (accession no.) Source

car locus

TnpAIS6100 1116–1263; 2594–3240 (c) 264 Transposase of IS6100 100 Tnp (Q79AS6) Mycobacterium fortuitum

TnpAISSsp1 1321–2544 (n) 407 Transposase, mutator type 99 Tnp (A5VHF2) Sphingomonas wittichii RW1

ORF1 3272–3400 (n) 42 Integrase family protein
(truncated, only C-terminal
portion)

100 ORF7 (Q84IH1) Novosphingobium sp. KA1

CarR 3621–4301 (c) 226 Transcriptional regulator of
car operon, GntR family

99 CarR (Q84IH0) Novosphingobium sp. KA1

CarAa 4404–5540 (n) 378 Terminal oxygenase component
of carbazole 1,9a-dioxygenase

99 CarAaI (Q84IG9) Novosphingobium sp. KA1

60 CarAa (Q8G8B6) Pseudomonas resinovorans CA10

CarBa 5489–5821 (n) 110 small subunit of meta cleavage
enzyme

100 CarBaI (Q84IG8) Novosphingobium sp. KA1

CarBb 5814–6617 (n) 267 large subunit of meta cleavage
enzyme

99 CarBbI (Q84IG7) Novosphingobium sp. KA1

42 CarBb (Q4TTW1) Pseudomonas sp. XLDN4-9

CarC 6660–7484 (n) 274 Meta cleavage compound
hydrolase

99 CarCI (Q84IG6) Novosphingobium sp. KA1

CarAc 7525–7854 (n) 109 Ferredoxin component of
carbazole 1,9a-dioxygenase

100 CarAcI (Q84IG5) Novosphingobium sp. KA1

57 CarAcII (Q2PFA2) Novosphingobium sp. KA1

ORF8 7896–8117 (n) 74 TonB-dependent receptor
(truncated, only N-terminal
portion)

100 ORF35 (Q84IG4) Novosphingobium sp. KA1

TnpAIS6100 8172–8966 (c) 264 Transposase of IS6100 100 Tnp (Q79AS6) Mycobacterium fortuitum

ORF9 8998–9545 (n) 182 Putative uncharacterized
protein (truncated, only
C-terminal portion)

34 Q74F08 Geobacter sulfurreducens

Fdr 9573–10817 (n) 407 Ferredoxin reductase component
of carbazole 1,9a-dioxygenase

62 FdrI (Q2PF96) Novosphingobium sp. KA1

59 FdrII (Q2PF93) Novosphingobium sp. KA1

ORF10 10936–11486 (c) 182 Transcriptional regulator, TetR
family (truncated, only
C-terminal portion)

40 Q1NF20 Sphingomonas sp. SKA58

TnpAIS6100 11541–12335 (c) 264 Transposase of IS6100 100 Tnp (Q79AS6) Mycobacterium fortuitum

ant locus

TnpAIS6100 55–849 (c) 264 Transposase of IS6100 100 Tnp (Q79AS6) Mycobacterium fortuitum

AntR 1009–1965 (n) 318 Transcriptional regulator,
AraC family

100 AndR (Q0KJU2) Novosphingobium sp. KA1

41 AndR (Q84BZ4) Burkholderia cepacia DPO1

AntAc 2163–3446 (n) 427 Anthranilate 1,2-dioxygenase
large subunit

100 AndAc (Q0KJU3) Novosphingobium sp. KA1

76 AndAc (Q84BZ3) Burkholderia cepacia DPO1

AntAd 3451–3921 (n) 156 Anthranilate 1,2-dioxygenase
small subunit

100 AndAd (Q0KJU4) Novosphingobium sp. KA1

59 AndAd (Q84BZ2) Burkholderia cepacia DPO1

AntAb 3935–4243 (n) 102 Ferredoxin component of
anthranilate 1,2-dioxygenase

100 AndAb (Q0KJU5) Novosphingobium sp. KA1

53 AndAb (Q84BZ1) Burkholderia cepacia DPO1

AntAa 4364–5605 (n) 413 Ferredoxin reductase component
of anthranilate 1,2-dioxygenase

100 AndAa (Q0KJU6) Novosphingobium sp. KA1

40 AndAa (Q84BZ0) Burkholderia cepacia DPO1

TnpAIS6100 6183–6977 (n) 264 Transposase of IS6100 100 Tnp (Q79AS6) Mycobacterium fortuitum

doi:10.1371/journal.pone.0010018.t001
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Fdr) and ANTDO components (AntAc, AntAd, and AntAaAb)

(Figure 4). 29-Aminobiphenyl-2,3-diol and hydroxycarbazole could

be detected for incubations of cell harboring pUcarAaAcfdr

(Figure S3). About 80% carbazole was converted to 29-aminobi-

phenyl-2,3-diol (Figure 4A). These results clearly indicated that

CarAa could catalyze angular dioxygenation and lateral dioxy-

genation of carbazole using CarAc and Fdr as an electron-transfer

system. E. coli DH5a (pUcarAaAc) encoding only the oxygenase

and ferredoxin components transformed no more than 0.1% of the

carbazole, which suggested that CarAc had the ability to accept

electrons from unidentified reductase in E. coli, with a much lower

efficiency than the natural reductase. Furthermore, CarAc showed

similarity with the cytochrome P450-type reductase component

(RedA2) of dioxin dioxygenase from Sphingomonas wittichii RW1

[17] and putidaredoxin-type ferredoxins (CamA) from Pseudomonas

putida [19]. CARDO systems of strain XLDN2-5 can be classified

in the class IIA Rieske non-heme iron oxygenase system [10].

The IPTG-induced E. coli cells carrying pUantAcdba or

pUantAcdb readily converted anthranilate to catechol. E. coli

DH5a (pUAntAcdba) completely transformed 1 mM anthranilate

to catechol in 24 h (Figure 4B), while E. coli DH5a (pUAntAcdb)

encoding only ferredoxin and oxygenase transformed only 5% of

the anthranilate to catechol (data not shown). These results

suggested that the expression of CARDO and ANTDO in E. coli

requires the presence of the ancillary reductases for full enzymatic

activity.

Discussion

Starting from the carAaBaBb fragment isolated from Sphingomonas

sp. strain XLDN2-5, a combination of southern blot, genome

walking, and IS-based PCR led to the isolation of two loci

containing genes involved in the conversion of carbazole from

anthranilate to catechol. The DNA fragments obtained are

illustrated in Figure 2, and the proposed reaction details are given

in Figure 1. All genes were embedded in transposon-like entities,

implying the likely involvement of horizontal gene transfer in the

evolution of carbazole degradation pathway. Transcriptional and

functional analyses suggested that all the genes worked in the

degradation of carbazole. The CARDO system catalyzed angular

and lateral dioxygenation of carbazole, and ANTDO could

transform anthranilate to catechol in a single step. Our research

provided useful and important information for the association of

IS6100 element with carbazole and anthranilate catabolic genes.

Carbazole-degrading sphingomonads have been isolated in

different parts of the world. For example, Sphingomonas. sp.

GTIN11 was isolated from USA [3], Novosphingobium sp. KA1

from Japan [10] and strain XLDN2-5 from China [2]. Although

nearly identical car and ant genes were found in carbazole-

degrading sphingomonad strains isolated from geographically

dispersed locations, the organization of these genes in strain

XLDN2-5 was unique. Figure 5 shows the organization of the

known car genes (Figure 5A) and ant genes (Figure 5B) from

different evolutionary origins. There were two truncated ORF1

and ORF8 encoding a putative integrase and a TonB-dependent

receptor (Table 1), respectively. ORF1 and ORF8 showed 100%

identity to ORF42 and ORF35 in strain KA1 [21], respectively. In

strain KA1, ORF42 and ORF35 are intact (Figure 5A), whereas

the corresponding ORFs were interrupted by IS6100 in strain

XLDN2-5. Furthermore, BLAST search revealed that the

Figure 3. Electrophoresis results of RT-PCR. carAaBaBb (lane 1), carBbC (lane 2), carCAc (lane 3), fdr (lane 4), antAa (lane 5) and antAcAdAb (lane
6). Samples containing no reverse transcriptase (No RT) are also shown.
doi:10.1371/journal.pone.0010018.g003

Figure 4. Biotransformation of substrates and accumulation of
products. (A) Biotransformation of carbazole (-&-) and accumulation
of 29-aminobiphenyl-2,3-diol (-.-) by E. coli DH5a harboring pUcar-
AaAcfdr. (B) Biotransformation of anthranilate (-¤-) and accumulation
of catechol (-m-) by E. coli DH5a harboring pUantAcdba. E. coli DH5a
harboring pUC19 (-%- and -e-) served as controls. The initial
concentrations of carbazole and anthranilate were 2 mM and 1 mM,
respectively. Values are means of three replicates 6 SD.
doi:10.1371/journal.pone.0010018.g004
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terminal 27-bp region of the reported sequence (1–55 bp in

AF442494) in strain GTIN11 is identical to the 27-bp left end of

IS6100. This suggested that the carR gene in strain GTIN11 might

be disrupted by IS6100 element. However, the entire sequence

information outside the car genes in strain GTIN11 was not

reported.

Interestingly, the ant cluster in strain XLDN2-5 was also

bordered by copies of IS6100 elements. The organization of ant

gene cluster was clearly different from that of KA1, in which catF,

the upstream region of and cluster, encodes acetyl-CoA acetyl-

transferase, while the downstream ORF16 encodes a transposase

(Figure 5B). Although there are many ISs belonging to different

family, no IS6100 element was found on pCAR3 [21]. The

structure and sequence identified in this study suggested that

IS6100 element might play an important role in the transfer of

carbazole-degrading genes. IS6100 was originally isolated as part

of the composite transposon Tn6100 from Mycobacterium fortuitum

[16]. Later studies revealed its presence in a wide spectrum of host

organisms in distantly related bacterial lineages, e.g. Sphingomonas

paucimobilis [14], Arthrobacter sp. [15], Pseudomonas aeruginosa [22],

Xanthomonas campestris [23], Salmonella enterica [24], and Corynebac-

terium glutamicum [25]. The existence of IS6100 in a very broad host

range indicates that the IS6100 element plays a vital role in

disseminating genes, including catabolic and antibiotic resistance

genes, among different bacteria. The sequenced copies of IS6100

from strain XLDN2-5 were 100% identical to those of

Mycobacterium fortuitum. This supports the hypothesis that IS6100

elements are distributed widely among microorganisms, whether

they are Gram-negative or Gram-positive bacteria [14,15]. IS6100

belongs to the IS6 family of ISs which exclusively integrate

through a cointegrative mechanism [13]. The car and ant genes

might become part of strain XLDN2-5 via cointegrative captures.

This type of transposition event is consistent with the truncation of

the ORF1 and the ORF8 located upstream of carR and carAc,

respectively (Figure 2 and Figure 5A). Thus, the genetic structure

of the car and ant genes in strain XLDN2-5 has shown strong

evolutionary trails of gene recruitment and presents an extraor-

dinary example of rearrangements and pathway evolution.

Although the terminal oxygenase and ferredoxin components of

CARDO from XLDN2-5 and KA1 are identical, the reductase

components have a much lower level of similarity (62%). In

general, the genes encoding the components of the known Rieske

oxygenases were found closely together in tightly regulated

transcriptional units, as was observed with the car cluster in strain

CA10 (Figure 5A) [26]. However, it is becoming increasingly

evident that the genes for catabolic pathways in sphingomonads

often locate separately from each other. Recently, it is reported

that multiple carbazole degradation genes dispersed on four loci

(two car loci, one fdxIfdrI locus and one fdrII locus) on pCAR3 in

Novosphingbium sp. strain KA1 [10]. The fdxIfdrI locus located 50

and 85 kb downstream of carI and carII gene clusters, while the

fdrII gene located about 80 and 115 kb downstream of carI and

carII gene clusters. Additional evidence has also been presented for

the genes involved in the degradation of PAH by Sphingobium

yanoikuyae B1 and Q1, and Novosphingobium aromaticivorans F199

[11,12,27], dibenzo-p-dioxin by Sphingomonas wittichii RW1 [28],

pentachlorophenol by Sphingmonas chlorophenolica ATCC 39723

[29], and c-hexachlorocyclohexane by Sphingmonas paucimobilis

UT26 [30]. These results suggested that loose association with

reductase components might be the characteristic for this type of

dioxygenase, which became more independent from the reductase

component during evolution.

In the course of cloning car genes, we also discovered a novel

insertion sequence ISSsp1 (see results, IS6100::ISSsp1), which

insert into the upstream copy of IS6100. ISSsp1 can be classified as

the mutator family that consists of transposases from prokayotes

and eukaryotes. There was only one example that an IS could

insert into another in Comamonas sp. strain JS46 [31]. Thus, it

Figure 5. Comparative analyses of car and ant genes from Sphingomonas sp. XLDN2-5 and other strains. (A) Comparative analysis of car
gene cluster from Sphingomonas sp. XLDN2-5 and related strains. The car genes in the three sphingomonads are more than 99% identity to each
other; however, only show 60% identity to that from Pseudomonas sp. CA10. (B) Comparative analysis of ant gene cluster from Sphingomonas sp.
XLDN2-5 and related strains. The ant genes in strain XLDN2-5 and KA1 are more than 99% identity to each other; however, only show 40–76% identity
to that from Burkholderia cepacia DPO1.
doi:10.1371/journal.pone.0010018.g005
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would be interesting to investigate the distribution of ISSsp1 in

strain XLDN2-5 and its function in the establishment of the

carbazole catabolic gene structure.

Materials and Methods

Bacterial strains, plasmids and growth conditions
The bacterial strains and plasmids used in this study are listed in

Table 2. Sphingomonas sp. strain XLDN2-5 utilizes carbazole as the

sole carbon and nitrogen source [2,32]. Strain XLDN2-5 was

grown in mineral salt medium (MSM) as previously described

[33], and carbazole was added as a 200 mM filter-sterilized stock

solution in dimethyl sulfoxide (DMSO). Escherichia coli DH5a was

used as the recipient strain in all cloning experiments. E. coli strains

were grown in Luria-Bertani (LB) broth at 37uC. Ampicillin

(Amp), when required, was added to a final concentration of

100 mg ml21.

DNA manipulation
Total DNA from pure cultures of Sphingomonas sp. strain

XLDN2-5 was extracted using the WizardH Genomic DNA

Purification Kit according to the recommendations of the

manufacturer (Promega Corp., Madison, WI). Restriction endo-

nucleases and T4 DNA ligase were used according to the

manufacturer’s instructions (TaKaRa). Isolations of DNA frag-

ments from agarose gels were accomplished with the Qiaex II Gel

Extraction Kit (Qiagen Corp., Germany). Transformations and

agarose gel electrophoresis were carried out using standard

methods [34].

Construction of genomic library
The genomic DNA of Sphingomonas sp. XLDN2-5 was

mechanically sheared. DNA fragments of 6 to 8 kb were gel

purified and used for library construction. The fragments were

ligated into pUC19 digested with EcoRV, and dephosphorylated

with shrimp alkaline phosphatase (Promega). The library was

transformed into electrocompetent E. coli DH5a. After incubation

at 37uC for 1 h, cells were spread on LB agar plates supplemented

with Amp, isopropyl-1-thio-b-D-galactopyranoside (IPTG) and 5-

bromo-4-chloro-3-indolyl-b-D-galactopyranoside. Following over-

night incubation at 37uC, plates were scored for white colonies.

The white colonies were used for southern blotting using a car

probe obtained by PCR.

All PCR amplifications were performed with an Eppendorf

Authorized Thermal Cycler (Germany) in 50-ml reaction systems

containing 5 ml of 106 buffer, 1.5 mM MgCl2, 200 mM dNTPs,

500 pmol of each primer, 10-100 ng of the template DNA, and

2.5 units of DNA polymerase. TransStart FastPfu polymerase

(TransGen Biotech Co. Ltd. China) was used in PCRs whose

products were used for the construction of plasmids. TaKaRa LA

PCRTM Kit Ver. 2.1 was used for IS-based PCR. Taq polymerase

(Generay Biotech Co. Ltd. China) was used in other PCRs.

Genome walking was performed using a Genome Walking Kit

(TaKaRa) according to the manufacturer’s protocol. The

amplified products obtained by Taq polymerase were gel purified

and ligated into vector pMD18-T, followed transformation to

competent E. coli DH5a. All primers used in this study are listed in

Table S1.

Southern blot
Primers pcarF and pcarR were designed according to the

carRAaBaBb genes of strain KA1 [21]. Products obtained using

primers pcarF and pcarR were gel purified and labeled with DIG-

11-dUTP, and the DNAs were transferred following the standard

protocols [34]. Southern blot was performed using DIG DNA

Labeling and Detection Kit (Roche) according to the manufac-

Table 2. Bacterial strains and plasmids used.

Strain or plasmid Description source

Bacterial strains

E. coli DH5a F- endA1 hsdR17 supE44 thi-1 recA1 gyrA relA1 D(lacZYA-argF) U169 deoR TransGen

Sphingomonas sp. XLDN2-5 Aerobic, rod shaped, degrades carbazole Lab stock

Plasmids

pUC19 Ampr lacZ, pMB9 replicon, M13IG TaKaRa

pMD18-T Clone vector TaKaRa

pEASY-Blunt Clone vector TransGen

pBY13 Ampr; pUC19 with 7.8-kb fragment that hybridized with car probe This study

p6100-a Ampr; pMD18-T with 1-kb fragment obtained by genome walking This study

p6100-1 Ampr; pMD18-T with 4.3-kb fragment obtained by IS-based PCR using pIS6100-F1 and pIS6100-R1 This study

p6100-2 Ampr; pMD18-T with 2.8-kb fragment obtained by IS-based PCR using pIS6100-F1 and pIS6100-R1 This study

P6100-3 Ampr; pMD18-T with 5.2-kb fragment obtained by IS-based PCR using pIS6100-R1 This study

pUcarAa Ampr; pUC19 with 1.2-kb SphI-XbaI fragment containing the carAa gene of strainXLDN2-5 This study

pUcarAc Ampr; pUC19 with 0.3-kb XbaI-KpnI fragment containing the carAc gene of strain XLDN2-5 This study

pUfdr Ampr; pUC19 with 1.3-kb KpnI-EcoRI fragment containing the fdr gene of strain XLDN2-5 This study

pEcarAaAc Ampr; Kar, pEASY-Blunt with 1.5-kb fragment containing the carAa and carAc genes of strain XLDN2-5 This study

pUcarAaAc Ampr; 1.5-kb SphI-KpnI fragment containing carAaAc from pUcarAaAc cloned into SphI-KpnI site of pUC19 This study

pUcarAaAcfdr Ampr; 1.5-kb SphI-KpnI fragment containing carAaAc from pUcarAaAc cloned into SphI-KpnI site of pUfdr This study

pUantAcdb Ampr; pUC19 with 2.1-kb HindIII-EcoRI fragment containing the antAcAdAb genes of strainXLDN2-5 This study

pUantAcdba Ampr; pUC19 with 3.5-kb HindIII-EcoRI fragment containing the antAcAdAbAa genes of strainXLDN2-5 This study

doi:10.1371/journal.pone.0010018.t002
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turer’s protocol. Hybridization was performed at 68uC. After

hybridization, the membranes were washed twice in a solution

containing 26 standard saline citrate (SSC) plus 0.1% sodium

dodecyl sulfate (SDS) at 65uC and twice in a solution containing

0.56 SSC plus 0.1% SDS at 68uC.

DNA sequencing and analysis
Sequencing was performed on an ABI sequencer by Shanghai

Invitrogen Biotechnology Co., Ltd, China. The sequences were

analyzed with Vector NTI DNA analytical software (version 8).

Homology searches were performed with the BLAST programs at

the National Center for Biotechnology Information website

(http://www.ncbi.nlm.nih.gov/BLAST.html). The deduced ami-

no acid sequences of ORFs were aligned using ClustalW 1.83 [35].

RNA preparation and RT-PCR
After the precultivation of XLDN2-5 in 5 ml of MSM

supplemented with 2 mM carbazole at 30uC, cells were harvested

by centrifugation at 5,000 g for 5 min and then washed twice using

MSM. The washed cells were suspended in 500 ml of MSM. Fifty

microliters of the resultant cell suspension was added to 5 ml of

MSM supplemented with 5 mM carbazole or with 1 g L21

glucose and 0.5 g L21 NH4Cl. After a 2-h incubation with

reciprocal shaking (300 strokes/min) at 30uC, the cells were

harvested and used for extraction of total RNA using E. Z. N. ATM

Total RNA Kit I (Omega Biotech). Finally, the RNA was eluted in

50 ml of RNase-free water. A PrimeScriptTM One Step RNA PCR

kit (Takara) was used for RT-PCR, in which 100 ng of total RNA

was used as a template. Detailed information on the RT-PCR

primer sets and the conditions employed for respective gene

amplifications are provided in Table S1. Control experiments

without the addition of reverse transcriptase were also included.

Construction of plasmids for car and ant genes
The genes, carAa, carAc, and fdr were separately amplified by

PCR using the respective primer sets shown in Table S1, which

were designed to introduce appropriate restriction sites and the

effective ribosome binding sites. In PCR amplification, total DNA

of strain XLDN2-5 was used as a template. The amplified

products were digested at the introduced restriction sites and

ligated into the corresponding sites of pUC19 to produce plasmids

(pUcarAa, pUcarAc, and pUfdr) for the expression of single

CARDO components. For construction of pEcarAaAc, the carAa

gene was amplified by carAa-F1 and carAaAcR, and carAc gene

was amplified by carAaAcF and carAc-R1. carAa and carAc were

then used as templates, while carAa-F1 and carAc-R1 were added

to amplify carAaAc. The fragment obtained was ligated to pEASY-

Blunt to generate pEcarAaAc. After their nucleotide sequences

were confirmed to be identical to those designed, pEcarAaAc was

double-digested using SphI and KpnI and the 1.5-kb fragment

containing carAaAc was gel-purified and ligated to the correspond-

ing sites of pUC19 and pUfdr to give pUcarAaAc and

pUcarAaAcfdr.

Genes antAcAdAb and antAcAdAbAa were amplified by PCR using

the respective primer sets, which were designed to introduce

appropriate restriction sites and the effective ribosome binding

sites. The amplified fragments were digested with HindIII and

EcoRI before being ligated into pUC19 to generate pUAntAcdb

and pUAntAcdba.

Biotransformation analysis
The E. coli DH5a strains harboring pUcarAaAcfdr, pUcar-

AaAc, pUantAcdba or pUantAcdb were cultivated in 5 ml of LB

supplemented with Amp at 37uC. Then 100 ml of the culture was

transferred to 200 ml of the same medium, and IPTG was added

to induce the protein at 37uC for 16 h. Then the cells were

harvested by centrifugation (6,000 g, 10 min, 4uC), washed twice

with MSM, and resuspended in MSM to an OD600 of 10. Fifty

microliters of carbazole (200 mM in DMSO) or anthranilate

(200 mM in DMSO) was added to 10 ml of cell suspensions. After

incubation on a reciprocal shaker (200 rpm) at 37uC for 20 h, the

mixtures were extracted with an equal volume of ethyl acetate.

After derivatization with N,O-bis-(trimethylsilyl)trifluoroacetamide

(BSTFA) (Sigma) the extracts were analyzed by gas chromatog-

raphy-mass spectrometry (GC-MS) as described previously [2,33].

High performance liquid chromatography was carried out to

analyze the aqueous samples using an Agilent 1200 series

instrument equipped with a variable-wavelength detector and a

reversed-phase C18 column (4.6 mm6150 mm, Hewlett-Pack-

ard). Residual concentrations of carbazole and anthranilate and

the formation of 29-animobiphenyl-2,3-diol and catechol were

determined using a mobile phase of an 80:20 mixture of methanol

and deionized water at a flow rate of 0.5 ml min21.

Nucleotide sequence accession numbers
The nucleotide sequences of the car locus and ant locus have

been deposited in GenBank under accession numbers GU123624

and GU123625, respectively.

Supporting Information

Figure S1 IS6100-based PCR. (A) Schematics of relative

configurations of two copies of IS6100. The position of primers

IS6100-F1, IS6100-F2, IS6100-R1 and IS6100-R2 are shown by

arrows. (B and C) Gel electrophoresis of DNA fragments amplified

from XLDN2-5 by IS6100-based PCR using IS6100-F1 and

IS6100-R1 (lane 1), single IS6100-F1 (lane 2) and single IS6100-

R1 (lane 3). Two fragments (4.3 kb and 2.8 kb in size, Figure S1B,

lane 1) were amplified using primers IS6100-F1 and IS6100-R1.

One specific fragment (5.2 kb in size, Figure S1C, lane 3) using

IS6100-R1 was amplified, while no specific fragment was

amplified under the same PCR conditions using IS6100-F1 (lane

2). (D) Second-round PCR (lane 4-6) with primer IS6100-F2 using

the first-round PCR product as a template.

Found at: doi:10.1371/journal.pone.0010018.s001 (1.12 MB TIF)

Figure S2 Determination of the positional relation of TnCar,

TnFdr and TnAnt. (A) The positions of primers TnCar-F1,

TnFdr-F1, TnFdr-R1, TnAnt-F1, and TnAnt-R1 with blue

arrowheads showing their directions. (B) Agarose gel electropho-

resis of DNA fragments amplified from the genomic DNA of

XLDN2-5 by PCR using TnCar-F1 and TnFdr-R1 (lane 1),

TnCar-F1 and TnAnt-R1 (lane 2), TnCar-F1 and TnAnt-F1 (lane

3), TnFdr-F1 and TnAnt-R1 (lane 4), TnFdr-F1 and TnAnt-F1

(lane 5), TnFdr-R1 and TnAnt-R1 (lane 6), and TnFdr-R1 and

TnAnt-F1 (lane 7). (C) PCR results using primers carC-sp3 and

fdr-r2 (lane 8-12). (D) PCR results (no specific bands) using primers

fdr-f2 and antAc-r2 (lane 13-17), and fdr-f2 and antAa-f2 (lane 18-

22).

Found at: doi:10.1371/journal.pone.0010018.s002 (1.06 MB TIF)

Figure S3 Mass spectra for the products of carbazole trans-

formed by E. coli DH5a harboring pUcarAaAcfdr. GC-MS

analysis was performed after trimethylsilylation with BSTFA.

Compound I: 29-aminobiphenyl-2,3-diol; compound II: hydro-

xycarbazole.

Found at: doi:10.1371/journal.pone.0010018.s003 (0.19 MB TIF)
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Table S1 Oligonucleotides used in this study for the cloning of

genes, genome walking, and the construction of plasmids.

Found at: doi:10.1371/journal.pone.0010018.s004 (0.05 MB

DOC)

Author Contributions

Conceived and designed the experiments: ZG PX. Performed the

experiments: ZG XW XL CT. Analyzed the data: ZG HT XH PX.

Contributed reagents/materials/analysis tools: GW ZD PX. Wrote the

paper: ZG PX.

References

1. Jha AM, Bharti MK (2002) Mutagenic profiles of carbazole in the male germ

cells of Swiss albino mice. Mutat Res 500: 97–101.

2. Gai Z, Yu B, Li L, Wang Y, Ma C, et al. (2007) Cometabolic degradation of
dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading

Sphingomonas sp. strain. Appl Environ Microbiol 73: 2832–2838.
3. Kilbane JJ, 2nd, Daram A, Abbasian J, Kayser KJ (2002) Isolation and

characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in

petroleum. Biochem Biophys Res Commun 297: 242–248.
4. Kirimura K, Nakagawa H, Tsuji K, Matsuda K, Kurane R, et al. (1999)

Selective and continuous degradation of carbazole contained in petroleum oil by
resting cells of Sphingomonas sp. CDH-7. Biosci Biotechnol Biochem 63:

1563–1568.
5. Li L, Li Q, Li F, Shi Q, Yu B, et al. (2006) Degradation of carbazole and its

derivatives by a Pseudomonas sp. Appl Microbiol Biotechnol 73: 941–948.

6. Nojiri H, Sekiguchi H, Maeda K, Urata M, Nakai S, et al. (2001) Genetic
characterization and evolutionary implications of a car gene cluster in the

carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol 183: 3663–3679.
7. Ouchiyama N, Miyachi S, Omori T (1998) Cloning and nucleotide sequence of

carbazole catabolic genes from Pseudomonas stutzeri strain OM1, isolated from

activated sludge. J Gen Appl Microbiol 44: 57–63.
8. Shepherd JM, Lloyd-Jones G (1998) Novel carbazole degradation genes of

Sphingomonas CB3: sequence analysis, transcription, and molecular ecology.
Biochem Biophys Res Commun 247: 129–135.

9. Nojiri H, Nam JW, Kosaka M, Morii KI, Takemura T, et al. (1999) Diverse
oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp.

Strain CA10. J Bacteriol 181: 3105–3113.

10. Urata M, Uchimura H, Noguchi H, Sakaguchi T, Takemura T, et al. (2006)
Plasmid pCAR3 contains multiple gene sets involved in the conversion of

carbazole to anthranilate. Appl Environ Microbiol 72: 3198–3205.
11. Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in

sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen

Appl Microbiol 49: 1–19.
12. Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, et al. (1999)

Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas

aromaticivorans F199. J Bacteriol 181: 1585–1602.

13. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:

725–774.
14. Dogra C, Raina V, Pal R, Suar M, Lal S, et al. (2004) Organization of lin genes

and IS6100 among different strains of hexachlorocyclohexane-degrading
Sphingomonas paucimobilis: evidence for horizontal gene transfer. J Bacteriol 186:

2225–2235.
15. Kato K, Ohtsuki K, Mitsuda H, Yomo T, Negoro S, et al. (1994) Insertion

sequence IS6100 on plasmid pOAD2, which degrades nylon oligomers.

J Bacteriol 176: 1197–1200.
16. Martin C, Timm J, Rauzier J, Gomez-Lus R, Davies J, et al. (1990)

Transposition of an antibiotic resistance element in mycobacteria. Nature 345:
739–743.

17. Armengaud J, Timmis KN (1998) The reductase RedA2 of the multi-component

dioxin dioxygenase system of Sphingomonas sp. RW1 is related to class-I
cytochrome P450-type reductases. Eur J Biochem 253: 437–444.

18. Herman PL, Behrens M, Chakraborty S, Chrastil BM, Barycki J, et al. (2005) A
three-component dicamba O-demethylase from Pseudomonas maltophilia, strain

DI-6: gene isolation, characterization, and heterologous expression. J Biol Chem
280: 24759–24767.

19. Peterson JA, Lorence MC, Amarneh B (1990) Putidaredoxin reductase and

putidaredoxin. Cloning, sequence determination, and heterologous expression of

the proteins. J Biol Chem 265: 6066–6073.

20. Chang HK, Mohseni P, Zylstra GJ (2003) Characterization and regulation of the

genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1.

J Bacteriol 185: 5871–5881.

21. Shintani M, Urata M, Inoue K, Eto K, Habe H, et al. (2007) The Sphingomonas

plasmid pCAR3 is involved in complete mineralization of carbazole. J Bacteriol

189: 2007–2020.

22. Hall RM, Brown HJ, Brookes DE, Stokes HW (1994) Integrons found in

different locations have identical 59 ends but variable 39 ends. J Bacteriol 176:

6286–6294.

23. Sundin GW, Bender CL (1995) Expression of the strA-strB streptomycin

resistance genes in Pseudomonas syringae and Xanthomonas campestris and

characterization of IS6100 in X. campestris. Appl Environ Microbiol 61:

2891–2897.

24. Boyd DA, Peters GA, Ng L, Mulvey MR (2000) Partial characterization of a

genomic island associated with the multidrug resistance region of Salmonella

enterica Typhymurium DT104. FEMS Microbiol Lett 189: 285–291.

25. Tauch A, Gotker S, Puhler A, Kalinowski J, Thierbach G (2002) The 27.8-kb R-

plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside

adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux

system Tet 33 flanked by active copies of the widespread insertion sequence

IS6100. Plasmid 48: 117–129.

26. Sato SI, Nam JW, Kasuga K, Nojiri H, Yamane H, et al. (1997) Identification

and characterization of genes encoding carbazole 1,9a-dioxygenase in

Pseudomonas sp. strain CA10. J Bacteriol 179: 4850–4858.

27. Zylstra GJ, Kim E (1997) Aromatic hydrocarbon degradation by Sphingomonas

yanoikuyae B1. J Ind Microbiol Biotechnol 19: 408–414.

28. Armengaud J, Happe B, Timmis KN (1998) Genetic analysis of dioxin

dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the

genome. J Bacteriol 180: 3954–3966.

29. Cai M, Xun L (2002) Organization and regulation of pentachlorophenol-

degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:

4672–4680.

30. Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and

enzymes for gamma-hexachlorocyclohexane degradation in Sphingomonas pauci-

mobilis UT26. J Ind Microbiol Biotechnol 23: 380–390.

31. Providenti MA, Shaye RE, Lynes KD, McKenna NT, O’Brien J M, et al. (2006)

The locus coding for the 3-nitrobenzoate dioxygenase of Comamonas sp. strain

JS46 is flanked by IS1071 elements and is subject to deletion and inversion

events. Appl Environ Microbiol 72: 2651–2660.

32. Wang X, Gai Z, Yu B, Feng J, Xu C, et al. (2007) Degradation of carbazole by

microbial cells immobilized in magnetic gellan gum gel beads. Appl Environ

Microbiol 73: 6421–6428.

33. Gai Z, Yu B, Wang X, Deng Z, Xu P (2008) Microbial transformation of

benzothiophenes, with carbazole as the auxiliary substrate, by Sphingomonas sp.

strain XLDN2-5. Microbiology 154: 3804–3812.

34. Sambrook J, Russell D (2001) Molecular cloning: A laboratory manual. Cold

Spring Harbor, N. Y: Cold Spring Harbor Laboratory Press.

35. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple

sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:

3497–3500.

Carbazole-Degrading Genes

PLoS ONE | www.plosone.org 9 April 2010 | Volume 5 | Issue 4 | e10018


