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Accuracy and Precision of Alchemical Relative Free Energy
Predictions with and without Replica-Exchange

Shunzhou Wan, Gary Tresadern, Laura Pérez-Benito, Herman van Vlijmen,
and Peter V. Coveney*

A systematic and statistically robust protocol is applied for the evaluation of
free energy calculations with and without replica-exchange. The protocol is
based on ensemble averaging to generate accurate assessments of the
uncertainties in the predictions. Comparison is made between FEP+ and
TIES—free energy perturbation and thermodynamic integration with
enhanced sampling—the latter with and without the so-called “enhanced
sampling” based on replica-exchange protocols. Standard TIES performs best
for a reference set of targets and compounds; no benefits accrue from replica-
exchangemethods. Evaluation of FEP+ and TIES with REST—replica-exchange
with solute tempering—reveals a systematic and significant underestimation
of free energy differences in FEP+, which becomes increasingly
large for long duration simulations, is confirmed by extensive analysis
of previous publications, and raises a number of questions pertaining to the
accuracy of the predictions with the REST technique not hitherto discussed.

1. Introduction

Notwithstanding numerous false dawns, we are now approach-
ing an era when rapid, reliable, and reproducible free energy
predictions for ligand–protein binding are becoming available.[1]

Advances in free energy calculations have been fostered by
the integration of improved force fields, enhanced sampling
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methods and increased computer power.
The quality of predictions is understood to
be determined by two principal sources:
one is of a systematic nature owing to the
force fields selected, the system setup, the
algorithms, and their implementation, the
sampling methodology, the extent of con-
figurational space sampling, and so on;[2]

the other is associated with the intrin-
sic stochasticity of the molecular dynamics
simulation method used to compute bind-
ing affinities.[3] The accuracy is dominated
by the former, while the precision is mainly
determined by the latter.
Protein force fields are now generally

quite reliable, although ligand parameteri-
zation for new molecules can still pose is-
sues for modelers. The system setup needs
to capture essential chemical details and

cannot be overlooked; the challenge to model ionization and tau-
tomeric states accurately in a molecular mechanics formalism is
a limitation (this is distinct from actual force field errors).[1a] The
extent of conformational sampling also determines the quality of
the calculations, as it is not possible to sample the entire confor-
mational space for a complex molecular system, the most rele-
vant subspace for a given thermodynamic property needs to be
well sampled to obtain a converged ensemble average. It should
be noted, however, that an apparently converged average, with no
obvious change in time after a given period, does not necessarily
mean that the relevant conformational space has been adequately
sampled.[2b]

The stochastic uncertainty in predictions emanating from
molecular dynamics simulations originates in the intrinsically
chaotic behavior of the trajectories, as these display extreme
sensitivity to initial conditions.[3] Historically, and still to an
overwhelming degree today, an assumption is made that a sin-
gle “long time” average provides the ensemble average from
which statistical mechanics delivers macroscopic averages in
the thermodynamic limit. However, these “long time” averages
show no convincing tendency to converge to ensemble averages,
which today can often be determined directly on large super-
computers.[3,4]

Such uncertainty quantification (UQ) furnishes a statisti-
cal estimate of the reproducibility of results between the-
ory/simulation and experiment, and from two or more theoreti-
cal methods. Making comparisons can never be done from “one
off” molecular dynamics results; both experiment and theory are
riddled with errors and uncertainties and the issue is how to
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reliably compare them. This requires not only computational re-
sults to be reported with errors, but likewise experiments.[5]

The ensemble approach is, in the more traditional jargon of
molecular dynamics, a highly effective way of “sampling.” It is
also a standard procedure adopted for UQ.[6] There have been
many other efforts to accelerate sampling as compared to the
traditional one of a single MD run. One such method is called
replica-exchangewith solute tempering (REST2)[7] in which inter-
actions of a chosen subsystem with its environment are scaled to
enhance overall conformational sampling for the regions of in-
terest. REST2 is a modified version of the original “replica-
exchange with solute tempering” (REST1)[8]: in REST1, the en-
tire solute biomolecule is heated up while in REST2 the hot re-
gion is restricted to a local region of the solute. In Schrödinger’s
proprietary FEP+ package, the REST2 method is implemented
but called REST. For the sake of simplicity and consistency,
hereafter we will call the approach REST. REST has been im-
plemented in several molecular simulation packages includ-
ing NAMD,[9] Amber,[10] GROMACS[11] as well as within the
FEP+[12] package. As we shall see, these methods do not neces-
sarily perform more accurately than ensemble averaged calcula-
tions of free energies without such “enhanced sampling.” There
are claims that REST improves the convergence of free energy
computations,[13] and hence reduces the variations in the pre-
diction. Our previous study,[5b] however, has shown that the cal-
culated free energy differences from five replicas vary by up to
1.2 kcal mol−1 from TIES calculations with REST employed. Es-
tablished “enhanced sampling” methods also require ensemble
averaging as the stochastic variation is intrinsic to all MD-based
methods.[3,5b]

Recently at Janssen, FEP+ simulations have been applied to
different drug discovery projects,[14] and at UCL we have stud-
ied various series of ligands bound to a given protein target[5b,15]

as well as the same ligands to wild-type and mutant proteins.[16]

We have introduced variants of TIES, which incorporate the “en-
hanced sampling” REST techniques including the popular free
energy estimator MBAR (multistate Bennett acceptance ratio).[5b]

We have also extended the TIES methodology to study relative
binding affinities caused by protein mutations when bound to a
ligand, a variant which we call TIES-PM.[16] With REST, TIES-PM
can capture large conformational changes; for example, it gener-
ates correct free energy differences caused by the gatekeeper mu-
tation occurring inside the ligand binding pocket of the FGFR-1
kinase.[16] Simulations using standard TIES, without REST, can-
not overcome significant energy barriers between conformations
and hence the results are highly sensitive to the initial structures.
Nonetheless, we have also observed cases where the application
of REST degrades the quality of free energy predictions.[16] These
particular cases demand extensive evaluation with large datasets
to take them out of the class of the anecdotal and into the domain
of the scientific.
The purpose of the present paper is to assess the perfor-

mance of “sampling” strategies in two approaches to relative
free energy prediction, TIES with and without replica-exchange
along with FEP+. As noted above, a recent paper reported a
direct comparison between TIES computed using NAMD and
pmemdGTI, where the same force field was used but with differ-
ent protocols.[5b] Here we use the reference data set fromprevious
publications[12,15a, c] to look at the predictions from the TIES and

Table 1.Molecular systems and simulation protocols.

TIES TIES-𝜆-REST
(-MBAR)

FEP+

Molecular
systems

BRD4 (12 ligand pairs); MCL1 (16 ligand pairs); TYK2 (11 ligand
pairs)

Force field Amber ff99SBildn OPLS3e

MD engine NAMD 2.9 NAMD 2.11a) Desmond v3.8.5.19

Topology Dual topology Single topology

Box buffer [Å] 14 10

Timestep [fs] 2 4/8

Cut-off [Å] 12 9

𝜆 windows 13 12

Protocol 5 replicas, 4 ns production run for each 𝜆 window

Extensionb) – 4 ns, 20 replicas 4 ns, 30 replicas

40 ns, 10 replicas 40 ns, 20 replicas

Hours/nsc) 1.41d) 2.36e) 0.05f)

a)Customized version of theNAMD2.11 package with a patch to implement the REST
algorithm for alchemical simulations; b)5 ligand pairs are chosen for each protein
system; c)use TYK2 as an example; d)128 cores on SuperMUC for one 𝜆 window;
e)124 cores on BlueWaters for one 𝜆 window; f)4x Nvidia Tesla K80.

FEP+ protocols. The paper is structured as follows: in the next
section, we lay out the methods used; in the following one, we
present the results and a discussion. The paper ends with our
conclusions from the study.

2. Experimental Section

The molecular systems and the simulation protocols are sum-
marized in Table 1. Three molecular systems were used: BRD4
(bromodomain containing 4),[15c] MCL1 (myeloid cell leukemia
1), and TYK2 (Tyrosine kinase 2).[12,15a] The same molecular sys-
tems as used before with the TIES approach were studied,[15a,c]

allowing comparison of the accuracy of normal TIES with FEP+
and TIES with REST (TIES-𝜆-REST). The same initial structures
and same ligand pairs as in previous studies[15a,c] were used for
both FEP+ and TIES-𝜆-REST simulations. The simulation-ready
molecular systems, in Amber format for TIES and maegz format
for FEP+, can be found in Supporting Information.

2.1. TIES-𝝀-REST Simulations

For the purpose of comparison, the same Amber ff99SBildn[17]

force field was used in TIES-𝜆-REST as in TIES calculations.[15a,c]

The same procedures to set up the protein−ligand systems as
recently reported and validated were used.[5b] A customized ver-
sion of theNAMD2.11 package,[18] with implementation of REST
for alchemical simulations,[9] was used for all the TIES-𝜆-REST
simulations. A dual topology scheme was employed to describe
a hybrid ligand which consisted of both a disappearing and an
appearing group. The two groups define all the alchemically mu-
tating atoms, exclusively belonging to the two ligands which are
transferred from one to another during the alchemical process.
Thermodynamic integration was used to calculate the free en-
ergy changesΔGalch for the ligand pairs in protein and in solvent.
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The binding free energy difference ΔΔGcal was then calculated
as the differences of the ΔGalch values from the two simulations.
The REST region for unbound ligand calculations was defined
as the set of alchemically mutating atoms. For bound ligand cal-
culations, the REST region comprised all alchemically mutating
atoms and all protein residues within 3 Å distance of the for-
mer. All TIES(-𝜆-REST) simulations use 13 𝜆 windows per per-
turbation. A soft core potential was applied for the van der Waals
interactions of all atoms in the alchemical space. No soft-core
potential was used for the electrostatic interactions. For the dis-
appearing atoms, the electrostatic interactions were linearly de-
coupled from the simulations between 𝜆 values of 0 and 0.55
and completely turned off beyond that; for the appearing atoms,
they were linearly coupled to the simulations from 𝜆 value
0.45–1, and fully extinguished otherwise. The approach of decou-
pling/coupling at different rates ensured that the partial charges
were removed on perturbed atoms before they were fully annihi-
lated, while the charges on the growing atoms were introduced
after they appeared.
Each REST simulation involves running a predefined number

of parallel REST replicas, 13 in the TIES-𝜆-REST simulations,
varying in both their effective temperatures and the alchemi-
cal parameter 𝜆.[16] Regular exchange of configurations was at-
tempted between neighboring REST replicas. All TIES-𝜆-REST
simulations were run on the BlueWaters supercomputer at the
National Center for Supercomputing Applications of the Univer-
sity of Illinois at Urbana−Champaign and Titan at Oak Ridge Na-
tional Laboratory. The previous TIES calculations were run on the
SuperMUC Phase 1 and 2 computers at the Leibniz Supercom-
puting Centre (Table 1). The benchmark simulations showed that
TIES-𝜆-REST consumed about 10–20% more node hours than
the standard TIES approach.

2.2. FEP+ Approach

FEP+ calculations were performed using Maestro v2018.2,
Desmond multisim version 3.8.5.19 and mmshare version 4.2,
along with the first version of the proprietary OPLS3e force field.
A recent OPLS3e paper[19] showed that some changes had been
made since OPLS3, one being replacement of a quantum chemi-
cal MP2 calculation with a density functional method for the tor-
sions, another being an extended chemical environment for tor-
sion definition. A REST enhanced sampling technique was used
in the Desmond MD engine, with the same effect as REST in
TIES-𝜆-REST simulations. The default FEP+ protocol was used
to define the REST region in which only perturbed ligand atoms
were included for the simulations in water and in protein com-
plexes (note that a different REST region was used in TIES-𝜆-
REST for complex simulations). Missing force field parameters
were added by additional QM calculations[19] and fitted using the
ffbuilder module. A single topology scheme was used, in which
corresponding atoms were mapped between the two ligands via
a maximum common substructure search. No cycle-closure aver-
aging and error estimation were used as the free energy changes
were calculated individually for each ligand pair. FEP+ uses 12
𝜆 windows per perturbation in both solvent and complex, and
makes use of a mixed coupling/decoupling schedule. Bonded in-
teractions were scaled linearly across all 12 𝜆 windows as they

were either removed or introduced. Desmond used soft core po-
tentials to overcome possible van derWaals end point instabilities
at the limits of the 𝜆 coordinate. For atom deletion, charges were
decoupled first in a linear manner during the first five 𝜆 win-
dows with the remaining seven 𝜆 windows used to turn-off the
van derWaals terms. The reverse schedule was used for introduc-
ing atoms. There are other settings in FEP+, which differ from
those in TIES simulations; these included a smaller box size, a
smaller cut-off distance for non-bonded interactions, and larger
time steps (Table 1). All FEP+Desmond runs were performed on
an in-house GPU (Nvidia Tesla K80) cluster at Janssen Research
& Development, Beerse, Belgium.

2.3. Simulation Protocol

For both TIES-𝜆-REST and FEP+ simulations, the protocol es-
tablished in the previous publications was used, in which an en-
semble of five replicas had been employed.[5b,a] It should be noted
that such ensemble-based simulation is not part of the “standard”
FEP+ protocol. All replicas have identical initial coordinates but
different velocities drawn randomly from a Maxwell−Boltzmann
distribution. 4 ns production runs were performed for each
replica.[15a] The protocol of five replicas and 4 ns production times
had been shown to produce accurate, precise, and reliable relative
free energies in the previous TIES studies on various molecu-
lar systems,[5b,15,16] of which a subset was invoked to make a di-
rect comparison between approaches with the replica-exchange
method, as well as between its use and non-use. The MBAR ap-
proach was automatically applied in FEP+ simulations to gener-
ate free energy estimates. For TIES-𝜆-REST, the free energy differ-
ences both with and without MBAR were reported. The protocol
of five replicas and 4 ns production runs were established us-
ing TIES, with or without REST.[5b,15a] To test this, in the unlikely
case that a different combination might favor FEP+, the num-
ber of replicas and the duration of the production MD runs were
also varied. Thus, some simulations were extended up to 30 repli-
cas and 40 ns (Table 1). The accuracy of free energy approaches
was therefore evaluated by comparing the calculations with the
experimental data using mean signed errors (MSEs), mean un-
signed errors (MUEs), root-mean-square errors (RMSEs), and
linear regression. For the experimental data without uncertain-
ties reported, an approximate error of 0.3 log units (0.41 kcal
mol−1) was used.[20] The way TIES computes precisions was from
the TI integral correctly interpreted as a stochastic integral.[3,15a]

For FEP+, the error was provided for each individual replica ac-
cording to standard MBAR theory. The MBAR errors, however,
largely underestimate the variances of the free energy results
from replica calculations (see Section 3). To avoid such issues and
make the performance of the TIES-based approaches and FEP+
comparable, the standard deviations were used here to assess the
precision for all of the approaches.

3. Results and Discussion

In this section, we compare the accuracy and precision of free
energy estimates from different approaches: TIES, TIES-𝜆-REST
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Table 2. Free energy predictions from FEP+, original TIES, TIES-𝜆-REST,
and TIES-𝜆-REST-MBAR. All the results are from ensemble simulations
consisting of five replicas and 4 ns production runs each. Standard devia-
tions in parentheses.

Protein Property FEP+ TIES TIES-𝜆-REST TIES-𝜆-REST-M

BRD4 No. of pert. 12

MUE 0.81 (0.14) 0.67 (0.15) 0.72 (0.16) 0.69 (0.15)

MSE −0.59 (0.22) 0.00 (0.25) −0.09 (0.27) −0.16 (0.25)

RMSE 0.91 (0.14) 0.81 (0.16) 0.87 (0.17) 0.84 (0.16)

Pearson r 0.90 0.84 0.80 0.81

Slope 0.72 0.92 0.82 0.81

intercept 0.47 −0.11 −0.13 −0.03

MCL1 No. of pert. 16

MUE 1.30 (0.24) 1.20 (0.23) 1.34 (0.28) 1.26 (0.25)

MSE −0.22 (0.42) 0.27 (0.39) −0.71 (0.43) −0.64 (0.39)

RMSE 1.53 (0.27) 1.41 (0.26) 1.61 (0.33) 1.56 (0.31)

Pearson r 0.61 0.80 0.41 0.44

Slope 0.68 1.18 0.37 0.40

intercept 0.68 0.32 0.44 0.48

TYK2 No. of pert. 11

MUE 0.51 (0.16) 0.44 (0.15) 0.85 (0.21) 0.66 (0.17)

MSE 0.27 (0.26) −0.25 (0.23) 0.60 (0.32) 0.36 (0.28)

RMSE 0.67 (0.19) 0.56 (0.17) 1.02 (0.23) 0.79 (0.19)

Pearson r 0.97 0.94 0.93 0.94

Slope 1.11 0.83 1.20 1.11

intercept −0.39 −0.12 −0.55 −0.38

All No. of pert. 39

MUE 0.93 (0.13) 0.82 (0.12) 1.01 (0.15) 0.91 (0.13)

MSE −0.20 (0.20) 0.04 (0.19) −0.15 (0.23) −0.21 (0.21)

RMSE 1.16 (0.16) 1.05 (0.16) 1.26 (0.19) 1.18 (0.18)

Pearson r 0.78 0.84 0.72 0.74

Slope 0.87 1.04 0.81 0.79

intercept 0.29 0.14 −0.13 −0.02

Mean unsigned error MUE =
∑n

i=1
|ΔΔGexp−ΔΔGcal |

n
; mean signed error MSE =∑n

i=1
ΔΔGcal−ΔΔGexp

n
(rearrange each ligand pair so that ∆∆Gexp ≥ 0); root mean

squared error RMSE =
√

1
n

∑n
i=1 (ΔΔGexp − ΔΔGcal)

2. Slope (m) and intercept

(b) are defined as in ΔΔGcal = 𝛼 ∗ΔΔGexp + 𝛽.

(-MBAR), and FEP+. Between TIES-𝜆-REST and TIES-𝜆-REST-
MBAR, we consider the former for reasons of simplification,
as the two approaches generate very similar results in terms
of MSEs, MUEs, RMSEs, and correlation coefficients (Table 2).
Our previous studies have shown that MBAR does little to en-
hance such free energy predictions.[5b,16] All approaches gener-
ate good predictions when compared with the experimental data
(Figure 1 and Table 2). Taking together all of the quantifications
in Table 2, it can be seen that TIES yields the best results, with
the smallest MSEs, MUEs, and RMSEs and the best correlations
in most cases. It should be said that these statistical differences
are only marginal. The predictions from FEP+ are comparable to
the results from TIES-𝜆-REST.
While ensemble approaches diminish random errors from

simulations, they cannot remove systematic bias, a deviation of

Figure 1. Comparison of the predicted binding free energy differenceswith
the experimental data from the four approaches. See Table 2 for the errors
and correlations.

a measurement or prediction from the true value. Indeed, recent
work shows that even ensemble averages are likely to contain sys-
tematic errors, caused by a newly discovered pathology of float-
ing point numbers.[21] The possible bias for each of the above ap-
proach is indicated by the derivation of the slope from one in the
linear regression ΔΔGcal = 𝛼 ∗ ΔΔGexp + 𝛽, and can be quanti-
fied by the MSE values (Table 2). An overestimation is defined by
a positive MSE, (ΔΔGcal – ΔΔGexp) > 0 and a slope greater than
one when ligand pairs are rearranged so that ΔΔGexp > 0; con-
versely, an underestimation arises when (ΔΔGcal – ΔΔGexp) < 0
and the slope < 1. TIES results exhibit negligible bias with small
MSEs for each protein system and for the entire data set. Indeed,
TIES generates an average overestimation of 0.27 kcal mol−1 for
MCL1, an underestimation of 0.25 kcal mol−1 for TYK2, no bias
(0 kcal mol−1) for BRD4, and no bias (0.04 kcal mol−1) for the
entire dataset; the slope for the fitted line is also close to one for
the entire dataset. Conversely, FEP+manifests a bias in the case
of BRD4 with 0.59 kcal mol−1 underestimation, while generating
equal but oppositeMSEs for the other two systems. For the entire
data set, FEP+ underestimated the relative free energy changes
by 0.20 kcal mol−1. TIES-𝜆-REST shows similar bias for each per-
turbation as FEP+ but with different magnitudes, and a similar
underestimation for the entire dataset. It should be noted, how-
ever, that the dataset used here is still relatively small; a large and
broad dataset with multi-target and multi chemotype will be re-
quired to have more statistically significant conclusions.
Using more replicas does not confer significant benefit on the

predictions of binding free energy differences in either FEP+ or
TIES-𝜆-REST (-MBAR); MUEs, MSEs, RMSEs, and correlation
coefficients are all comparable between the predictions from sim-
ulations with five replicas and 20–30 replicas (Table 3). Likewise,
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Table 3. Results of FEP+ and TIES-𝜆-REST(-MBAR) with different numbers of replicas and simulation lengths. Standard deviations in parentheses.

Protein Property FEP+ TIES-𝜆-REST TIES-𝜆-REST-MBAR

4 ns 5 reps 4 ns 30 reps 40 ns 20 reps 4 ns 5 reps 4 ns 20 reps 40 ns 10 reps 4 ns 5 reps 4 ns 20 reps 40 ns 10 reps

BRD4
MCL1
TYK2

No. of pert. 15
MUE 0.96 (0.21) 0.91 (0.18) 1.04 (0.22) 0.97 (0.28) 0.96 (0.27) 0.92 (0.23) 0.86 (0.28) 0.89 (0.26) 0.89 (0.23)

MSE −0.13 (0.35) −0.13 (0.32) −0.65 (0.33) −0.15 (0.40) −0.03 (0.40) −0.16 (0.36) −0.22 (0.38) −0.12 (0.38) −0.25 (0.24)

RMSE 1.21 (0.26) 1.10 (0.21) 1.33 (0.25) 1.40 (0.39) 1.32 (0.35) 1.23 (0.27) 1.33 (0.39) 1.28 (0.36) 1.19 (0.27)

Correlation 0.87 0.89 0.78 0.77 0.79 0.79 0.78 0.80 0.80

Slope 1.01 1.00 0.69 0.87 0.91 0.81 0.85 0.87 0.77

intercept 0.52 0.52 −0.48 −0.02 0.03 −0.03 0.12 0.17 0.08

Figure 2. Changes of predicted binding free energies when the number of replicas is increased and/or the length of simulations is extended.

for predictions using standard TIES[5b] and the TIES-𝜆-REST ap-
proach, longer simulation time does not make a significant im-
pact on the predictions, based on the values ofMUEs,MSEs, RM-
SEs, and correlation coefficients (Table 3 and Figure 2, confirm-
ing our earlier findings). However, and by contrast, in the FEP+
approach longer simulation time degrades performance, which
is discussed further below. It renders the underestimation even
more severe, as indicated by the MSE values that increase from
0.13 to 0.65 kcal mol−1 for the subset of ligand pairs for which
the simulation duration is increased by an order of magnitude
(Table 3).
The underestimation of FEP+ relative free energy calcula-

tions has been recently noted.[20] To further quantify the under-
estimation in FEP+ calculations, we revisit three sets of pre-
dictions from two Schrödinger publications[12,19] and one set
from the recent study by Pérez-Benito et al.[20] (see Figure 3
and Table 4). These studies all looked at relatively large datasets
and thus produce reliable statistics. The original ΔΔGFEP+ val-
ues were obtained from Supporting Information[12,19] and from
the authors.[20] In the original FEP+ paper with OPLS2.1 force
field,[12] a 0.18 kcal mol−1 underestimation is manifest for the en-
tire dataset consisting of 330 alchemical mutations. Using the
latest versions of the OPLS force field, similar underestimations
have been observed.[19] These underestimations are comparable
with theMSE value (0.20 kcal mol−1, Table 2) in the current study.
The underestimation in FEP+ is much more obvious and severe
when the binding free energy differences are large. When the
ΔΔGexp values are in the range of 1.37–2.73 kcal mol−1, 1–2 log

units in activity, the underestimation is ≈0.50 kcal mol−1; when
the difference is more than 2 log units (2.73 kcal mol−1), the un-
derestimation can be as much as 1.56 kcal mol−1 (Table 4). The
comparison of the results from 1 and 5 ns simulations[20] shows
that long simulations degrade the quality of FEP+ predictions;
longer simulations make them even worse, as observed in the
current study (Table 3).
REST has been implemented in FEP+ and TIES-𝜆-REST ap-

proaches. A larger database will be required to confirm the ap-
parent underestimations of the free energy differences in TIES-
𝜆-REST-MBAR. Although the quality of these simulation results
may be affected by many factors,[2b] we suspect that the REST
protocol is the dominant reason for the underestimations exhib-
ited in these simulations. TIES and TIES-𝜆-REST(-MBAR) sim-
ulations share the same protocol including the force field and
the initial structures. The only difference is the use of REST in
TIES-𝜆-REST (-MBAR), which is likely to be the reason that TIES
calculations outperform TIES-𝜆-REST (-MBAR) in its relative
free energy predictions. The REST approach enhances confor-
mational sampling, but by the same token is able to reach con-
formations which are less relevant to stable binding and can
produce diminished differences in binding affinities for pairs
of congeneric ligands, as recently reported.[16] The lack of
the correct weighting of these less relevant states in REST-
implemented calculations causes an artefactual reduction in the
difference of the binding free energies.[16] Longer REST simula-
tions increase the occurrence of such conformations and hence
make the predictions increasingly unreliable. For the FEP+
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Figure 3. Underestimation of the relative free energy differences. Data are taken from previous FEP+ calculations from a) Wang et al.,[12] b) Pérez-Benito
et al.,[20] c) Roos et al.[19] using OPLS3, and d) Roos et al.[19] using OPLS3e force field. See Table 4 for quantitative assessments.

Table 4. Revisit binding free energy differences (kcal mol−1) of FEP+ calculations in literature.

|ΔΔGexp| < 1.37 1.37 ≤ |ΔΔGexp| < 2.73 |ΔΔGexp| ≥ 2.73 Total

Wang et al.,[12] OPLS2.1, Figure 3a

No. of transformations 257 66 7 330

Underestimations [%] 51 71 86 55

(ΔΔGcal–ΔΔGexp)/N −0.04 −0.59 −1.56 −0.18

Roos et al.,[19] OPLS3, Figure 3c

No. of transformations 348 98 23 469

Underestimations [%] 55 71 74 59

(ΔΔGcal–ΔΔGexp)/N −0.12 −0.71 −0.82 −0.28

Roos et al.,[19] OPLS3e, Figure 3d

No. of transformations 348 98 23 469

Underestimations [%] 52 71 65 57

(ΔΔGcal–ΔΔGexp)/N −0.03 −0.53 −0.51 −0.16

Pérez-Benito et al.,[20] all ligand pairs with 5 ns simulations from LO datasets, Figure 3b

No. of transformations 10 79 92 181

Underestimations [%] 70 65 83 74

(ΔΔGcal–ΔΔGexp)/N −0.13 −0.43 −1.14 −0.78

“Underestimations” is the percentage of pairs of which ΔΔGcal < ΔΔGexp when the ligand pairs are rearranged so that ΔΔGexp ≥ 0 kcal mol−1. The average underestimation
(ΔΔGcal – ΔΔGexp)/N is also calculated after making the ΔΔGexp ≥ 0 rearrangement.

calculations, the force field may also contribute to the bias, as the
latest OPLS3e force field reduces the underestimations in the free
energy predictions as compared with OPLS3 force field (Table 2
and ref. [19]).
Although FEP+ manifests smaller variations between differ-

ent replicas than TIES or TIES-𝜆-REST(-MBAR) (Figure 4), it

producesmuch larger variations from 30 replicas than theMBAR
errors reported for each FEP+ calculation (Table 5). The results
from single FEP+ calculations can vary by up to 3.94 kcal mol−1

for one ligand pair to MCL1. Although the implementation of an
accelerated sampling protocol such as RESTmay reduce the vari-
ations from independent runs, the results here show again that
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Figure 4. Comparison of the bootstrapping errors of FEP+ with TIES, TIES-𝜆-REST, and TIES-𝜆-REST-MBAR.

Table 5. Variations and ranges of binding free energy differences (kcal
mol−1), compared with the averaged MBAR errors, from 30 replicas of
4-ns FEP+ calculations. Standard deviations in parentheses.

Protein Ligand pair Average Range from 30 replicas 𝜎MBAR

BRD4 02–03 −2.64 (0.15) −3.02 to −2.38 (0.64) 0.08

03–06 −1.20 (0.27) −1.80 to −0.69 (1.11) 0.12

08–09 1.44 (0.16) 0.98 to 1.71 (0.73) 0.09

13–14 −0.70 (0.30) −1.35 to −0.12 (1.23) 0.11

14–15 0.26 (0.10) 0.14 to 0.47 (0.33) 0.04

MCL1 02–32 −1.11 (0.95) −3.44 to 0.50 (3.94) 0.31

08–18 −3.79 (0.23) −4.21 to −3.09 (1.12) 0.07

16–34 0.80 (0.11) 0.53 to 1.06 (0.53) 0.05

32–38 −3.15 (0.54) −4.30 to −2.09 (2.21) 0.19

35–12 1.67 (0.34) 0.95 to 2.27 (1.32) 0.07

TYK2 01–03 0.85 (0.28) 0.36 to 1.58 (1.22) 0.12

01–08 1.96 (0.17) 1.49 to 2.22 (0.73) 0.10

01–10 3.40 (0.23) 2.90 to 3.89 (0.99) 0.11

06–11 −3.31 (0.17) −3.79 to −2.90 (0.89) 0.08

06–15 −1.58 (0.17) −1.94 to −1.21 (0.73) 0.08

one-off runs are not reliable. Statistical properties derived from
ensembles are much more robust.
It is likely that the number of atoms in the alchemical region

plays an important role in accounting for the differences of er-
rors from TIES and FEP+ (Figure 4). FEP+ implements a single
topology approach which morphs as many atoms as possible that
are different between the two end states. TIES and its variants
use a dual topology approach in which the appearing and dis-
appearing groups are not morphed and move independently. If
we define dummy atoms as those having no interactions with
the environment at one or the other end state, the number of
dummy atoms is usually significantly larger in a dual topology
than in a single topology scheme. These dummy atoms can sam-
ple different conformational spaces and may be very flexible, es-
pecially when their interactions with the environment are scaled
down. This introduces larger variations in the energies and en-
ergy derivatives in TIES and TIES-𝜆-REST(-MBAR) than FEP+.

4. Conclusion

In this study, we compare the accuracy and precision of rela-
tive free energies calculated from standard TIES[15a,c] and two
REST-implemented approaches: TIES-𝜆-REST (with or without
MBAR)[5b] and FEP+.[12] The performance of standard TIES has
been compared with pmemdGTI in our previous study.[5b] For
the reference data set investigated, standard TIES performs best.
The protocol of a 4 ns production run and five replicas, as estab-
lished in our previous TIES studies,[5b,15,16] is reasonable for TIES
and its variants, since neither an increase in the number of repli-
cas nor the duration of simulations have a large impact on the
predictions, as adjudged by the quantities MUEs, MSEs, RMSEs,
and correlation coefficients (Figure 2 and Table 3). Indeed, an in-
teresting conclusion from this study is that more replicas does
not confer significant benefit on the predictions of binding free
energy differences. However, FEP+ accuracy deteriorates as the
simulation duration is extended.
The REST-implemented calculations all show an underestima-

tion of computed relative free energies, which are especially no-
ticeable when the experimental binding free energy difference
is large. Longer simulations degrade predictions in FEP+ when
conformations are sampled which are less relevant to stable lig-
and binding. Proper weighting is required for the entire confor-
mational space sampled to produce reliable free energy predic-
tions. However, it is difficult to evaluate the likelihood of a con-
formation and hence its contribution to the predictions.[16] Force
fields can also contribute to the observed bias in relative free en-
ergy predictions; the latest OPLS3e force field improves the FEP+
results but does not remove its systematic underestimations.
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