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When applied to a branching network, Murray’s
law states that the optimal branching of vascular
networks is achieved when the cube of the parent
channel radius is equal to the sum of the cubes of
the daughter channel radii. It is considered integral
to understanding biological networks and for the
biomimetic design of artificial fluidic systems.
However, despite its ubiquity, we demonstrate
that Murray’s law is only optimal (i.e. maximizes
flow conductance per unit volume) for symmetric
branching, where the local optimization of each
individual channel corresponds to the global
optimum of the network as a whole. In this paper,
we present a generalized law that is valid for
asymmetric branching, for any cross-sectional shape,
and for a range of fluidic models. We verify our
analytical solutions with the numerical optimization
of a bifurcating fluidic network for the examples of
laminar, turbulent and non-Newtonian fluid flows.

1. Introduction
The optimal branching of fluidic networks has been the
subject of numerous studies owing to its importance in
understanding the behaviour of biological vessels and
for the biomimetic design of artificial systems. Much of
the research stems from Murray’s law [1], who posited
that there were two main energy requirements for blood
flow through a cylindrical vessel of radius R: (i) the
energy required to overcome viscous drag and drive
the flow and (ii) the energy required to metabolically
maintain the fluid and vessel. Assuming the flow
to be laminar, Newtonian, steady, incompressible and
fully developed, Murray used the Hagen–Poiseuille
equation to model the driving power requirement
(i.e. the driving power is proportional to R−4), and
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assumed that the maintenance power was proportional to the volume of the channel (i.e.
proportional to R2). Applying the principle of minimum work to the total power requirement,
Murray surmised that in an optimized cylindrical channel, the volumetric flow rate Q is
proportional to R3. By applying mass conservation over a branching network, and assuming
that local pressure losses through the junction (owing to bends and channel contractions) are
negligible compared with the pressure losses over the channel lengths, this principle is most
commonly expressed as a power law between a parent channel and N daughter channel branches

R3
p =

N∑
i=1

R3
di

, (1.1)

where the subscripts p and di denote the parent and ith daughter, respectively. Although
originally targeting blood transport through the cardiovascular system [2–9], experimental data
have shown Murray’s law to be a decent approximation for a number of other biological
networks, e.g. in the bronchial trees of humans and dogs [10–12]; in the chick embryo [13], and in
the leaf veins of plants [14–16].

Whole blood (plasma and cells) is a non-Newtonian fluid that exhibits shear-thinning
behaviour, i.e. its viscosity decreases with increased shear-strain rate. To more accurately model
vascular networks, Murray’s law has been applied to non-Newtonian fluids [17,18] using the
popular power-law fluid model [19,20]. In both studies, it was found that the optimal radius
relation is unaffected by shear-thinning or shear-thickening fluid behaviour, and equation (1.1)
is maintained for the whole range of non-Newtonian fluids. Murray’s law has also been applied
to turbulent flows [21–23], which can be found in the upper airways of the lung [24] and, under
some circumstances, in blood flow through the aorta [25], as well as in a number of hydraulic and
pneumatic civil engineering applications. For fully rough-wall turbulent flow, the flow rate was
found to be proportional to R7/3, leading to the relation

R7/3
p =

N∑
i=1

R7/3
di

, (1.2)

for branching networks.
While Murray’s law has been most often applied to circular or elliptical [18] cross sections

(owing to the shape of biological networks), optimized branching is also useful for the design
of artificial systems [5], such as for fuel cells [26] or heat exchangers [27,28], which are often
constrained to certain shapes by manufacturing procedures. To this end, Murray’s law has been
adapted for networks of rectangular and trapezoidal cross sections [29].

Although originally derived from the principle of minimum work, it has been noted that
the application of other optimization principles results in the same relationship between flow
rate and channel radius: minimizing the total mass of the channel [22], minimizing volume
for a constant pressure drop and flow rate [30], minimizing pumping power [31], maintaining
a constant shear stress in all channels [32], and minimizing flow resistance for a constant
volume [5,23,33].

However, despite many developments to Murray’s law, we submit that it is, in fact, suboptimal
for asymmetric branching. In this paper, we derive a generalized law that is applicable to
symmetric and asymmetric branching, for any cross-sectional shape, and for a range of fluidic
models (e.g. Newtonian and non-Newtonian, laminar and turbulent).

2. Analytical solutions
The conditions for optimal branching can be generalized as a maximization of flow conductance
per unit volume through each branch of the network, for a variety of constraint combinations.
As with Murray’s law, we assume the flow to be steady and fully developed. For a two-level
network (consisting of a single parent channel branching into multiple daughter channels), this
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can be expressed as

arg maxΓj∈[0,∞]

[
Q

�PV

]
subject to fixed

⎧⎪⎪⎨
⎪⎪⎩

Q, �P

V, �P

V, Q,

(2.1)

where Q is the volumetric flow rate through the parent channel, �P = {�Pi}N
i=1 is the set of

pressure drops �Pi over each of the N network branches—from the inlet of the parent to the
outlet of the corresponding daughter—V is the network volume, and

Γj =
Adj

Ap
(2.2)

is the jth daughter–parent cross-sectional area ratio. Note, for each constraint option, two
parameters are fixed and the third parameter is optimized (volume minimization, flow-rate
maximization and pressure-drop minimization, respectively). Therefore, all three constraint
options lead to an identical optimal relation because

dV
dΓj

= dQ
dΓj

= d(�P)
dΓj

= 0 (2.3)

regardless of the constraints chosen. Note, noting that the last term means that d(�Pi)/dΓj = 0
for all i. For our optimization, we assume that the channel lengths L are large compared with the
size of the parent–daughters junction, so that (i) the localized pressure losses at the junction are
negligible compared with the pressure drops over individual channels (as in Murray’s law), and
(ii) the volume of the network can be considered to be the sum of the channel volumes

V = ApLp +
N∑

i=1

Adi Ldi . (2.4)

If we consider the optimization of the jth daughter channel, then inserting equation (2.4) into the
fitness function of equation (2.1), and noting equation (2.3), gives

d
dΓj

(
�PV

Q

)
= Lp

dAp

dΓj
+

N∑
i=1

Ldi

dAdi

dΓj
= 0 (2.5)

The pressure drop over the parent and each of the i daughter channels can be expressed in terms
of the volumetric flow rate

�Pp = QLpkp (2.6)

and
�Pdi = ΨiQLdi kdi , (2.7)

where Ψi = Qdi/Q is the fraction of the total flow rate taken by the ith daughter channel and k is
flow resistance per unit length, e.g. kp = �Pp/(QLp). The pressure drop over each network branch
�Pi = �Pp + �Pdi is then

�Pi = Q(Lpkp + ΨiLdi kdi ). (2.8)

Differentiating equation (2.8) with respect to Γj, and noting equation (2.3), gives

Lp
dkp

dΓj
+ ΨiLdi

dkdi

dΓj
= 0. (2.9)

Substituting equation (2.9) into equation (2.5), via the chain rule, gives our generalized optimal
area ratio

dA
dk

∣∣∣∣
p

=
N∑

i=1

1
Ψi

dA
dk

∣∣∣∣∣
di

, (2.10)

which, for brevity, will be referred to as the generalized law to distinguish it from Murray’s law.
It should be noted that the subscript j is not present in equation (2.10), so this relationship is not
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specific to a particular daughter channel; it relates the properties of all daughter channels to that
of the parent.

This generalized law is valid for any cross-sectional shape, for any fluid (e.g. non-Newtonian)
and for any Reynolds number (e.g. for turbulent flow). It is also valid for flows through nanoscale
networks where the fluid is dominated by velocity slip at the walls; however, in the paper, we
restrict our attention to the continuum-flow limit. We now consider some important cases where
A can be expressed easily as an analytical function of k.

(a) Laminar flow
The steady-state incompressible Navier–Stokes momentum equation describes laminar flow
through a long channel with an arbitrary cross-sectional shape, i.e.

�P
L

= −μ∇2u, (2.11)

where μ is the dynamic viscosity (constant for a Newtonian fluid) and u is the streamwise channel
velocity. This can be non-dimensionalized using �P/L, μ and cross-sectional area A, such that

1 = −∇̃2ũ, (2.12)

where

u = ũA
(

�P
L

)
1
μ

; ∇2 = ∇̃2

A
, (2.13)

and tilde denotes a dimensionless quantity or operator. The axes of the cross-sectional plane are
defined as y, z and

y = ỹ
√

A; z = z̃
√

A. (2.14)

Provided the boundary conditions are fixed (which is the case for the continuum-flow limit, where
the no-slip boundary condition applies), the solution of equation (2.12), ũ(ỹ, z̃), is independent of
A, �P, L and μ, and is thus a property of the cross-sectional shape alone. Similarly, so is

S =
∫∫

A
ũ(ỹ, z̃) dỹ dz̃. (2.15)

An expression for the volumetric flow rate is obtained by integrating the fluid momentum over
the cross-sectional area

Q =
∫∫

A
u dy dz. (2.16)

Substitution of equations (2.13)–(2.15) into (2.16) gives the volumetric flow rate through a channel
with an arbitrary cross-sectional shape

Q = A2
(

�P
L

)
S
μ

, (2.17)

and flow resistance per unit length

k = μ

SA2 . (2.18)

It is assumed that the pressure drop over the network is small such that the viscosity and density
are constants for a Newtonian fluid. For cylindrical channels S = 1/(8π ), equation (2.17) becomes
the Hagen–Poiseuille flow rate. If the cross-sectional shape is constant throughout the network,
i.e. S = const., substituting (2.18) into the generalized law (2.10) and cancelling the constant terms
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gives

A3
p =

N∑
i=1

1
Ψi

A3
di

. (2.19)

From equation (2.7), it can be seen that

�Pdi

ΨiLdi kdi

= const. (2.20)

for all daughter channels. Combining equations (2.18) and (2.20) produces the cross-sectional area
relationship between the ith and jth daughter channels

Adi = Adj

√
ΨiΦij

Ψj
, (2.21)

where

Φij =
(�Pdj/Ldj )

(�Pdi/Ldi )
(2.22)

is the pressure-gradient ratio between the jth and ith daughter channels. Note that, because the
shape property S cancels in equation (2.21), the generalized law will be independent of the cross-
sectional shape of the channels. Substituting equation (2.21) into equation (2.19) and rearranging
for Γj as defined by equation (2.2) gives

Γj =
√

Ψj

[ N∑
i=1

Φij

√
ΨiΦij

]−1/3

. (2.23)

Equation (2.23) relates the area of the parent channel to the area of the jth daughter channel in an
optimized two-level network of laminar flow. It is valid for any cross-sectional shape, provided
the shape is constant through the network. Equation (2.23) is only equivalent to Murray’s law
(which is Γj = Ψ

2/3
j when posed in terms of an area ratio) if the daughter channels branch

symmetrically, i.e. Ψi = Ψj = 1/N and Φij = 1. By inserting these constraints into equation (2.23),
the symmetric generalized law for laminar flow is

Γ = N−2/3. (2.24)

This means that for symmetric branching, Murray’s law is valid for any cross-sectional shape,
not just circles. The reason Murray’s law produces a suboptimal result for asymmetric branching
is that it was derived to optimize a single channel in isolation. However, as shown above (and
verified later), for asymmetric branching, the global optimum is not the same as the optimum
for each channel considered separately. One important reason for this is that the result of
Murray’s single-channel optimization (Q ∝ R3) is independent of the pressure drop; so when
applied to a branching network, the relative pressure drops over the daughter channels are not
considered, and the optimization is under-constrained. Murray’s original principle, over time, has
been misinterpreted as a general branching law (for symmetric and asymmetric configurations),
leading to the prevalence of the incorrect form shown in equation (1.1). This misinterpretation has
endured in subsequent literature regarding turbulent flow [21] and non-Newtonian fluids [17,18],
as we shall now demonstrate.

(b) Turbulent flow
Turbulent flow is described by the phenomenological Darcy–Weisbach equation, which relates
the pressure drop to the mean velocity for an incompressible fluid in a channel of arbitrary cross-
sectional shape

�P = fLū2

2D
, (2.25)
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where f is the Darcy friction factor, ū is the mean streamwise velocity, D = 4A/P is the hydraulic
diameter, and P is the wetted perimeter. Note that equation (2.25) is applicable to gravity-driven
open channels, e.g. rivers, as well as closed pipes. In a river, the pressure drop is a function of the
channel slope [23]. Making the substitutions R= √

A/P (which is a property of the cross-sectional
shape, like S) and Q = ūA, equation (2.25) can be rewritten as

�P = fLQ2

8RA5/2 , (2.26)

and the flow resistance per unit length k is

k = fQ
8RA5/2 . (2.27)

For turbulent flows, the pressure drop is proportional to the square of the volumetric flow
rate, so k is a function of Q. However, for all constraint options of the optimization described
by equation (2.1), dQ/dΓj = 0. For the sake of deriving an analytical expression comparable to
Murray’s law, we restrict our interest to fully rough-wall turbulent flow, where the friction factor
is also approximately constant1—i.e. it is independent of the Reynolds number and the volumetric
flow rate. In this regime, the main applications are civil engineering hydraulic and pneumatic
systems. So, when the shape is constant through the network, substituting equation (2.27) into
the generalized law (equation (2.10)) gives

A7/2
p =

N∑
i=1

1

Ψ 2
i

A7/2
di

. (2.28)

Combining equations (2.20) and (2.27) produces the cross-sectional area relationship between the
ith and jth daughter channels

Adi = Adj

(
Ψ 2

i Φij

Ψ 2
j

)2/5

. (2.29)

Substituting equation (2.29) into equation (2.28) and rearranging for the daughter–parent area
ratio gives

Γj = Ψ
4/5
j

[ N∑
i=1

Φij(Ψ
2
i Φij)

2/5

]−2/7

. (2.30)

Equation (2.30) relates the area of the parent channel to the area of the jth daughter channel in
an optimized two-level network for turbulent flow. It is valid for channels of any cross-sectional
shape, provided the shape is constant through the network, and is only equivalent to the turbulent
Murray’s law [21] (equation (1.2)) for symmetric branching, i.e. Ψi = Ψj = 1/N and Φij = 1, where
(2.30) reduces to

Γ = N−6/7. (2.31)

This also agrees with the turbulent flow symmetric branching results from previous studies
[22,23]. Comparing equations (2.24) and (2.31) shows that, for symmetric branching, the optimal
daughter–parent area ratio is smaller for turbulent flow than it is for laminar flow.

(c) Non-Newtonian fluid flow
Non-Newtonian fluids are typically characterized by a nonlinear relationship between shear
stress and shear-strain rate. The power-law constitutive model [19,20] is one of the most popular,

1A solution for the whole range of Reynolds numbers can be obtained by using an empirical relation between the friction
factor and the Reynold’s number, e.g. fitting to the Moody diagram.
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enabling a wide range of engineering problems to be solved analytically. For fluid flow through a
circular channel, this is

τ = m
(

du
dr

)n
, (2.32)

where m is the flow consistency index, du/dr is the shear strain rate and n is the flow behaviour
index. This relationship leads to an effective viscosity of

μ = m
(

du
dr

)n−1
. (2.33)

Power-law fluids can be divided into three classes based on their flow behaviour index:
(i) pseudo-plastic (shear thinning) fluids (n < 1) exhibit a decrease in viscosity with increased
shear strain rate; (ii) Newtonian fluids (n = 1) exhibit a constant viscosity; and (iii) dilatant (shear
thickening) fluids (n > 1) exhibit an increase in viscosity with increased shear strain rate. Owing
to the difficulty of applying the power-law model in two dimensions, the optimal branching of
non-Newtonian fluids are considered here only for circular cross sections.

In cylindrical coordinates, the steady-state Navier–Stokes equation for incompressible laminar
flow through a circular cross section is

�P
L

= −1
r

d
dr

(
μr

du
dr

)
, (2.34)

where u is the streamwise velocity (the radial and swirl velocity components are assumed to be
zero). Substituting equation (2.33) into (2.34) and integrating with respect to r gives

�Pr
2L

= −m
(

du
dr

)n
+ C1, (2.35)

where C1 is a constant. At the midpoint of the cross section, when r = 0, the velocity is at a
maximum and thus du/dr = 0; therefore, C1 = 0. Integrating with respect to r once more produces

u = −
(

�P
2Lm

)1/n ( n
n + 1

)
r1+1/n + C2, (2.36)

where C2 is another constant. Inserting the no-slip condition at the wall into equation (2.36)
produces the non-Newtonian velocity profile

u =
(

�PR
2Lm

)1/n ( nR
n + 1

)[
1 −

( r
R

)1+1/n
]

. (2.37)

The volumetric flow rate is obtained by integrating the fluid momentum over the cross-sectional
area, which, in cylindrical coordinates, is

Q =
∫R

0

∫ 2π

0
ur dr dθ , (2.38)

where θ is the azimuth. Substituting equation (2.37) into (2.38) gives

Q =
(

�PR
2Lm

)1/n
(

nπR3

3n + 1

)
. (2.39)

By setting n = 1 in equation (2.39) the Hagen–Poiseuille equation is recovered. Noting that A =
πR2, the flow resistance per unit length is

k =
[

2mπ (n+1)/2
(

3n + 1
n

)n
Qn−1

]
A−(3n+1)/2. (2.40)

For non-Newtonian fluids, there is a nonlinear relationship between the pressure gradient and the
volumetric flow rate, so k is again a function of Q. As explained previously, dQ/dΓj = 0 for all the
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constraint options in the optimization described by equation (2.1), so substituting equation (2.40)
into the asymmetric generalized law (equation (2.10)) gives

A(3n+3)/2
p =

N∑
i=1

(
1

Ψ n
i

)
A(3n+3)/2

di
. (2.41)

Combining equations (2.20) and (2.40) produces the cross-sectional area relationship between the
ith and jth daughter channels

Adi = Adj

[(
Ψi

Ψj

)n

Φij

]2/(3n+1)

. (2.42)

Substituting equation (2.42) into equation (2.41), and rearranging for the daughter–parent area
ratio gives

Γj = Ψ
2n/(3n+1)
j

[ N∑
i=1

Φij(Ψ
n
i Φij)

2/(3n+1)

]−2/(3n+3)

. (2.43)

Equation (2.43) relates the area of the parent channel to the area of the jth daughter channel in an
optimized two-level network of circular channels transporting a non-Newtonian fluid. By setting
n = 1, the asymmetric generalized law for Newtonian fluid flows (equation (2.23)) is retrieved.
Equation (2.43) shows that Γj is dependent on the flow behaviour index n, contrary to results from
previous studies on non-Newtonian branching flows that used Murray’s law [17,18]. The optimal
daughter–parent area ratio is independent of n only for symmetric branching, i.e. Ψi = Ψj = 1/N
and Φij = 1:

Γ = N−2/3. (2.44)

This is exactly the same as equation (2.24) for symmetric Newtonian flows and agrees with
previous studies [17,18] for symmetric non-Newtonian flows. Equation (2.43) can also be used
to determine the optimal area ratio for the theoretical limits of the flow behaviour index n. For the
shear-thickening-fluid limit, when n → ∞, equation (2.43) reduces to

Γj = Ψ
2/3
j . (2.45)

Interestingly, equation (2.45) is independent of the daughter–daughter pressure-gradient ratio Φij
and is exactly the same as Murray’s law for asymmetric branching (1.1) when posed in terms of
areas. For the shear-thinning-fluid limit, when n → 0, equation (2.43) reduces to

Γj =
[ N∑

i=1

Φ3
ij

]−2/3

. (2.46)

For this limit, the optimal area ratio is independent of the daughter flow-rate fraction Ψj, so when
the daughter channel pressure gradients are equal, i.e. Φij = 1, the daughter channel areas are also
equal and Γ = N−2/3.

3. Numerical verification and discussion
In this section, we construct a numerical model of a two-level branching network which adopts
the same fluid-physics assumptions used in Murray’s original paper, its subsequent extensions for
turbulent flows and non-Newtonian fluid flows, and our own generalized law. These are (i) the
flow through each channel is steady-state, incompressible and fully developed; (ii) the pressure
is continuous throughout the network; and (iii) the pressure linearly varies over the entire length
of each channel from inlet/outlet to a common branching point. The purpose of using the same
physical model for the fluidic network is solely to demonstrate that its optimization does not
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lead to Murray’s law, but to the generalized law we derived above; verification of Murray’s
fluid-physics assumptions is beyond the scope of this paper.

For clarity, we present the numerical model in a form specific to laminar flow through
cylindrical channels (as per Murray’s original case), and refer the reader to appendix A for a
more general description. The flow through each channel of the fluidic network is determined
by momentum conservation, and is treated as being positive if it flows towards the point of
branching—i.e. flow through the parent channel will be positive and flow through daughters
will be negative. In the specific case of laminar flow through a cylindrical channel, and given the
previously stated fluid-physics assumptions, this is the Hagen–Poiseuille law

qi = a2
i

8πμ

(pi − pB)
li

, (3.1)

where qi is the volumetric flow rate through the ith channel in the network, ai is the cross-sectional
area of the ith channel, pi is the pressure at the end of the ith channel (i.e. the inlet of the parent
channel or the outlet of a daughter channel), li is the length of the ith channel and pB is the pressure
at the point of branching (which is common to all channels). Note, here, unlike in our analytical
derivation, the subscript i could denote either the parent channel (i = 1) or one of the daughter
channels (i = 2, 3 . . . , M, where M is the total number channels that comprise the network). The
model is completed by mass continuity at the branching point, i.e.

M∑
i=1

qi = 0, (3.2)

calculation of the total network volume v, i.e.

v =
M∑

i=1

aili, (3.3)

and the definition of the cross-sectional area ratio between the (i + 1)th and ith channels

γi = ai+1

ai
. (3.4)

The system of equations (3.1)–(3.4) can be solved for the mass flow rates q(1:M) if the following
are fixed: pressure at boundaries p(1:M), channel lengths l(1:M), fluid viscosity μ, network volume
v, and the channel cross-sectional area ratios γ(1:M−1). In this paper, the solution is obtained using
the trust-region dogleg algorithm [34] in MATLAB�.

To enable a comparison with Murray’s law and our generalized law, we now optimize the
network model (i.e. equations (3.1)–(3.4)) using a brute-force approach. For otherwise fixed
properties (e.g. fixed volume, boundary pressures, etc.), the cross-sectional area ratio between
the first daughter channel and the parent channel area γ1 is varied, through all physically viable
values, to locate that which maximizes the volumetric flow rate through the network. This result
can then be compared directly with Murray’s law and the generalized law, as the definition of γ1
is equivalent to that of Γd1 .

(a) Laminar flow
The first set of optimization results demonstrate that Murray’s law is suboptimal for
asymmetrically branching networks of any cross-sectional shape, even for laminar flow. To
demonstrate that our generalized law is valid for any cross-sectional shape (as long as the
shape remains constant through the network), the numerical verification is performed for three
different cross sections: circular, square, and rectangular with an aspect ratio α = 5. For circles,
S = 1/(8π ), and for rectangles, an accurate approximation of S is calculated from simulations,
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Figure 1. Optimal daughter–parent area ratio (Γj) against daughter flow-rate fraction (Ψj) for laminar flow through a two-
level bifurcating network with equal daughter channel pressure gradients (Φij = 1). Plotted for Murray’s law (equation (3.5)),
the generalized law (equation (2.23)), and the results from the numerical optimization for circles, squares, and rectangles of
aspect ratioα = 5. (Online version in colour.)

using a standard central-difference solution of the laminar Navier–Stokes equations (2.12).2 For
Murray’s law, mass conservation provides the closure R3

di
= R3

dj
(1 − Ψj)/Ψj, which leads to

Γj = Ψ
2/3
j . (3.5)

In figure 1, to induce asymmetry, the daughter flow-rate fraction Ψj is varied whereas the
daughter–daughter pressure-gradient ratio is kept constant at Φij = 1. All solutions that the
greater the fraction of flow through the daughter channel, the greater the optimum daughter’s
area (relative to the parent); as is intuitive. The results confirm the finding that Murray’s law is
only optimal for symmetric bifurcations (Ψ = 0.5); for a flow-rate percentage of 10% (Ψ = 0.1),
Murray’s law under-predicts the optimum daughter area by as much as 26%. In contrast, the
generalized law is accurate for all values of Ψj for all cross-sectional shapes tested. This confirms
the analytical finding that Murray’s law has been mistakenly applied to asymmetrically branching
networks, where the optimized result for each individual channel is not optimal for the network
as a whole.

This can be further demonstrated by inducing asymmetry by varying the daughter–daughter
pressure-gradient ratio Φij, and maintaining a constant daughter flow-rate fraction Ψj = 0.5, as
shown in figure 2. Murray’s law does not consider Φij to be a variable that affects the optimal
daughter–parent area ratio Γj and shows a notable departure from the numerical optimization
results; for a pressure-gradient ratio of Φij = 2, Murray’s law over predicts the optimum daughter
area by 24%. In contrast, the generalized law is accurate for all values of Φij, for all cross-sectional
shapes and, as expected, shows that the optimal area of the jth daughter channel is smaller when
it has a larger pressure gradient relative to the other daughter channel, as the flow rate flowing
through each daughter is equal (Ψj = Ψi = 0.5). This result is the same whether the pressure
gradient is altered by varying the relative daughter channel lengths or the pressure drops.

2Our numerical solver is an in-house code written in MATLAB�, which uses matrix inversion to calculate the volumetric
flow rates. All simulations use a 100 × 100 mesh, which has been shown (via a grid resolution study) to provide volumetric
flow rate solutions to within 1% of the values obtained using a 200 × 200 and 300 × 300 mesh.
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Figure 2. Optimal daughter–parent area ratio (Γj) against daughter–daughter pressure-gradient ratio Φij =
(�Pdj/Ldj )/(�Pdi/Ldi ) for laminar flow through a two-level bifurcating network with equal flow through each daughter
channel, i.e.Ψj = Ψi = 0.5. Plotted for Murray’s law (equation (3.5)), the generalized law (equation (2.23)), and the results
from the numerical optimization for circles, squares, and rectangles of aspect ratioα = 5. (Online version in colour.)

Figures 1 and 2 both show that as the extent of asymmetry increases, Murray’s law provides a
poorer estimate of the optimal area ratio.

(b) Turbulent flow
The next set of optimization results are for fully rough-wall turbulent flow through an
asymmetrically bifurcating network of channels with arbitrary, but constant, cross-sectional
shape. For Murray’s law, the closure R7/3

di
= R7/3

dj
(1 − Ψj)/Ψj is provided by mass conservation,

which leads to
Γj = Ψ

6/7
j . (3.6)

The optimization results shown in figures 3 and 4 have asymmetry induced by varying the
daughter flow-rate fraction Ψj and daughter–daughter pressure-gradient ratio Φij, respectively.
Again, there is excellent agreement between the numerical optimization and the turbulent
generalized law for all values of Ψj and Φij. Both figures 3 and 4 show that, except in the case
of large asymmetries, the optimal daughter–parent area ratio for laminar flow is larger than the
optimal area ratio for turbulent flow. This trend can broadly be explained by considering the
equations for volumetric flow rate for laminar and turbulent flow (equations (2.17) and (2.26),
respectively). For laminar flow Q ∝ A2, whereas for turbulent flow Q ∝ A5/4. Considering these
relationships for the parent and the jth daughter channel, then Γj ∝ Ψ

1/2
j and Γj ∝ Ψ

4/5
j for laminar

and turbulent flows, respectively (this is confirmed by the generalized laws for laminar flow (2.23)
and turbulent flow (2.30)). As Ψj is always less than one, Ψ

1/2
j > Ψ

4/5
j and thus the optimal area

ratio for laminar flow will generally be larger than optimal area ratio for turbulent flow for the
same fixed parameters.

Murray’s law proves to be a more accurate approximation for asymmetrically branching
turbulent flows (compared with laminar flows), but still errs by 10% when Ψj = 0.1 (and Φij = 1),
and by 19% when Φij = 2 (and Ψj = 0.5). For symmetric branching (Ψ = 0.5 and Φij = 1), the
numerical and analytical solutions both agree with Murray’s law [21] and the results by [22,23].
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Figure 3. Optimal daughter–parent area ratio (Γj) against daughter flow-rate fraction (Ψj) for fully rough turbulent flow
through a two-level bifurcating network of arbitrary, but constant, cross-sectional shapewith equal daughter channel pressure
gradients (Φij = 1). Plotted for Murray’s law (equation (3.6)), the laminar generalized law (equation (2.23)), the turbulent
generalized law (equation (2.30)), and results from the numerical optimization. (Online version in colour.)
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Figure 4. Optimal daughter–parent area ratio (Γj) against daughter–daughter pressure-gradient ratio (Φij) for fully rough-
wall turbulent flow through a two-level bifurcating network of arbitrary, but constant, cross-sectional shape. The volumetric
flow rate through each daughter channel is equal, i.e. Ψj = 0.5. Plotted for Murray’s law (equation (3.6)), the laminar
generalized law (equation (2.23)), the turbulent generalized law (equation (2.30)), and results from the numerical optimization.
(Online version in colour.)

(c) Non-Newtonian fluid flow
The final set of optimization results are for non-Newtonian fluid flow through an
asymmetrically bifurcating network of circular channels. For Murray’s law, equation (3.5)
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Figure 5. Optimal daughter–parent area ratio (Γj) against daughter flow-rate fraction (Ψj) in a two-level bifurcating network
of circular channels with equal daughter channel pressure gradients (Φij = 1). Comparison of Murray’s law (equation (3.5)),
the generalized law (equation (2.43)), and results from the numerical optimization. Plotted for n= 10−4, 0.1, 0.74 (blood),
1 (Newtonian fluid), 2 and 100. (Online version in colour.)
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Figure 6. Optimal daughter–parent area ratio (Γj) against daughter–daughter pressure-gradient ratio (Φij) in a two-level
bifurcating network of circular channels with Ψj = 0.5. Comparison of Murray’s law (equation (3.5)), the generalized law
(equation (2.43)), and results from the numerical optimization. Plotted for n= 10−4, 0.1, 0.74 (blood), 1 (Newtonian fluid),
2, and 100. (Online version in colour.)

is used. In figure 5, asymmetry is induced by varying Ψj, whereas Φij = 1 is constant.
The results demonstrate that the optimal daughter–parent area ratio Γj is dependent on
the flow behaviour index n, contrary to the results of previous studies based on Murray’s
law [17,18].
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The Newtonian fluid case (n = 1) is highlighted with a filled marker, and it is noted that
this solution is the same as that shown in figure 1. It is observed that, for all n, the gradient
(dΓj/dΨj) increases monotonically with increasing n. As n → ∞, the fluid approaches the shear-
thickening-fluid limit (equation (2.45)) where Murray’s law is correct for all Ψj. For smaller values
of n, Murray’s law is correct only for symmetric bifurcations (Ψj = 0.5) and becomes increasingly
inaccurate as n decreases; for a flow-rate percentage of 10% (Ψj = 0.1), Murray’s law under
predicts Γj by 66% for n = 10−4. The increasing error in the Murray’s law solution as n decreases
is also shown in figure 6, where asymmetry is induced by varying Φij and Ψj = 0.5 is fixed. Here,
for a pressure-gradient ratio of Φij = 2, Murray’s law over predicts the optimum daughter area
by 172% when n = 10−4. In contrast, the generalized law is accurate for all values of Ψj and n.
The plot for n = 0.74 is an approximation of the optimal area ratio for the cardiovascular system,
based on the measurements of a falling-ball viscometer [35]. As n → 0, the fluid approaches the
shear-thinning-fluid limit (equation (2.46)) and Γj becomes independent of Ψj.

The reason for the shear-thickening- and shear-thinning-fluid limits can be found by
examining the volumetric flow rate of a non-Newtonian fluid. When n → 0, by raising all terms
to the power of n, equation (2.39) becomes 1 = �PR/(2Lm) and the area ratio is only a function of
the pressure gradient; hence, Γj does not vary with Ψj. When the daughter–daughter pressure-
gradient ratio Φij decreases, the area must increase (and vice versa), as shown in figure 6.
Conversely, when n → ∞, equation (2.39) becomes Q = πR3/3 and the optimal area ratio is only
a function of the volumetric flow rate; hence, Γj does not vary with Φij. This expression, with
Q ∝ R3, is equivalent to Murray’s law (equation (1.1)), where the local optimization is the same as
the global optimization, as shown in figures 5 and 6.

4. Conclusion
We have derived a generalized optimization principle that leads to analytical expressions for
the optimum daughter–parent area ratio Γ for asymmetrically branching networks of any cross-
sectional shape and for a range of fluidic models. This new optimal relation will enable deeper
understanding of biological network behaviour and provide a generalized biomimetic design
principle that can be applied to a variety of artificial branching systems to maximize their
efficiency.

We have verified analytical solutions using a numerical optimization procedure and
shown that, for symmetric branching of laminar and Newtonian fluids, our generalized
law is equivalent to Murray’s law. However, when applied to an asymmetrically branching
network, Murray’s law is suboptimal, as the global optimization of the entire network
is not equal to the local optimization of each individual channel, which Murray’s law
presumes. We further demonstrate that this mistake in the application of Murray’s law
to asymmetric branching networks has endured for non-Newtonian fluids (e.g. in the
cardiovascular system) and turbulent flows (e.g. in hydraulic or pneumatic civil engineering
applications).

In non-Newtonian fluidic networks, Γ is dependent on the flow behaviour index n for
asymmetric branching, contrary to what previous studies based on Murray’s law have stated.
Murray’s law is only retrieved for non-Newtonian fluid networks at the shear-thickening limit,
when n → ∞ and Γ is no longer dependent on the relative pressure gradients over the daughter
channels. At the shear-thinning limit, when n → 0, Γ becomes independent of the relative flow
rates through each daughter channel.
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the manuscript. D.A.L. derived the generalized law, provided the main analytical contribution, and helped
draft the manuscript.
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Appendix A. General volumetric flow rate expression for the numerical
optimization procedure
The equation for volumetric flow rate through the ith straight channel can be generally expressed
as

qi = sgn(pi − pB)b1ab2
i

(
pi − pB

li

)b3

, (A 1)

where b1, b2 and b3 are flow-model-dependent constants. Table 1 shows the values of the constants
for laminar flow through a channel of arbitrary cross-sectional shape, fully rough-wall turbulent
flow through a channel of arbitrary cross-sectional shape, and non-Newtonian fluid flow through
a channel with a circular cross section.

Table 1. Volumetric flow rate constants for laminar flow, fully rough-wall turbulent flow, and non-Newtonian flow.

flowmodel b1 b2 b3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

laminar S
μ

2 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

turbulent
√

8R
f

5
4

1
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

non-Newtonian n
(3n+1)

n

√
1

2mπ (n+1)/2
(3n+1)
2n

1
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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