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Abstract

Advanced age is associated with decreased stem cell activity. However, the effect of aging on the differentiation capacity of
induced pluripotent stem (iPS) cells into cardiovascular cells has not been fully clarified. We investigated whether iPS cells
derived from young and old mice are equally capable of differentiating into vascular progenitor cells, and whether these
cells regulate vascular responses in vivo. iPS cells from mouse embryonic fibroblasts (young) or 21 month-old mouse bone
marrow (old) were used. Fetal liver kinase-1 positive (Flk-1+) cells, as a vascular progenitor marker, were induced after 3 to 4
days of culture from iPS cells derived from young and old mice. These Flk-1+ cells were sorted and shown to differentiate
into VE-cadherin+ endothelial cells and a-SMA+ smooth muscle cells. Tube-like formation was also successfully induced in
both young and old murine Flk-1+ cells. Next, hindlimb ischemia was surgically induced, and purified Flk-1+ cells were
directly injected into ischemic hindlimbs of nude mice. Revascularization of the ischemic hindlimb was significantly
accelerated in mice transplanted with Flk-1+ cells derived from iPS cells from either young or old mice, as compared to
control mice as evaluated by laser Doppler blood flowmetry. The degree of revascularization was similar in the two groups
of ischemic mice injected with iPS cell-derived Flk-1+ cells from young or old mice. Transplantation of Flk-1+ cells from both
young and old murine iPS cells also increased the expression of VEGF, HGF and IGF mRNA in ischemic tissue as compared to
controls. iPS cell-derived Flk-1+ cells differentiated into vascular progenitor cells, and regulated angiogenic vascular
responses both in vitro and in vivo. These properties of iPS cells derived from old mice are essentially the same as those of
iPS cells from young mice, suggesting the functionality of generated iPS cells themselves to be unaffected by aging.
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Introduction

Therapeutic angiogenesis is a novel strategy for treating patients

with severe peripheral arterial disease (PAD), lacking other

options. The aim is to promote angiogenesis. We have performed

therapeutic angiogenesis using autologous bone marrow mononu-

clear cell implantation into the ischemic muscles of patients with

critical limb ischemia (TACT protocol) [1]. However, elderly

patients with very severe PAD undergoing chronic hemodialysis or

with uncontrolled diabetes had poor responses to the TACT

procedure [2]. Recent clinical trials of stem and progenitor cell

treatment have also been disappointing in subjects of advanced

age, although safety has been confirmed [3,4,5,6]. In this regard,

advanced age is associated with decreased stem cell activities,

which might diminish the capacity for tissue regeneration [7].

Therefore, it is necessary to assess the changes that occur in cells

during aging, when considering the ultimate success of these

strategies.

Novel embryonic stem (ES) cell-like pluripotent stem cells, or

‘‘induced pluripotent stem’’ (iPS) cells, were generated from

mouse skin fibroblasts by introduction of four transcriptional

factors [8]. iPS cells could be used repetitively and were capable

of differentiating into various types of cells as needed. It was

reported that various cardiovascular cells were directionally

induced from mouse and human iPS cell-derived fetal liver

kinase-1 positive (Flk-1+) cells in vitro [9,10]. Recently, we

demonstrated direct local implantation of mouse iPS cell-derived

Flk-1+ cells to augment ischemia-induced angiogenesis in a

mouse model [11]. Thus, iPS cells might be applicable to

therapeutic angiogenesis. In the clinical setting, to utilize iPS

cells for therapeutic angiogenesis, it is necessary to establish iPS

cells from elderly patients. Very recently, we successfully

established iPS cells from 21-month-old mice using bone

marrow-derived myeloid cells [12]. However, the effect of aging

on the differentiation capacity of iPS cells into cardiovascular

cells has not been clarified. In the present study, we investigated

whether iPS cells derived from young or old mice had similar

capacities to differentiate into vascular progenitor and mature

cells, and whether these progenitor cells can regulate the

angiogenic process in vivo. We employed a murine hindlimb

model of ischemia-induced angiogenesis. Our observations

indicate iPS cell-derived Flk-1+ cells to differentiate into mature

vascular cells, and to regulate angiogenic vascular responses.
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Materials and Methods

Materials
Allophycocyanin (APC) Biotin conjugated anti-mouse Flk-1,

Anti-Mouse CD144 (VE-cadherin) Biotin, Streptavidin Phycoer-

ythrin (PE) and Streptavidin Fluorescein isothiocyanate (FITC)

were purchased from eBioscience (San Diego, CA, USA). APC

streptavidin was purchased from BD Pharmingen (San Diego, CA,

USA). Streptavidin microbeads were purchased from Miltenyi

Biotec (Bergisch Gladbach, Germany). Monoclonal anti-mouse a-

smooth muscle actin (a-SMA) antibody and PKH26 Red

Fluorescent Cell Linker Kit were purchased from SIGMA-

ALDRICH (St Louis, MO, USA). Alexa FluorH 555 conjugated

goat anti-mouse IgG was purchased from Molecular probes

(Invitrogen, Carlsbad, CA, USA).

Cell Culture
A mouse iPS cell line, MEF (iPS cells derived from young mice),

was generated from C57/BL6 mouse embryonic fibroblasts by

introducing four factors (Oct3/4, Sox2, Klf4 and the c-Myc

mutant c-Myc(T58A)) using retroviral vectors in our laboratory

[12]. A mouse iPS cell line, BM21 (iPS cells derived from old

mice), was generated from dendritic cells of 21-month-old C57/

BL6 mice by introducing the four aforementioned factors using

retroviral vectors. These iPS cells harbor the enhanced green

fluorescent protein (EGFP) downstream from the CAG promoter.

iPS cells were maintained in Dulbecco’s modified Eagle’s medium

(Invitrogen) containing 10% Knockout Serum Replacement, 1%

fetal bovine serum (FBS), nonessential amino acids, 5.5 mmol/L

2-mercaptoethanol, 50 U/mL penicillin, and 50 mg/mL strepto-

mycin on feeder layers of mytomycin-C–treated mouse embryonic

fibroblast cells stably releasing leukemia inhibitory factor (LIF).

Cell differentiation was induced as described previously [9]. In

brief, differentiation medium (DM) (a-minimum essential medium

supplemented with 10% FBS and 561025 mol/L 2-mercaptoeth-

anol) was used for iPS cell differentiation. Fetal liver kinase-1

positive (Flk-1+) mesodermal cells were induced by cultivating iPS

cells (plated at 1.76103 cells/cm2) in DM in the absence of LIF on

type IV collagen-coated dishes (ASAHI GLASS CO., LTD,

Tokyo, Japan).

Cultured cells were harvested after induction of undifferentiated

iPS cells cultivated in DM on type IV collagen-coated dishes.

Induced cells were stained with biotin conjugated anti-mouse Flk-1

antibody followed by APC streptavidin secondary antibody. Flk-1+

cells were incubated with streptavidin microbeads, and then sorted

with a magnetic cell separation system (MACS). Purity was

confirmed by flow cytometric analysis performed using the

fluorescence-activated-cell sorter (FACS) instrument (BD FACS

Canto, Becton Dickinson, NJ, USA) and Cell Quest software (BD

Biosciences).

Purified Flk-1+ cells were also re-plated on type IV collagen-

coated dishes. Five to seven days later, re-plated Flk-1+ cells had

differentiated into mature vascular cells. Differentiated cells were

assessed by staining with VE-cadherin or a-SMA.

The formation of vascular-like structures by iPS-derived Flk-

1+ cells on growth factor-reduced Matrigel (BD Biosciences) was

induced according to the manufacturer’s instructions. iPS-

derived Flk-1+ cells were seeded onto Matrigel coated plates

at 36104 cells/cm2 in EBM-2 medium containing EGM-2

(LONZA, Basel, Switzerland), and incubated at 37uC for 24 h.

Network formation was assessed using an inverted phase

contrast microscope (Nikon, Tokyo, Japan). The degree of tube

formation was quantified by measuring the length of tubes in

five randomly low power fields. In some experiments, incorpo-

ration of iPS-derived Flk-1+ cells was assessed by seeding human

umbilical vein endothelial cells (HUVEC) and PKH26 Red

Fluorescent Cell Linker Kit- or GFP-labeled iPS-derived Flk-1+

cells at a ratio of 1:1 on Matrigel. Network formation was

assessed using a fluorescence microscope to assess the frequency

of labeled cell incorporation.

For detection of cell senescence, we stained for senescence-

associated b-galactosidase (SA b-Gal) using a Senescence

Detection kit (Bio Vision, Mountain View, CA, USA) according

to the manufacturer’s instructions. Briefly, cells of interest were

grown to 80% confluence in culture dishes. Cells were washed

twice with phosphate buffered saline (PBS) and then fixed with

4% paraformaldehyde. Fixed cells were cultured with staining

solution in an incubator (37uC, 5% CO2) for 24 hours. Stained

cells were stored in 70% glycerol and observed under a

microscope. Blue, especially around the nuclear area, indicated

senescent cells.

Mouse Model of Hindlimb Ischemia and Cell
Transplantation

Male KSN athymic nude mice were used for this study. Study

protocols were approved by the Institutional Animal Care and Use

Committee of Nagoya University School of Medicine. Mice, ages

8 to 12 weeks or ages 18 to 20 weeks, were subjected to operative

unilateral hindlimb ischemia under anesthesia with sodium

pentobarbital (50 mg/kg i.p.) as described previously [13]. Flk-1+

cells (26105 cells/mouse) or PBS as a control were injected into six

different sites of adductor muscles in the ischemic limb after

surgery. In other experiments, sorted Flk1+ cells were labeled with

a PKH26 Red Fluorescent Cell Linker Kit, and then injected into

ischemic adductor muscles.

We measured the ratio of the ischemic to normal hindlimb

blood flow using laser Doppler blood flowmetry (LDBF) (Moor

LDI, Moor Instrument Inc., Devon, UK) as described previously

[13,14,15]. To minimize variations due to ambient light, blood

flow was expressed as the ischemic to normal hindlimb LDBF

ratio.

Capillary density in adductor muscles was analyzed to obtain

specific evidence of vascularity at the microcirculatory level [14].

Tissue samples were obtained from the ischemic thigh adductor

skeletal muscles on postoperative day 28. Tissue slices (8 mm in

thickness) were prepared and stained with VE-cadherin followed

by treatment with streptavidin PE or FITC-conjugated secondary

antibody to detect VE-cadherin. The signals were detected and

analyzed by fluorescence microscopy. Fifteen randomly selected

microscopic fields from 2 different sections in each tissue block

were examined for the presence of capillary endothelial cells, and

the capillary muscle fiber ratio was expressed as the ratio of the

number of capillaries to the number of muscle fibers per high-

power field (6400).

Total RNA from adductor muscles was extracted using the

FastRNA Pro Green Kit. (MP Biomedicals, OH, USA). Reverse

transcription was performed with 1 mg of RNA, random primers

and MMLV reverse transcriptase (ReverTraAce-a TOYOBO,

Osaka, Japan). Quantitative real-time PCR was performed with

the LightCyclerT System (Roche Diagnostics, IN, USA) and

QuantiTect SYBR Green PCR kit. Primers: mouse SIRT; sense

59-AGTTCCAGCCGTCTCTGTGT-39 and antisense 59-

CTCCACGAACAGCTTCACAA -39, mouse ARF; sense 59-

ATCTGGAGCAGCATGGARTC -39 and antisense 59-

CGAATCTGCACCGTAGTTGA -39, mouse p21; sense 59-

GTACTTCCTCTGCCCTGCTG -39 and antisense 59- CA-

GAAGACCAATCTGCGCTT -39, mouse VEGF; sense 59-

CAGGCTGCTGTAACGATGAA-39 and antisense 59- GCATT-
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CACATCTGCTGTGCT-39, mouse HGF; sense 59- GGCAGC-

TATAAAGGGACGGTA-39 and antisense 59-

CTTCTTCCCCTCGAGGATTT-39, mouse IGF; sense 59-

CTACCAAAATGACCGCACCT-39 and antisense 59- CAC-

GAACTGAAGAGCATCCA-39, and mouse GAPDH; sense, 59-

AACTTTGGCATTGTGGAAGG -39 and antisense, 59-ACA-

CATTGGGGGTAGGAACA -39.

Statistical Analysis
All data were obtained from at least three independent

experiments. Student t test for comparison between two groups

was performed. One-way ANOVA test for comparison among

multiple groups was performed. Repeated-measures ANOVA test

was used for the blood flow data analyses. All analyses were

performed using PASW Statistics18 software (SPSS Inc, IL,

Figure 1. Differentiation into mature vascular cells in vitro. Sorted Flk-1+ cells derived from young and old iPS cells successfully differentiated
into (A) mature endothelial cells (VE-cadherin positive) and (B) smooth muscle cells (a-SMA positive) 5 to 7 days after re-culture in vitro. Total nuclei
were identified by DAPI counterstaining (blue). (C) Representative images of FACS analysis in differentiated cells (upper). FACS analysis was
performed 5 to 7 days after re-plating of sorted Flk-1+ cells derived from young and old iPS cells on type IV collagen-coated dishes. Quantitative
analysis of a-SMA, VE-cadherin and Ki-67 positive cells in differentiated cells (n = 5 in each group) (lower).
doi:10.1371/journal.pone.0039562.g001
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USA). P,0.05 was considered significant. All data are shown as

means 6 S.E.

Results

Differentiation of Flk-1+ Cells Derived from iPS Cells from
Young and old Mice into Vascular Cells

Undifferentiated iPS cells from young and old mice were

cultured on collagen IV-coated dishes with DM as described

previously [9]. We assessed the time course of Flk-1+ cell

appearance by FACS analysis. Flk-1+ cells were induced from

iPS cells, derived from young and old mice, after 3.5 days of

culture, and peaked at day 7.5 (Figure S1A). The time courses of

iPS cells from old mice were comparable to those of iPS cells from

young mice. Based on these findings, we sorted Flk-1+ cells derived

from iPS cells from young and old mice by MACS at day 7.5 of

differentiation. FACS analysis of MACS-sorted positive cells

showed more than 90% of these cells to be positive for Flk-1

(Figure S1B).

We induced mature endothelial cells and smooth muscle cells

from Flk1+ cells. Sorted Flk1+ cells were re-cultured on type IV

collagen–coated dishes and cultivated for 5 to 7 days with medium

containing 10% FCS. Immunofluorescence analysis revealed that

VE-cadherin+ endothelial cells and a-SMA+ smooth muscle cells

were selectively induced from Flk1+ cells derived from iPS cells

obtained from both young and old mice (Figure 1A and B). We

also assessed the expressions of VE-cadherin, a-SMA and Ki67 by

FACS analysis. Representative data of FACS analysis are shown in

Figure 1C. Quantitative analyses revealed that mature vascular

cells from young and old murine iPS cells accounted for 90% of a-

SMA positive smooth muscle cells and 4–6% of VE-cadherin

positive endothelial cells (Figure 1C). FACS analysis also showed

nearly all of these populations in both young and old murine iPS

cells to be positive for a proliferation marker, Ki67 (Figure 1C).

We examined whether young and old murine iPS cell-derived

Flk-1+ cells formed vascular-like structures by themselves.

Figure 2A shows representative photographs of cultured Flk-1+

cells from young and old murine iPS cells on a Matrigel matrix.

The formation of network structures was successful, when Flk-1+

cells from both young and old murine iPS cells were cultured 3-

dimensionally. Quantitative analyses of network formation showed

no significant difference between young and old murine Flk-1+

Figure 2. 3D culture of sorted Flk-1+ cells in vitro. (A) Representative images of tube formation assay in vitro (upper). Sorted Flk-1+ cells derived
from young and old iPS cells were cultured alone for 24 hours on Matrigel. Quantitative analysis of network projections formed on Matrigel for each
experimental group (lower) (n = 3 in each group). (B) Representative images of HUVEC co-cultured with Flk-1+ cells (upper). Sorted Flk-1+ cells derived
from young and old iPS cells were co-cultured with HUVEC for 24 hours on Matrigel. Flk-1+ cells derived from young and old iPS cells (white arrow
head) were confirmed. The bar indicates 200 mm. Quantitative analysis of the number of Flk-1+ cells derived from young and old iPS cells into HUVEC
on Matrigel (lower) (n = 3 in each group).
doi:10.1371/journal.pone.0039562.g002
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cells (Figure 2A). We also assessed Flk-1+ cell incorporation by

seeding HUVEC and young or old murine iPS cells on Matrigel

(Figure 2B). Incorporation of Flk-1+ cells, derived from iPS cells

from young and old mice into network structures, was confirmed.

There is no difference in the number of Flk-1+ cell incorporation

into HUVEC on Matrigel in between two groups (Figure 2B).

Collectively, iPS cells derived from old mice differentiated into

vascular cells with a time course and efficacy similar to those of iPS

cells from young mice in vitro.

Expansion and Senescence of Flk-1+ Cells Derived from
iPS Cells from Young and Old Mice

We next assessed expansion and cellular senescence in Flk-1+

cells from young and old murine iPS cells. Figure 3A shows

representative photographs of SA-b-Gal staining in undifferenti-

ated and differentiated iPS cells. Under undifferentiated condi-

tions, no expression of SA-b-Gal was detected in young and old

murine iPS cells. Flk-1+ cells from iPS cells derived from young

mice exhibited a robust growth rate, and less than 1% of these cells

stained positive for SA-b-Gal for at least 8 passages (Figure 3B). In

contrast, Flk-1+ cells from iPS cells derived from old mice grew

very slowly, and 10–15% of these cells already stained positive for

SA-b-Gal within 1–2 passages (Figure 3B). More than 20% of the

cells expressed SA-b-Gal at passage 8, and then stopped

proliferating (Figure 3B). Senescence associated genes such as

ARF and p21 are contributed to the process of iPS reprogram-

ming and senescence [16] Therefore, we assessed the mRNA levels

of SIRT, ARF and p21 in undifferentiated and differentiated iPS

cells. Under undifferentiated conditions, the mRNA levels of

SIRT, ARF and p21 were similar in young and old murine iPS

cells (Figure 3 C, D and E). However, SIRT mRNA levels in Flk-

1+ cells from iPS cells derived from old mice were significantly

lower than those from young mice in both phase of early and late

passage (Figure 3 C). ARF and p21 levels in Flk-1+ cells from iPS

cells derived from old mice were higher than those from young

mice in both phase of early and late passage (Figure 3 D and E).

Thus, Flk-1+ cells from old murine iPS cells show senescence in the

early growth phase.

Augmentation of Ischemia-induced Angiogenesis by Flk-
1+ Cells Derived from iPS Cells from Young and old Mice

We examined whether implantation of Flk-1+ cells from iPS

cells derived from young and old mice can augment ischemia-

induced angiogenesis using a murine model of hindlimb ischemia

in vivo. All mice survived the surgery and appeared healthy during

the follow-up period. Body weight and blood pressure did not

Figure 3. Senescence assay in vitro. (A) Undifferentiated and differentiated iPS cells were stained with a senescence detection kit to detect
senescence associated-b-galactosidase (SA-b-Gal) around the nuclear area. (B) Quantitative analysis of the number of SA-b-Gal positive cells in
undifferentiated and differentiated iPS cells. Expression of (C) SIRT and senescence associated genes such as (D) ARF and (E) p21 in Flk-1+ cells from
young and old murine iPS cells determined by real-time PCR. SIRT, ARF and p21 mRNA levels were expressed relative to GAPDH mRNA levels (n = 3 in
each group).
doi:10.1371/journal.pone.0039562.g003
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Figure 4. Effects of cell transplantation on blood flow recovery in the ischemic hindlimb. (A) Representative LDBF images. A low
perfusion signal (dark blue) was observed in the ischemic left hindlimb of control mice (PBS), whereas high perfusion signals (white to red) were
detected in the ischemic left hindlimb of mice transplanted with Flk-1+ cells derived from young and old mice (26105 cells) on postoperative days 3, 7

iPS Cells and Angiogenic Activities
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differ among the groups. Figure 4A shows representative LDBF

images of hindlimb blood flow immediately after the ischemic

surgery and at different time points thereafter. In control mice,

hindlimb perfusion decreased precipitously after surgery, rose to

20–30% of that in the non-ischemic limb by day 3, and then

increased to 40–50% of the non-ischemic limb value by day 14. A

greater degree of blood perfusion was observed in the ischemic

limbs of mice transplanted with Flk-1+ cells derived from young

and old mice as compared to the control group (Figure 4B). It is

noteworthy that augmentation of blood flow was accelerated by

transplantation of Flk-1+ cells, and that the degrees of augmen-

tation were similar in animals receiving cells derived from young

and old mice.

To further investigate the extent of angiogenesis at the

microcirculatory level, capillary density was also measured in

histological sections harvested from the ischemic adductor muscle.

Figure 4C shows a quantitative analysis revealing that, on

postoperative day 14, transplantation of Flk-1+ cells derived from

iPS cells from both young and old mice significantly increased

capillary density in ischemic muscle as compared to controls. The

capillary density after transplantation of old murine Flk-1+ cells

was similar to that after transplantation of young murine Flk-1+

cells.

We next investigated whether transplantation of Flk-1+ cells

stimulated the expression of angiogenic factors such as VEGF,

HGF and IGF in ischemic hindlimb tissues. At postoperative day

7, VEGF, HGF and IGF mRNA levels were increased in mice

transplanted either young or old murine Flk-1+ cells as compared

to the control. The mRNA levels of VEGF, HGF and IGF after

cell transplantation did not differ between young and old murine

Flk-1+ cells (Figure 4D, E and F).

Furthermore, we examined whether implantation of Flk-1+ cells

from iPS cells derived from young and old mice can augment

ischemia-induced angiogenesis using different aged mice (18 to 20

weeks of age), because the reprogramming might be enhanced

under the better environment such as injection into young mice.

The degrees of augmentation were similar in mice, at the ages of

18 to 20 weeks, receiving cells derived from young and old mice

(Figure S2A and B).

Finally, we examined whether in vivo implanted Flk-1+ cells from

young and old murine iPS cells can differentiate into endothelial

cells in the chronic phase. PKH26 labeled Flk-1+ cells from young

iPS cells (red) and EGFP labeled Flk-1+ cells from old iPS cells

(green) were found in the ischemic area at postoperative day 21,

and some of these cells seemed to be incorporated into VE-

cadherin+ endothelial cells (Figure 5A). There were no significant

differences in the proportion of these cells after cell transplantation

between young and old murine Flk-1+ cells (Figure 5B). Further-

more, we detected no tumor formation in mice transplanted with

Flk-1+ cells from young or older mice throughout the 40-day

observation period (n = 3/each group, data not shown).

Discussion

Major findings of the present study are as follows: (1) Flk-1+ cells

derived from iPS cells obtained from old mice differentiated into

mature vascular cells with a time course and efficacy similar to

those of young murine iPS cells. (2) Flk-1+ cells from old murine

iPS cells showed early cellular senescence. (3) The degree of

revascularization with transplantation of Flk-1+ cells was similar

between young and old murine iPS cells. (4) Implanted Flk-1+ cells

derived from iPS cells obtained from young and old mice both

differentiated into endothelial cells in the chronic phase in vivo.

With the proportion of people over age 60 years growing rapidly

in industrial countries, the need for developing regenerative

medicine strategies for the elderly population is a high priority [7].

However, lack of a fundamental understanding of the intrinsic

changes that occur in cells during aging is one of the hurdles to the

development of regenerative medicine strategies that will prove

effective in older people. In experimental studies, a diminished

responsiveness of tissue-specific stem and progenitor cells with

advancing age leads to declining tissue regenerative capacity

[17,18,19,20]. Age-related declines in progenitor cell activity can

be ameliorated by a ‘‘youthful’’ environment, but not an ‘‘elderly’’

environment [21]. In the clinical setting, iPS cells for personalized

cell therapy require the establishment of iPS cell lines from

relatively old autologous tissue, when we utilize iPS cells as a cell

source for regenerative medicine. However, comparative angio-

genic activities of iPS cells derived from young and old tissues have

not been fully clarified. We established iPS cells from 21-month-

old mice using bone marrow-derived myeloid cells [12]. In the

present study, we compared angiogenic activities of iPS cells

derived from young and old mice. Both young and old murine iPS

cells differentiated into cardiovascular progenitor cells, showing

equal capacity, and continued to differentiate into mature vascular

cells.

We previously showed that direct local implantation of mouse

iPS cell-derived Flk-1+ cells augmented VEGF expression in

ischemic tissues [11]. In the present study, we confirmed that

VEGF, HGF and IGF mRNA levels in ischemic tissues were

increased in mice transplanted either young or old murine Flk-1+

cells. Transplanted Flk-1+ cells from both young and old murine

iPS cells were engrafted into the muscles with a limited area, and

some cells were still present at 3 weeks after the transplantation.

However, the proportions of Flk-1+ cells from both young and old

murine at 3 weeks after the transplantation were very low.

Collectively, major mechanisms of iPS cell therapies are most

likely mediated through angiogenic cytokines released from host

skeletal myoblasts rather than by a direct differentiation of

transplanted cells into mature endothelial cells.

A recent study using heterochromic parabiotic parings between

young and old mice showed that circulating systemic factors from

a young mouse could restore muscle tissue regeneration after

injury in aged mice [21]. Circulating factors from young mice also

increased the engraftment potential of endogenous hematopoietic

stem cells in the old mice in the parabiosis model. Thus, for a stem

cell transplantation-based strategy, one important consideration is

the age of the donor tissue and the recipient environment. In the

present study, the degree of augmentation of revascularization

after ischemic injury with transplantation of Flk-1+ cells was

similar for young and old murine iPS cells. Recently, it was

reported that telomerase has a prolonged half-life in iPS cells [22],

whereas the progressive shortening of telomeres is an intrinsic

and 14. (B) Quantitative analysis of the ischemic to non-ischemic limb LDBF ratio on pre- (Day-1) and postoperative days 0, 3, 7 and 14 (Control: n = 8,
Young: n = 4, Old: n = 4). *p,0.05 for mice injected with Flk1+ cells (26105) vs. control mice. (C) Capillary density analysis. Capillary density was
determined at day 21 after surgery. Collected ischemic hindlimb muscle was stained with VE-cadherin. Capillary density was calculated as below. The
number of VE-cadherin positive cells per field was divided by the number of muscle fibers per field (n = 5 in each group). (D) VEGF, HGF and IGF
synthesis in ischemic tissue determined by real-time PCR at day 7 after surgery following transplantation of Flk-1+ cells or PBS. VEGF, HGF or IGF
mRNA levels were expressed relative to GAPDH mRNA levels (n = 5 in each group). N.S. = no significant difference between groups.
doi:10.1371/journal.pone.0039562.g004
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change that ultimately restricts the number of divisions [23].

Collectively, iPS cells might resolve intrinsic aging problems such

as telomere shortening, and even iPS cells derived from old mice

retain their capacity to become vascular progenitor cells.

It was recently shown that human iPS cells established from

adults are capable of differentiating into hemangioblasts, but

efficiency is dramatically decreased and early senescence was

observed [24]. In the current study, Flk-1+ cells derived from iPS

cells obtained from old mice showed senescence in the early

growth phase. Chin et al [25] conducted a genome-wide study to

compare iPS cells with ES cells. Their comparison of expression

patterns indicated that in the early passage iPS cell lines are

incompletely reset to an ES cell-like expression pattern, and even

late passage differences between ES cells and iPS cells persist and

reflect an imperfect resetting of somatic cell expression to an ES

cell-like state. Thus, these differences in gene expression may lead

to excessive senescence in iPS cells derived from old mice. It is

necessary to carefully monitor the possibility of early senescence,

when we utilize iPS cells from elderly subjects. Future studies will

be required to explore the factors modifying old iPS cells and their

role in possibly enhancing the success of cell therapies in elderly

patients.

Previously, we reported the differentiation capacities of young

and old murine iPS cells into myeloid lineage [12]. The two iPS

cell lines had similar biological characteristics and showed similar

patterns in differentiation into myeloid lineage as well as vascular

cell. However, the origins of donor cells used for inducing iPS from

young and old mice were different (embryonic fibroblasts vs.

dendritic cells). Epigenetic memories may be specifically related to

their tissue origins beyond the age differences. Therefore, detailed

studies using various experimental models are required to better

understand the effect of aging on the differentiation capacity of iPS

cells.

This study has several limitations. First, it is unclear how the

secretion of angiogenic cytokines is induced and maintained in

skeletal myoblasts by the cell implantation. We assessed the

expression of VEGF in Flk-1+ cells in vitro using Proteome Profiler

array. Little or no expression of VEGF was detected in iPS cell-

derived Flk-1+ cells (data not shown). Thus, angiogenic cytokines

such as VEGF might not release from implanted iPS cell-derived

Flk-1+ cells. Detailed biochemical studies are required to

understand the precise mechanisms of the secretion of angiogenic

cytokines by the iPS cell therapies. Second, the relationship

between endogenous endothelial progenitor cells (EPCs) and Flk-

1+ cells from iPS cell has not been clarified. The induction of EPCs

into the ischemic limbs might be accelerated by the implantation

of iPS cell-derived Flk-1+ cells.

In conclusion, mouse iPS cell-derived Flk-1+ cells differentiated

into vascular cells, and regulated angiogenic vascular responses

both in vitro and in vivo. These properties of old murine iPS cells are

largely comparable to those of iPS cells from young mice, which

suggests the functionality of the generated iPS cells themselves to

be unaffected by aging. Our current results indicate that iPS cells

are potentially good alternatives to bone marrow or circulating

progenitor cells for angiogenesis induction.

Supporting Information

Figure S1 Time course of differentiating Flk-1 positive
cells. (A) The expression of Flk-1 peaked at Day7.5 after the

Figure 5. Tracking Flk-1+ cells during the chronic phase in vivo. (A) PKH26 labeled Flk-1+ cells from young iPS cells (red) and EGFP labeled Flk-
1+ cells from old iPS cells (green) in ischemic muscle on postoperative day 21. Double fluorescence staining of VE-cadherin and labeled Flk-1+ cells in
ischemic muscle. Co-localization is indicated by yellow in the merged images (magnification, 6200; bar indicates 200 mm). Total nuclei was identified
by DAPI counterstaining (blue). (B) Quantitative analysis of the number of implanted Flk-1+ cells from young and old murine iPS cells in the chronic
phase (n = 4 in each group).
doi:10.1371/journal.pone.0039562.g005
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completion of differentiation. The time course and average ratio of

emerging Flk-1+ cells were similar for old (BM21) and young

(MEF) iPS cells. N.S. indicates no significant difference. (B)

Purification of Flk-1+ cells from iPS cells. FACS analysis of pre and

post MACS-sorted Flk-1+ cells at day 7.5. More than 90% of

enriched cells were positive for Flk-1. Old iPS cells were

consistently positive for GFP.

(TIF)

Figure S2 Effects of cell transplantation on blood flow
recovery in the ischemic hindlimb of aged mice. (A)

Representative LDBF images. A low perfusion signal (dark blue)

was observed in the ischemic left hindlimb of control mice (PBS),

whereas high perfusion signals (white to red) were detected in the

ischemic left hindlimb of mice transplanted with Flk-1+ cells

derived from young and old mice (26105 cells) on postoperative

days 3, 7 and 14. (B) Quantitative analysis of the ischemic to non-

ischemic limb LDBF ratio on pre- (Day-1) and postoperative days

0, 3, 7 and 14 (Control: n = 8, Young: n = 4, Old: n = 4). *p,0.05

for mice injected with Flk1+ cells (26105) vs. control mice.

(TIF)
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