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An increased prevalence of duplicated Heschl’s gyrus (HG), which may reflect an early
neurodevelopmental pathology, has been reported in schizophrenia (Sz). However, it
currently remains unclear whether individuals at risk of psychosis exhibit similar brain
morphological characteristics. This magnetic resonance imaging study investigated
the distribution of HG gyrification patterns [i.e., single HG, common stem duplication
(CSD), and complete posterior duplication (CPD)] and their relationship with clinical
characteristics in 57 individuals with an at-risk mental state (ARMS) [of whom 5 (8.8%)
later developed Sz], 63 patients with Sz, and 61 healthy comparisons. The prevalence of
duplicated HG patterns (i.e., CSD or CPD) bilaterally was significantly higher in the ARMS
and Sz groups than in the controls, whereas no significant differences were observed in
HG patterns between these groups. The left CSD pattern, particularly in the Sz group,
was associated with a verbal fluency deficit. In the ARMS group, left CSD pattern
was related to a more severe general psychopathology. The present results suggest
that an altered gyrification pattern on the superior temporal plane reflects vulnerability
factors associated with Sz, which may also contribute to the clinical features of high-risk
individuals, even without the onset of psychosis.

Keywords: at-risk mental state, schizophrenia, Heschl’s gyrus, gyrification, early neurodevelopment

INTRODUCTION

Heschl’s gyrus (HG), a convolution on the superior temporal plane, hosts the primary auditory
cortex (Rademacher et al., 1993; Da Costa et al., 2011) and is also involved in memory (Weinberger,
2015) and emotional (Concina et al., 2019) processing. The morphology of HG markedly varies
across individuals, with approximately 30–50% of healthy individuals potentially having complete
or partial duplication (Leonard et al., 1998; Rademacher et al., 2001; Abdul-Kareem and Sluming,
2008; Marie et al., 2015). This anatomical variant appears to reflect variations in cytoarchitectonic
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development during gestation (Chi et al., 1977; Armstrong et al.,
1995), and duplicated HG may lead to learning disabilities
(Leonard et al., 1993, 2001) and reduced HG activity during
auditory processing (Tzourio-Mazoyer et al., 2015) in a non-
clinical population. In a recent magnetic resonance imaging
(MRI) study, we reported an increased prevalence of HG
duplications in first-episode schizophrenia (Sz) (Takahashi et al.,
in submission), which may reflect the early neurodevelopmental
pathology (Weinberger, 1987; Insel, 2010). However, since
another MRI study that specifically examined HG duplication
patterns in chronic Sz did not find significant results (Hubl
et al., 2010), it currently remains unclear whether illness
stages affect the HG pattern of Sz. Furthermore, although
structural/functional abnormalities in the superior temporal
plane may underlie the positive psychotic symptoms (Alderson-
Day et al., 2015; Takahashi and Suzuki, 2018) as well as core trait
abnormalities [e.g., deficits in social cognition (Mier et al., 2017)
and verbal fluency (Antonova et al., 2004)] of Sz, it has not yet
been clarified whether the HG gyrification pattern is associated
with these clinical features.

MRI studies on individuals at high risk of developing
psychosis [i.e., at-risk mental state (ARMS) (Yung et al.,
2004, 2005)], who have an increased risk of developing
psychosis within a short period of time [approximately 30%
at 2 years (Fusar-Poli et al., 2012a)], generally showed
similar gross morphological characteristics associated with early
neurodevelopment [e.g., an altered sulcogyral pattern in the
orbitofrontal region (Nakamura et al., 2019) and widespread
cortical hypergyria (Sasabayashi et al., 2017)] to those of
overt Sz. Since these brain anomalies are at least partly
observed in participants without a later onset of psychosis
(Sasabayashi et al., 2017; Nakamura et al., 2019), they may
represent biological traits associated with general vulnerability
to psychopathology. These gross brain characteristics may
contribute to cognitive impairments in the Sz and ARMS
groups (Takahashi et al., 2019a), supporting the presentation
of cognitive impairments, particularly in social function (Lee
et al., 2015) and verbal fluency (Fusar-Poli et al., 2012b),
even before the onset of psychosis as a trait vulnerability
marker. However, despite evidence of partly shared superior
temporal gray matter reductions in the ARMS and Sz groups
(Takahashi et al., 2010b), no MRI studies to date have
specifically examined the HG duplication pattern and its
potential contribution to clinical features (e.g., cognitive deficits)
in the ARMS cohort.

Therefore, the present MRI study aimed to examine the
HG gyrification pattern (single HG, partial duplication, and
complete duplication) in ARMS individuals and Sz patients,
compare it with those in healthy controls, and examine its
potential contribution to clinical variables (symptoms, social
and cognitive functions). Based on our previous MRI findings
from an independent sample of Sz (Takahashi et al., in
submission) as well as the potential role of brain gyrification
as a stable neurodevelopmental marker (Chi et al., 1977;
Armstrong et al., 1995), we predicted increased HG duplication
in both the ARMS and Sz groups. We also speculated
that the HG pattern in these groups may be associated

with clinical variables that reflect trait abnormalities, such as
cognitive impairments.

MATERIALS AND METHODS

Participants
Fifty-seven ARMS individuals, 63 Sz patients, and 61 healthy
controls participated in the present study (Table 1); they
were physically healthy and had no history of severe obstetric
complications, serious head trauma, neurological illness,
substance abuse, or serious medical disease (e.g., diabetes,
thyroid disease, hypertension, or steroid use). Handedness
(Okada et al., 2014a), IQ scores measured using the Japanese
version of the National Adult Reading Test (JART) (Matsuoka
et al., 2006), and the personal and parental socioeconomic status
(SES) (Okada et al., 2014b) were also evaluated. We recently
detected an altered HG gyrification pattern in first-episode Sz
(Takahashi et al., in submission); however, there was no sample
overlap between these findings and the present results.

As described previously (Takahashi et al., 2017, 2018),
individuals with ARMS were enrolled from the Consultation
Support Service in Toyama (CAST), which is a regional clinical
setting that specializes in early interventions (Mizuno et al.,
2009). All individuals met the criteria for attenuated psychotic
symptoms (APS) based on the Comprehensive Assessment
of At-Risk Mental States (CAARMS) (Yung et al., 2005),
while 6 also fulfilled brief and limited intermittent psychotic
symptoms (BLIPS) (N = 1) or genetic risk and deterioration
syndrome (GRD) (N = 5) criteria. Major comorbid DSM
Axis I disorder (American Psychiatric Association, 2000)
comprised anxiety disorders (N = 13), adjustment disorders
(N = 11), schizotypal personality disorders (N = 10), pervasive
developmental disorders (N = 9), or depressive disorders (N = 8).
Five participants (8.8%) developed Sz during the clinical follow-
up at Toyama University Hospital (mean = 3.2 ± 2.9 years,
median = 2.4). Medication and other clinical data are
summarized in Table 1. Eleven participants were also being
treated with antidepressants (N = 5) and/or benzodiazepines
(N = 8) when scans were performed.

Sz patients fulfilling the DSM-IV-TR criteria (American
Psychiatric Association, 2000) were enrolled from the in- and
outpatient clinics of the Department of Neuropsychiatry of
Toyama University Hospital. They were diagnosed based on
the Structured Clinical Interview for DSM-IV Axis I Disorders
Patient Edition (SCID-I/P) (First et al., 1997) and a detailed
chart review. The Sz group was divided into first-episode [illness
duration ≤1 year (N = 17)] and chronic [illness duration ≥3 years
(N = 38)] subgroups to examine the effects of illness chronicity.

Healthy controls with no personal or family history (among
first-degree relatives) of neuropsychiatric disorders were enrolled
from both the community and hospital staff and screened using
the SCID-I Non-patient Edition (First et al., 1997). The present
study was approved by the Committee on Medical Ethics of
Toyama University (No. I2013006). Written informed consent
was obtained from all participants in accordance with the
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TABLE 1 | Demographic/clinical characteristics and sociocognitive functions in ARMS, schizophrenia, and control subjects.

HC ARMS Sz Group differencea

(N = 61) (N = 57) (N = 63)

Male/female 32/29 34/23 29/34 Chi-square = 2.23, p = 0.329

Age 25.6 ± 3.2 18.6 ± 4.3 28.0 ± 9.4 F (2,178) = 34.93, p < 0.001; ARMS < HC, Sz

Height (cm) 166.0 ± 8.3 164.4 ± 9.0 163.2 ± 8.4 F (2,178) = 1.68, p = 0.190

Handedness (right/left/mixed) 40/6/15 35/5/17 52/2/9 Chi-square = 7.73, p = 0.102

Socioeconomic status 6.2 ± 0.9 3.2 ± 1.4 4.2 ± 1.4 F (2,178) = 92.20, p < 0.001; ARMS < Sz < HC

Parental socioeconomic status 5.9 ± 0.9 5.0 ± 0.9 4.8 ± 1.4 F (2,177) = 16.94, p < 0.001; ARMS, Sz < HC

Age at onset (years) – – 22.4 ± 7.4 –

Duration of illness (years) – – 5.5 ± 6.0 –

Dose of antipsychotics (HPD equiv., mg/day) – 2.5 ± 1.8 (N = 14) 11.3 ± 7.8 (N = 51) F (1,63) = 17.32, p < 0.001; ARMS < Sz

Type of antipsychotics (typical/atypical/mixed) – 1/12/1 1/45/5 Fisher’s exact test, p = 0.585

Duration of antipsychotic medication (years) – 0.7 ± 1.2 (N = 17) 5.2 ± 6.2 (N = 53) F (1,68) = 8.78, p = 0.004; ARMS < Sz

Time between intake and onset (years) – 1.5 ± 2.6 (N = 5) – –

PANSS

Positive – 11.6 ± 3.2 13.9 ± 5.6 F (1,118) = 7.45, p = 0.007; ARMS < Sz

Negative – 15.3 ± 6.6 16.3 ± 5.6 F (1,118) = 0.63, p = 0.428

General – 30.2 ± 7.9 31.0 ± 9.7 F (1,118) = 0.25, p = 0.619

mGAF psychological symptom 46.8 ± 11.2 44.7 ± 14.3 F (1,117) = 0.73, p = 0.395

mGAF social functioning – 51.7 ± 10.2 48.2 ± 13.9 F (1,117) = 2.55, p = 0.113

SCoRS global rating score – 5.3 ± 2.3 5.2 ± 2.5 F (1,117) = 0.02, p = 0.899

JART-IQ 110.2 ± 5.9 98.5 ± 9.7 99.5 ± 9.7 F (2,178) = 34.35, p < 0.001; ARMS, Sz < HC

BACS subdomain z-scores Group × domain interaction, F (5,590) = 6.29, p < 0.001

Verbal memory – −0.7 ± 1.6 −1.4 ± 1.4 p = 0.347

Working memory – −0.7 ± 1.3 −1.0 ± 1.4 p = 1.000

Motor function – −0.9 ± 1.4 −1.9 ± 1.5 p = 0.004; Sz < ARMS

Verbal fluency – −0.9 ± 1.5 −0.8 ± 1.1 p = 1.000

Attention and processing speed – −0.2 ± 1.4 −1.4 ± 1.5 p < 0.001; Sz < ARMS

Executive function – −0.3 ± 1.2 −0.8 ± 1.6 p = 0.840

Values represent means ± SD unless otherwise stated.
ARMS, at risk mental state; BACS, Brief Assessment of Cognition in Schizophrenia; HC, healthy controls; JART, Japanese version of National Adult Reading Test; HPD,
haloperidol; mGAF, modified Global Assessment of Functioning; PANSS, Positive and Negative Syndrome Scale; SCoRS, Schizophrenia Cognition Rating Scale; Sz,
schizophrenia.
aDifferences between the degree of freedom across measures were partly attributed to missing data.

Declaration of Helsinki. When participants were <20 years old,
written consent was also obtained from a parent/guardian.

Clinical Assessment at Scanning
The clinical symptoms of ARMS and Sz participants were rated
by experienced psychiatrists using the Positive and Negative
Syndrome Scale (PANSS) (Kay et al., 1987). The Brief Assessment
of Cognition in Schizophrenia (BACS) (Keefe et al., 2004), the
Schizophrenia Cognition Rating Scale (SCoRS) (Keefe et al.,
2006), and the modified Global Assessment of Functioning
(mGAF) scale (Eguchi et al., 2015) were used to evaluate social
and cognitive functions.

MRI Acquisition and Data Processing
Magnetic resonance imaging was performed using the 3-T
Magnetom Verio (Siemens, Erlangen, Germany). A three-
dimensional magnetization-prepared rapid gradient echo
(MPRAGE) sequence provided 176 contiguous 1.2-mm-thick
T1-weighted slices in the sagittal plane. The following imaging

parameters were used: repetition time = 2,300 ms; echo
time = 2.9 ms; flip angle = 9◦; field of view = 256 mm; and
matrix size = 256 pixels × 256 pixels, with a voxel size of
1.0 mm × 1.0 mm × 1.2 mm.

Brain images were coded randomly and analyzed blind
to participants’ information (e.g., diagnosis and gender). The
images were then realigned using Dr. View software (Infocom,
Tokyo, Japan) into three dimensions to account for differences
in head tilting during the acquisition of images. They were
reconstructed into entire contiguous 1-mm-thick coronal images
that were perpendicular to the anterior commissure-posterior
commissure line.

Assessment of HG Gyrification Patterns
As reported previously (Leonard et al., 1998; Rademacher et al.,
2001; Abdul-Kareem and Sluming, 2008; Marie et al., 2015),
the HG gyrification pattern on each hemisphere was classified
into single HG, common stem duplication (CSD), and complete
posterior duplication (CPD) (Figure 1). Among duplicated HG
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FIGURE 1 | Sample MR images of Heschl’s gyrus (HG; colored in blue) in participants with different gyrification patterns. Schematic drawings of the superior
temporal surface on an axial view are also shown (right). A, anterior; CPD, complete posterior duplication; CSD, common stem duplication; FTS, first transverse
sulcus; HS, Heschl’s sulcus; L, lateral; Lt, left; P, posterior; M, medial; PP, planum polare; PT, planum temporale; Rt, right; sHG, second Heschl’s gyrus; sHS, second
Heschl’s sulcus; SI, sulcus intermedius.

patterns, the CSD pattern was characterized by the gyrus being
partially split by the sulcus intermedius (SI), which forms a
‘heart-shaped’ HG. The hemisphere with fully separate gyri [two
(N = 80) or three (N = 4) gyri per hemisphere in the present
study] was defined as the CPD pattern. Fourteen hemispheres
(3.9%), which had a separate HG posterior to the HG with partial
duplication, were categorized as the CSD pattern.

In the present study, one rater (TT) classified HG gyrification
patterns without knowledge of subject identities. Intra- (TT)
and inter-rater (TT and DS) reliabilities in 15 randomly selected
brains (30 hemispheres) were ≥0.83 (Cronbach’s α).

Statistical Analysis
Demographic and clinical data were compared between groups
using a one-way analysis of variance (ANOVA) or the χ2 test.

Group differences in the HG pattern distribution were
compared on each hemisphere by the χ2 test. Potential
relationship between the HG pattern and age, IQ, or medication
(dose, duration) was assessed using ANOVA with the HG
pattern as an independent variable. For assessing the potential
contribution of the HG pattern to clinical variables (PANSS,

BACS, SCoRS, and mGAF scores) in the ARMS and Sz groups,
analysis of covariance (ANCOVA) was used with age and
medication (dose, duration) as covariates. The relationship
between the HG pattern and clinical variables with non-
normal distribution (SCoRS, mGAF, and BACS executive
function scores for both groups and BACS verbal/working
memory scores for Sz group; tested by Kolmogorov–Smirnov
tests) was also assessed by non-parametric Kruskal–Wallis
tests. PANSS and other BACS scores were normally
distributed. A post hoc Newman–Keuls test was used to
follow-up these analyses. A p-value of <0.05 was considered
to be significant.

RESULTS

Demographic and Clinical
Characteristics (Table 1)
No significant differences were observed in sex, height,
or handedness between groups, whereas age, IQ, and
parental/personal SES significantly differed.
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Lower doses of antipsychotics, less severe positive symptoms,
and higher BACS scores for motor function and attention
subdomains were observed in the ARMS group than
in the Sz group.

HG Pattern Distributions
Both the ARMS (left, χ2 = 9.08, p = 0.003; right, χ2 = 6.93,
p = 0.008) and Sz (left, χ2 = 10.51, p = 0.001; right, χ2 = 11.63,
p < 0.001) groups had a significantly higher prevalence of
duplicated HG patterns (i.e., CSD or CPD) bilaterally than
the controls, whereas the HG pattern did not significantly
differ between these groups (left, χ2 = 0.02, p = 0.880; right,
χ2 = 0.53, p = 0.465) (Table 2 and Figure 2). When we
examined participants with HG duplication only, no group
difference was noted in HG patterns (CSD vs. CPD; all χ2 < 1.82,
p > 0.177). We also compared the first-episode and chronic
subgroups of Sz, but found no significant differences in the
HG patterns (left, χ2 = 0.60, p = 0.741; right, χ2 = 0.06,
p = 0.969).

Furthermore, HG patterns did not significantly differ between
male and female participants (left, χ2 = 0.87, p = 0.648; right,
χ2 = 1.03, p = 0.596), while HG duplication (i.e., CSD or CPD)
was more frequent in the right hemisphere (χ2 = 4.01, p = 0.045)
when all diagnostic groups were combined.

TABLE 2 | Gyrification pattern of Heschl’s gyrus (HG) in study participants.

Healthy controls

Right HG pattern [N (%)]

Single CSD CPD Total

Left HG pattern [N (%)] Single 17 (27.9) 11 (18.0) 7 (11.5) 35 (57.4)

CSD 7 (11.5) 8 (13.1) 2 (3.3) 17 (27.9)

CPD 4 (6.6) 4 (6.6) 1 (1.6) 9 (14.8)

Total 28 (45.9) 23 (37.7) 10 (16.4) 61 (100.0)

ARMS

Right HG pattern [N (%)]

Single CSD CPD Total

Left HG pattern [N (%)] Single 4 (7.0) 7 (12.3) 6 (10.5) 17 (29.8)

CSD 8 (14.0) 11 (19.3) 7 (12.3) 26 (45.6)

CPD 1 (1.8) 6 (10.5) 7 (12.3) 14 (24.6)

Total 13 (22.8) 24 (42.1) 20 (35.1) 57 (100.0)

Schizophrenia

Right HG pattern [N (%)]

Single CSD CPD Total

Left HG pattern [N (%)] Single 7 (11.1) 10 (15.9) 1 (1.6) 18 (28.6)

CSD 2 (3.2) 19 (30.2) 8 (12.7) 29 (46.0)

CPD 2 (3.2) 8 (12.7) 6 (9.5) 16 (25.4)

Total 11 (17.5) 37 (58.7) 15 (23.8) 63 (100.0)

CSD, common stem duplication; CPD, complete posterior duplication.

HG Pattern and Clinical Variables
Medication (for the ARMS and Sz groups), age, and IQ were
not associated with the HG pattern for all diagnostic groups
(Supplementary Table).

In the combined sample of ARMS and Sz participants, there
was a significant effect of the left HG pattern on the BACS verbal
fluency score [F(2,114) = 3.89, p = 0.023]; participants with CSD
had a lower score than those with CPD (p = 0.040). This effect was
significant also for the Sz group only [F(2,57) = 3.69, p = 0.031;
post hoc test, p = 0.044].

At-risk mental state individuals with the left CSD pattern had a
higher PANSS general psychopathology score than those with the
CPD pattern [F(2,51) = 4.97, p = 0.011; post hoc test, p = 0.016].

No association was observed between the HG pattern
and other clinical variables (e.g., SCoRS and mGAF scores;
Supplementary Table).Kruskal–Wallis tests for the clinical
variables with non-normal distribution also showed no
significant association.

DISCUSSION

To the best of our knowledge, this is the first MRI study
to examine the HG duplication pattern in clinical high-risk
individuals for developing psychosis. We demonstrated that
ARMS individuals and patients with established Sz both exhibited
a significantly higher prevalence of duplicated HG patterns than
healthy controls. Furthermore, the HG pattern was associated
with global symptom ratings and verbal fluency ability in
these participants. The present results suggest that the gross
morphological characteristics of the superior temporal plane
represent vulnerability factors associated with psychosis, which
may be associated with clinical trait abnormalities.

The present study replicated our previous findings from an
independent cohort of first-episode Sz (Takahashi et al., in
submission) showing increased HG duplication in Sz patients
and also demonstrated that illness stages (i.e., first-episode vs.
chronic stages) did not significantly influence HG patterns.
On the other hand, a previous study by Hubl et al. (2010)
only found a slightly higher prevalence of duplicated HG in
chronic Sz patients. However, their negative finding may be
partly due to the small sample size examined (13 Sz and
13 control participants) as well as their definition of HG
duplication, which classified the CSD pattern as a variant of
single HG. Since we demonstrated increased HG duplication
in Sz regardless of the subtype (i.e., CSD or CPD), the Sz
group examined by Hubl et al. (2010) must have had a
higher prevalence of the duplicated HG pattern according to
the traditional HG pattern definition [single vs. duplicated
(CSD or CPD) (Leonard et al., 1998; Rademacher et al.,
2001; Abdul-Kareem and Sluming, 2008; Marie et al., 2015)].
While the mechanisms regulating the development of cortical
gyrification remain unclear, the secondary gyri of HG, which
form variations in the HG gyrification pattern, predominantly
develop during the late gestation period (i.e., after 36 weeks
of gestation) (Chi et al., 1977) along with local neuronal
connectivity and synaptic development (Van Essen, 1997), but
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FIGURE 2 | Distribution of Heschl’s gyrus (HG) gyrification patterns in schizophrenia (SZ), at-risk mental state (ARMS), and healthy comparison (HC) groups. CPD,
complete posterior duplication; CSD, common stem duplication.

remain stable after birth (Armstrong et al., 1995). Therefore,
HG gyrification studies in Sz generally support the notion
that the gyrification pattern in Sz represents a stable trait
marker associated with early neurodevelopmental pathology
(Matsuda and Ohi, 2018).

One of the primary results of the present study was that ARMS
individuals, who may be vulnerable to psychopathology but will
not necessarily develop overt psychosis (Yung et al., 2004; Fusar-
Poli et al., 2012a), exhibited an increased HG duplication pattern
similar to that in Sz. Based on the potential relationship between
brain gyrification and local neuronal connectivity (Van Essen,
1997), the present results appear to be consistent with previous
functional neuroimaging findings showing that the ARMS and Sz
groups share local connectivity disruption involved in HG (Yoon
et al., 2015; Du et al., 2018). A few MRI studies on cortical surface
features in clinical high-risk individuals also showed similar gross
morphological characteristics, such as altered sulcogyral patterns
(Sasabayashi et al., 2017; Nakamura et al., 2019) and sulcal-
depth abnormalities (Takahashi et al., 2019b), with patients with
established Sz. In contrast to the evidence of active gray matter
reductions in the superior temporal plane (e.g., HG and planum
temporale) during the early illness stages of psychosis (Takahashi
and Suzuki, 2018), a recent longitudinal study demonstrated
the stability of gyrification features during the clinical high-risk
period as a marker of early neurodevelopmental insults (Damme
et al., 2019). Nevertheless, high-risk individuals with the later
onset of psychosis may exhibit greater gyrification abnormalities
before illness onset (Sasabayashi et al., 2017; Das et al., 2018)
because greater and/or more prolonged neurodevelopmental
deviations during gestation and consequent anomalous post-
pubertal brain changes may lead to overt and sustained psychosis
(Pantelis et al., 2005). Since the present ARMS group with a short
follow-up period (median = 2.4 years) only examined a small
number of participants with a later onset of psychosis (N = 5), the

potential of the HG gyrification pattern as a predictive marker of
the later onset of psychosis remains unclear.

The present results suggested that the partial duplication
of HG (i.e., CSD) was associated with a more severe
general psychopathology in ARMS individuals, supporting
aberrant connectivity in the superior temporal region potentially
contributing to prodromal-like symptoms (Yoon et al., 2015).
However, the present Sz cohort (predominantly chronic cases)
did not replicate the relationship between the CPD pattern
and mild positive symptom severity observed in first-episode
Sz (N = 62) (Takahashi et al., in submission), implicating
that neurodevelopmental pathology may be associated with
susceptibility to positive psychotic symptoms of Sz but this
relationship may be influenced by various factors including
illness stages and treatment. On the other hand, as also suggested
in our sample (Table 1), cognitive deficits, particularly in verbal
fluency and memory functioning, may exist even before the onset
of psychosis as markers of increased vulnerability (Fusar-Poli
et al., 2012b; Lee et al., 2015). In the present study, we found
that participants with the left CSD pattern had a greater deficit
in verbal fluency, but not in other domains or social functioning,
than those with the left CPD pattern in the Sz (N = 63) or
combined Sz and ARMS (N = 120) groups. This result appears
to be consistent with the notion that candidate neural circuits for
verbal fluency deficits include the superior temporal region for
both the Sz (Frith et al., 1995; Antonova et al., 2004) and ARMS
(Meijer et al., 2011) groups. While the functional role of the HG
duplication type (i.e., CPD vs. CSD) remains largely unknown,
participants with the CSD pattern may have a significantly
smaller planum temporale gray matter than those with the
CPD pattern bilaterally for both the Sz and control groups
(Takahashi et al., in submission), which may lead to deficits in
verbal ability (Shapleske et al., 1999). However, the potential
contribution of different HG patterns to the pathophysiology
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of psychotic disorders warrants further study at various illness
stages, particularly using functional neuroimaging.

Several potential limitations in the present study need to
be addressed. First, as described above, it was not possible to
examine whether the HG gyrification pattern was associated
with the future onset of psychosis because only 5 participants
(8.8%) in the ARMS group developed psychosis in the clinical
follow-up period. Furthermore, the ARMS group was younger
than the other groups in the present study. Second, the majority
of Sz and 14 ARMS participants were being treated with
antipsychotics during the present study. These factors were
not expected to significantly affect gross sulcogyral patterns;
however, antipsychotic medication may be a confounding
factor for the morphology of the superior temporal plane
(Takahashi and Suzuki, 2018) and cognitive functioning (Keefe,
2014). Therefore, future studies using a larger antipsychotic
naïve ARMS cohort (particularly participants with a later
onset of psychosis) and well-matched comparison groups
are needed to examine the HG gyrification pattern and its
potential contribution to clinical features (including the later
onset of psychosis). Third, we did not correct our results of
ANOVA/ANCOVA for multiple comparisons due to exploratory
nature of our study. We predicted that the HG pattern would
be associated with cognitive impairments, but we had no
clear hypothesis and comprehensively assessed the potential
contribution of HG pattern to all available cognitive subdomains,
which might lead to potential Type I error. Finally, since
superior temporal gray matter reductions (Takahashi et al.,
2010a,c) and altered brain gyrification patterns (Yang et al.,
2016; Maggioni et al., 2019) have been reported in other
neuropsychiatric disorders (e.g., mood and anxiety disorders
and autism), the disease specificity of the present results
warrant further study.

CONCLUSION

The results of this MRI study demonstrated that clinical
high-risk individuals for psychosis exhibited an increased HG
duplication similar to that in patients with Sz, which may
reflect common vulnerability factors. These groups partly
shared cognitive impairments, which were associated with HG
gyrification patterns. We also found a relationship between the
HG pattern and severity of general symptoms observed in high-
risk individuals. Therefore, the gross morphology of the superior
temporal plane may represent the biological trait abnormalities of
Sz that exist prior to illness onset; however, our findings should
be replicated in an independent and larger cohort especially
for high-risk individuals with and without the later onset of

psychosis in order to investigate potential role of HG pattern as a
predictive marker of Sz.
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