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Introduction

As a malignant tumor with low incidence but high 
mortality, cholangiocarcinoma (CCA) can be divided into 
three subtypes according to its origin: intrahepatic CCA 
(iCCA), periportal CCA (pCCA), and distal CCA (dCCA) 

(1). It is characterized by occult presentation in the early 

stage, high malignancy in the late stage, poor prognosis, and 

a distinct geographical distribution (2,3). In recent years, 

the incidence of CCA has been rising, indicating that more 

attention must be paid to the prevention and treatment 
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of CCA. Surgery is still the primary clinical treatment, 
supplemented by radiotherapy and chemotherapy (4-7). 
However, due to the limitations of surgical treatment and 
the high recurrent rate of CCA, the 5-year survival rates 
of patients have been extremely low (6,8,9). Therefore, 
there is an urgent need to explore its underlying molecule 
mechanisms.

Numerous studies have demonstrated that the progress 
of malignant tumors is closely related to metabolic 
reprogramming (10). Among CCA cell lines, those with 
greater uptake and oxidation capacity of fatty acid (FA) have 
tended to be more aggressive (10-12). Moreover, the lipid 
metabolism-related prostaglandins (PG) and the enzyme 
sphingosine kinase (SPHK) have also been verified to be 
correlated with the malignant phenotype (13-15). In addition, 
the progress of CCA has been shown to be closely related to 
glucose metabolism (16). Previous studies have found that 
sirtuin 3 (SIRT3), a member of the deacetylase family, plays 
an important role in cancer metabolism and it is more typical 
in CCA. For example, SIRT3 can influence the Warburg 
effect in tumor tissue by regulating the metabolism of key 
enzymes of the glycolytic pathway mediated by hypoxia-
inducible factor A (HIF1A), which ultimately influences the 
establishment of the CCA cell phenotype (17).

FBJ murine osteosarcoma viral oncogene homolog B 
(FOSB), as a member of the Fos family, can regulate normal 
cellular physiological activities (18). However, its effect on 
the metabolic changes of cancer cells is still a mystery. It 
has been found that the members of the Fos protein family 
can promote the development and invasion of tumors by 

dimerizing with JUN proteins to form activator protein-1 
(AP-1). The Hippo pathway Yes-associated protein (YAP) 
and AP-1 can synergistically promote the development of 
pancreatic and breast cancers (19-23). The cystathionine-
β-synthase-hydrogen sulfide (CBS-H2S) axis can promote 
liver metastasis of colon cancer through AP-1 (24). Rac 
GTPase-activating protein 1 (RacGAP1) indirectly 
regulates AP-1 to induce the occurrence of cervical cancer. 
However, FOSB also seems to play a beneficial role, as it 
has been shown that in gastric cancer, when FOSB was 
overexpressed, the growth of tumor cells was significantly 
inhibited (25). In acute myeloid leukemia, patients with 
high FOSB expression tend to have a better prognosis (26). 
However, the potential role of FOSB in CCA remains 
unclear, and its potential molecular mechanism needs to be 
further explored. We present this article in accordance with 
the REMARK reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-829/rc).

Methods

Acquisition of clinical samples

All  samples  ( including 24 pairs  of  CCA and the 
corresponding adjacent tissues) were obtained from patients 
who were pathologically diagnosed with CCA at the First 
Affiliated Hospital of Anhui Medical University. Tissues 
were embedded with paraffin wax and stored under suitable 
conditions. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of Anhui Medical 
University (No. 20190199), and informed consent was 
provided by all patients.

Datasets downloading and differential analysis

The datasets (GSE26566, GSE45001, GSE132305) were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/) and samples 
were divided into two groups as per the type of tissue: 
CCA and adjacent tissues. The data were normalized using 
the limma package of RStudio (Posit; Boston, MA, USA) 
and differently expressed genes (DEGs) were obtained 
between CCA and adjacent tissues [|log fold change 
(FC)| >1, P value <0.05, and the base of |logFC| was 2]. 
Then, the Venn diagram template from Bioinformatics & 
Evolutionary Genomics (http:// bioinformatics.psb.ugent.
be/webtools/Venn/) was used to obtain the intersection 
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graph of the different groups of DEGs.

Protein-protein interaction network analysis

The online website (https://cn.string-db.org/cgi/input?sessi
onId=bEVgLvYZrtTp&input_page_active_form=multiple_
sequences) was used for protein functional interaction 
analysis of the screened DEGs, and closely linked gene sets 
were further screened out by using the MCODE tool in 
Cytoscape software (https://cytoscape.org/) (27).

Enrichment analysis

The enrichment analysis and Gene Ontology (GO) 
enrichment picture were accomplished by the Enrichplot, 
clusterProfiler, and other toolkits of RStudio. Gene set 
enrichment analysis (GSEA) was conducted using limma, 
org.Hs.eg.db, clusterProfiler, enrich plot, and other 
installation packages of RStudio.

Survival analysis

Kaplan-Meier Plotter and Gene Expression Profiling 
Interactive Analysis (GEPIA2) website were used to plot the 
survival analysis map of tumors (28,29). The patients were 
divided into two groups, high- and low-expression groups, 
with the median as the group cutoff, and then the 95% 
confidence interval (CI) as the dotted line. Subsequently, 
CCA datasets were selected to plot the correlation curves 
(P<0.05 was considered statistically significant).

Pancancer and immune analysis

The Cancer Exploration panel of Tumor Immune 
Evaluation Resource (TIMER2.0; http://timer.cistrome.
org/) was used to map the pancancer analysis (including 33 
cancers) of FOSB. Data were collected from The Cancer 
Genome Atlas (TCGA) database, which contained 33 
types of tumors, and all parameters were default values. 
Distributions of gene expression levels were displayed 
using box plots. The statistical significance computed by 
the Wilcoxon test is annotated by the number of asterisks 
(*, P<0.05; **, P<0.01; ***, P<0.001). The Tumor-Immune 
System Interactions Database (TISIDB) online platform 
(http://cis.hku.hk/TISIDB/) was applied to analyze the 
correlation between FOSB and tumor-infiltrating immune 
cells and immune-related factors in tumors (P<0.05 was 
considered statistically significant) (30,31).

GSEA

Limma, org.Hs.eg.db, clusterProfiler, enrichplot, and other 
installation packages of RStudio were used to divide the 
screened key genes into high- and low-expression groups 
and plot the functional enrichment analysis was used to 
identify the key gene.

Immunohistochemistry (IHC)

The embedded tissues were cut into 4 μm sections. Dewaxing 
and hydration were performed in xylene and fractionated 
ethanol. Endogenous peroxidase blocking solution was added 
dropwise to inhibit the endogenous peroxidase activity of 
the tissue, and then ethylenediaminetetraacetic acid (EDTA) 
repair solution (BL618A, Biosharp, Hefei, China) was used 
for antigen repair. After being blocked with normal serum 
solution, sections were incubated with antibodies of SIRT3 
(s4072; Sigma-Aldrich, St. Louis, MO, USA), HIF1α [36169; 
Cell Signaling Technology (CST), Danvers, MA, USA], and 
FOSB (ab184938; Abcam, Cambridge, UK) overnight. Then, 
the goat anti-rabbit IgG secondary antibody (1:4,000–80,000, 
BL003A, Biosharp) coupled with horseradish peroxidase 
(HRP) was added. Finally, the slices were stained with 
diaminobenzidine (DAB) chromogenic solution (BL732A, 
Biosharp) and hematoxylin staining solution and dehydrated 
using fractionated ethanol and xylene. Finally, the slices 
were sealed with neutral gum and observed under a light 
microscope. The grading of staining intensity was as follows: 
absent staining =0, weak =1, moderate =2, and strong =3. The 
percentage of staining was graded as follows: 0 (no positive 
cells), 1 (<25% positive cells), 2 (25–50% positive cells), 3 
(>50–75% positive cells), and 4 (>75% positive cells). The 
score for each tissue was calculated by multiplication; the 
range of this calculation was therefore 0 to 12.

Statistical analysis

The software SPSS 23.0 (IBM Corp., Armonk, NY, USA) 
was used for statistical analysis in this study and Student’s 
t-test was used to analysis the statistical differences among 
experimental groups. Statistical significance was considered 
when P<0.05.

Results

Screening of DEGs

Firstly, DEGs were screened from all datasets (|logFC| 
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>1, P<0.05), in which 1,094 DEGs were obtained from 
GSE26566, 2,888 DEGs from GSE45001, and 56 DEGs 
from GSE132305. Then, we mapped the Venn diagram to 
find the intersection of all screened DEGs (Figure 1A) and 
finally obtained 12 DEGs between CCA and adjacent tissues 
(FOSB, DUSP1, EGR1, FGA, APOC1, ADAMTS1, FBLN1, 
LAMC2, KRT17, PLP1, MT1M, MYH11). Moreover, we 
performed functional enrichment analysis for these DEGs 
and found that these genes were most closely related to 
the functions of blood coagulation, response to metal ion, 
basement membrane, and collagen-containing extracellular 
matrix (Figure 1B). We finally screened out the key gene 
FOSB by combining the results of the above analysis. 
In addition, protein-protein interaction (PPI) analysis  
(Figure 1C) and the MCODE tool in Cytoscape were 

used to obtain the most enriched gene set (Figure 1D). 
The results showed that FOSB, DUSP1, and EGR1 had 
the highest enrichment score, and FOSB was in the core 
position. Therefore, combined with the above analysis, we 
finally screened out the key gene FOSB.

Expression analysis

We performed further expression analysis on the screened 
key genes. Firstly, the pan-cancer analysis of FOSB was 
carried out by using the pan-cancer analysis module of 
TIMER2.0 (Figure 2A) to observe the overall differential 
expression in malignant tissues and normal tissues. 
Moreover, Rstudio ranked its expression levels in these 
tumors (Figure 2B). The results revealed that the expression 

Figure 1 Screening of key genes. (A) Venn diagram of DEGs in three data sets. (B) Functional enrichment analysis. (C) PPI network 
analysis. (D) The three gene sets screened by MCODE (a tool for analyzing gene enrichment degrees in Cytoscape software). DEGs, 
differently expressed genes; PPI, protein-protein interaction.
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levels of FOSB were downregulated in CCA and most 
malignant tumors.

FOSB clinical correlation analysis

Based on the analysis of the differences in FOSB expression, 

we further analyzed the differences in FOSB activity levels 
in various malignancies (Figure 3A). We plotted a gradient 
box plot from high to low according to the activity levels 
(Figure 3B), which was used to visualize the overall activity 
of FOSB in various cancers. The results showed that the 
FOSB activity levels in CCA were significantly reduced. 

Figure 2 Pancancer analysis of FOSB. (A) Differences in the expression levels of FOSB between various malignant tumors and corresponding 
paraneoplastic tissues. The statistical significance computed by the Wilcoxon test is annotated by the number of stars (red and blue are 
tumors and normal tissues, respectively; *, P<0.05; **, P<0.01; ***, P<0.001). (B) Differences in the expression levels of FOSB in various 
malignant tumors. TPM, transcripts per million; FOSB, FBJ murine osteosarcoma viral oncogene homolog B.
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Kaplan-Meier Plotter and GEPIA2 websites were used to 
plot survival analyses curves of different cancers. Patients 
were evenly divided into high- and low-expression groups. 
The results showed that kidney and lung cancer patients 
with high levels of FOSB tend to have a better prognosis 
(Figure S1), and the same trend could be observed in CCA 
patients. However, because of the limited sample size of 
CCA, no significant difference could be seen for the time 
being (Figure 3C,3D) 

The correlation analysis of tumor-infiltrating immune 
cells

To further investigate the role played by FOSB in CCA, 
we used TIMER2.0 to analyze the correlation between 
FOSB expression and tumor-infiltrating immune cells in 
tumors based on different algorithms. We found that FOSB 
showed a similar trend with tumor-infiltrating immune cells 
in most malignancies. Especially in CCA, FOSB showed 
a high positive correlation with macrophage, monocyte, 

Figure 3 Clinical correlation analysis of FOSB. (A) Differences in gene activity of FOSB in various malignancies and corresponding 
paraneoplastic tissues (*, P<0.05; **, P<0.01; ***, P<0.001). (B) Gradient analysis of the gene activity levels of FOSB in various tumors. (C,D) 
Overall survival and disease-free survival were analyzed for CCA patients. According to the expression level of FOSB, the patients were 
divided into two cohorts on average: high-expression group and low-expression group. The cutoff value was as follows: P<0.01 and |logFC| 
>1. FOSB, FBJ murine osteosarcoma viral oncogene homolog B; CCA, cholangiocarcinoma; FC, fold change.
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cancer-associated fibroblasts (CAFs), endothelial cells, 
hematopoietic stem cells, mast cells, T cell follicular 
helper, CD4+, and other tumor-infiltrating immune cells  
(Figure 4A), and we obtained similar results with the analysis 
on TISIDB (Figure 4B). Moreover, FOSB was significantly 
associated with immune activators, immunosuppressive 
factors, and MH4C molecules, and the same was observed 
in hepatocellular carcinoma (Figure 4C-4E). These data 
demonstrated that FOSB is largely involved in the tumor-
infiltrating immune cells in tumors and plays an important 
role in tumor immunity, which may also be related to the 
fact that patients with high FOSB expression tend to have a 
better prognosis. The above information demonstrates the 
potential impact of FOSB on tumor-infiltrating immune 
cells in the tumor microenvironment (TME) of CCA.

GSEA 

GSEA of FOSB was conducted to find the core pathways 
that may play a significant role in CCA, and the diagram 
was drawn through Rstudio and its installation package. 
The results showed that in CCA, the group with high 
expression levels of FOSB  was mainly enriched in 
arachidonic acid metabolism, cell adhesion molecules 
(CAMs), glutathione metabolism, glycerol metabolism, 
hypertrophic cardiomyopathy, and other pathways  
(Figure 5). Previous studies have found that metabolic 
pathways play a critical role in the regulation of CCA (17). 
Therefore, we speculated that FOSB would also play a vital 
role in CCA metabolism.

Role of SIRT3/HIF1A/FOSB in CCA

In our previous study, we discovered the interaction 
between SIRT3 and HIF1A in CCA and that they play 
an important role in influencing the metabolic process 
of the tumor cells (17). These findings coincide with our 
prediction of the role of FOSB in metabolism. Our analysis 
found an obvious association between FOSB expression 
trends and the SIRT3/HIF1A axis. The potential association 
between FOSB and HIF1A has also been uncovered in 
other studies (32,33). To test our conjecture, we conducted 
the corresponding IHC and analyzed the obtained CCA 
and corresponding paraneoplastic tissues. The results 
showed that the expression levels of SIRT3 and FOSB were 
significantly decreased in CCA, whereas the expression of 
HIF1A was significantly increased (Figure 6). Therefore, 
we preliminarily assume that FOSB acts downstream of the 

SIRT3/HIF1A axis.

Discussion

We analyzed all datasets (GSE26566, GSE45001, and 
GSE132305) obtained from the GEO database and obtained 
the DEGs between CCA and adjacent tissues. Then, 
FOSB was screened out using PPI analysis and enrichment 
analysis. Compared to normal tissues, the expression levels 
of FOSB in malignant tumors were significantly decreased. 
To explore the potential role of FOSB in CCA, we analyzed 
the influence of FOSB on the survival rate of all cancer 
patients using the Kaplan-Meier plotter. The results showed 
that CCA patients with high expression of the FOSB gene 
tend to have a better prognosis. Therefore, we speculated 
that FOSB could play an important role in inhibiting the 
progress of tumors.

To further test our hypothesis, the TIMER2.0 website 
was used to explore the association between FOSB and 
tumor-infiltrating immune cells. The results showed that 
FOSB was positively related to most tumor-infiltrating 
immune cells. Interestingly, we discovered that there was a 
significant positive correlation between FOSB and CAFs, 
which was an indispensable part of the TME (34). Many 
studies have shown that CAFs may have both cancer-
promoting and cancer-suppressing effects. For example, 
in pancreatic ductal adenocarcinoma (PDAC), CAFs can 
promote tumor invasion, whereas their depletion can lead 
to tumor progression (35-37). Although many studies have 
explored the cancer-promoting effects of CAFs in CCA, 
such as inhibition of apoptosis, promotion of migration 
and invasion, and so on, they have been identified as a 
meaningful target for the treatment and prevention of CCA 
(38-41). However, given the lack of functional studies and 
the limitations of the size of clinical trials, we still cannot 
conclude that there are other roles for CAFs in CCA, and it 
would be interesting to know whether there are other roles 
for CAFs in CCA.

The relationship between SIRT3 and HIF1A in CCA 
was discussed in the preliminary study. The results showed 
that when SIRT3 was overexpressed, the production of 
reactive oxygen species (ROS) decreased significantly under 
hypoxia. Therefore, the instability of HIF1A would increase 
and inhibit the development of tumors (42). In recent years, 
many studies have explored the role of the SIRT3/HIF1A 
axis in substance metabolism. For example, knocking down 
SIRT3 in Newcastle disease virus (NDV)-infected cells 
was shown to help maintain the stability of HIF1A and 
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Figure 5 GSEA of FOSB in CCA. GSEA, gene set enrichment 
analysis; FOSB, FBJ murine osteosarcoma viral oncogene homolog 
B; CCA, cholangiocarcinoma; KEGG, Kyoto Encyclopedia of 
Genes and Genomes.

Figure 6 Immunohistochemical picture and expression analysis of FOSB, SIRT3 and HIF1A in CCA and adjacent tissues (*, P<0.05). 
Original magnification, 400-fold. FOSB, FBJ murine osteosarcoma viral oncogene homolog B; CCA, cholangiocarcinoma.

ultimately affect the glycolytic process and promote viral 
replication (43). In addition, the SIRT3/HIF1A axis has been 
shown to alter tumor development by affecting the activity 
of key enzymes of the glycolytic pathway and subsequently 
the Warburg effect (17,44). Given the strong similarity 
between FOSB and HIF1A in terms of metabolism and 
altered physiological activity under hypoxia, we speculate 
that HIF1A and FOSB may have a potential link (45-47). 
Subsequently, we performed IHC experiments using the 
collected CCA tissues and found that SIRT3/HIF1A may 
influence the malignant phenotype of CCA by regulating 
FOSB and then regulating other metabolic pathways. 
However, whether its function is based on the SIRT3/
HIF1A axis is worthy of further investigation.

There are still many mysteries and disputes about the 
role of FOSB in cancer. Although it may function as a cancer 
promoter in malignant tumors such as prostate cancer, 
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thyroid cancer, pancreatic cancer, and so on (48-50), it may 
also function as a cancer inhibitor in gastric cancer (25,51). 
Our results show that FOSB can inhibit the progression 
of CCA. However, whether its function is realized by the 
SIRT3/HIF1A axis needs further study. There are some 
limitations in our study. Bioinformatics analysis and IHC 
are only preliminary explorations, and only a simple trend 
can be observed. Specific correlation analysis, protein level 
validation, cellular experiments, and animal experiments are 
still lacking.

In general, we speculate that FOSB may be a potential 
prognostic and therapeutic target.

Conclusions

FOSB and the SIRT3/HIF1A axis have similar expression 
trends in CCA, and both are closely related to metabolism, 
which is associated with poor prognosis in CCA.
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