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a b s t r a c t

At the end of 2019, the SARS-CoV-2 virus caused an outbreak of COVID-19 disease. The spread of this
once-in-a-century pathogen increases demand for appropriate medical care, which strains the capacity
and resources of hospitals in a critical way. Given the limited time available to prepare for the required
demand, health care administrators fear they will not be ready to face patient’s influx. To aid health
managers with the Prioritization and Scheduling COVID-19 Patients problem, a tool based on Artificial
Intelligence (AI) through the Artificial Neural Networks (ANN) method, and Operations Research (OR)
through a Fuzzy Interval Mathematical model was developed. The results indicated that combining
both models provides an effective assessment under scarce initial information to select a suitable list
of patients for a set of hospitals. The proposed approach allows to achieve a key goal: minimizing death
rates under each hospital constraints of available resources. Furthermore, there is a serious concern
regarding the resurgence of the COVID-19 virus which could cause a more severe pandemic. Thus, the
main outcome of this study is the application of the above-mentioned approaches, especially when
combining them, as efficient tools serving health establishments to manage critical resources.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In March 2020, COVID-19 was declared as a pandemic dis-
ase [1]. Although very limited clinical information is available
bout the causing virus SARS-CoV-2 [2], the mortality rate of the
isease was estimated at 5.7% [3]. In fact, COVID-19 presents
igher risks to elderly people and those with underlying dis-
ases such as cardiac dysfunctions and obesity [1,4]. As a result
f the rapid increase of COVID-19 patients influx and hospitals
imited capacity, the general principles became closer to those
sed in wars by venerating quick healings. Since World War I,
hen the medical services of the French army adopted a protocol
o manage injured soldiers, that the triage procedure has been
ontinuously improving its efficiency in sorting, classifying and
istributing sick and injured patients to medical staff [5]. In 2020,
talian healthcare workers facing increased numbers of COVID-19
atients have discussed a potential age limit to access to medical
are [6]. The medical personnel were actually unable to respond

∗ Corresponding author.
E-mail address: frcsilvapinto@tecnico.ulisboa.pt (F.S. Pinto).
ttps://doi.org/10.1016/j.asoc.2021.107643
568-4946/© 2021 Elsevier B.V. All rights reserved.
to all requests due to resources constraints, e.g. lack of ventilators
needed for the most critical cases.

The typical symptoms of the disease include fever, cough and
breathing difficulty. A considerable proportion of the infected
patients, estimated to be between 6%–10%, develops pneumo-
nia and requires hospitalization and mechanical ventilation [7].
Since the availability of healthcare resources is critical [8], they
should be efficiently rearranged to manage the influx of patients
requiring intensive monitoring. To address this problem, there is
a growing need for more reliable health services with suitable
patient screening techniques.

In fact, the Prioritization and Scheduling Patients (PSP) prob-
lem is usually considered as a complex and combinatorial prob-
lem [1]. The PSP is conducted to provide health care/services
for each patient in due course. Improper patient prioritization
can lead to incorrect strategic decisions that can endanger pa-
tients’ lives. Furthermore, due to the number of COVID-19 pa-
tients worldwide, the healthcare industry needs an urgent so-
lution to avert the risk of deteriorating patients in terms of
their prioritization according to their critical health conditions.

https://doi.org/10.1016/j.asoc.2021.107643
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107643&domain=pdf
mailto:frcsilvapinto@tecnico.ulisboa.pt
https://doi.org/10.1016/j.asoc.2021.107643
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ndeed, a prioritization process requires synchronized considera-
ion of the inverse relationship amongst the mentioned criteria.
dditionally, ‘‘regular hospital means’’ do not allow to integrate
he continuous flow of information to enrich/update decision-
aking and to help sift through enormous amounts of digital
ata to suggest next steps for treatments, guide providers to
vailable information, or catch potential issues. The PSP process is
onsidered a complex problem of AI and OR, which must comply
ith national health requirements and known standard routine
rocedures, highlighting the integration of different processes
nto a fully automated intelligent computing framework [9–11].

Both the fields of the AI and the OR are interested in de-
eloping approaches to solve difficult combinatorial problems,
articularly in health management. Since several factors are a
ause of increased risk in patients, as verified from medical prac-
ice, it is important to quantify those interactions to allow its
ntegration with other methods. The AI and OR approaches are
oised to play an increasingly prominent role in medicine and
ealthcare because of advances in computing power, learning
lgorithms, and the availability of large datasets sourced from
edical records and wearable health monitors. In [10], Muñoz
ezcano et al. reviewed the most recent research efforts and
pproaches related to these new data driven techniques and tools
n combination with the exploitation of the already available
OVID-19 datasets.
AI methodologies include a large amount of information to

eal with diverse real problems. Generally, the disadvantage of
uch representations is the fact that they exhibit intractable
roblems. Therefore, we are often constrained in using such
ormalisms in handling realistic size problems. However, actual
cheduling problems may be multi-objective by nature. Thus,
umerous approaches were developed to manage the multi-
bjective PSP problems [12]. Generally, OR solutions may be
imited to models with restricted expressive power. In contrast,
I implements an understanding of certain outcomes and sys-
em’s behavior capable of supporting the decision-making pro-
ess throughout the assessment of the predefined options, but it
oes not elaborate the best solutions. Thus, the key challenges to
e addressed are the development of comprehensive representa-
ions of real COVID-19 problems and to guarantee efficient and
apid solutions. Hospitals may face the prospect of prioritizing
atients and allocating scarce resources. Modeling should then
erve for deciding on the best strategies to fight such critical
ituations.
The main objectives of the present study are threefold, namely

i) to apply an AI approach using the Artificial Neural Networks
(ANN) method to predict the death or the recovery of patients
infected with COVID-19, (ii) to apply an OR approach using the
uzzy Interval Mathematical (FIM) model to select a suitable list
f patients with the highest priority for a set of hospitals, and
iii) to combine the ANN method and the FIM model in order to
rovide an improved prioritization scheduling approach solving a
ulti-objective selection problem.
After this introduction, the other parts of paper are planned

n the following procedure. In the next section, the literature
eview is detailed. In Section 3, the Prioritization and Scheduling
f COVID-19 Patients (PSCOVP) Problem is described. In Section 4,
he AI approach (through the ANN method) and the OR approach
through the FIM model) are introduced. Section 5 highlights
he empirical analysis and discusses the results achieved. In the
onclusion, final remarks are drawn.

. Related literature

Literature is paying increasing attention to PSP problems and
umerous reviews about patient prioritization and scheduling
2

systems are available [13]. In healthcare systems, the complexity,
the size and the funding requirements of the PSP problems are
continually increasing [14]. Generally, those problems are con-
sidered complex decision-making procedures [15], and have been
widely researched via mathematical programming [16–18]. Most
of these studies deal with operational objective functions such as
maximizing the use of normal working time and/or minimizing
overtime and costs [19,20]. Regarding optimization models, such
procedures use a first-in-first-out (FIFO) criterion. The above-
mentioned studies assume that patients with similar priority
levels have similar needs and health status evolution. The latter is
the most used criterion of assessing performance from patient’s
perspective and is often used in prioritizing patients [21,22].

In this field, the most researched constraints relate with re-
source availability, such as the available beds and specialists [18].
Min and Yih [23] considered the resources capacity such as the
number of beds or the available medical staff, using linear pro-
gramming. In the study of Sadki et al. [24], the PSP problem
was investigated to minimize the total weighted cost caused
by patient wait-times according to resource capacities. The PSP
problem was studied by Gocgun and Puterman [25] through
the available treatment capacity against the received requests to
assess future demand. Hahn-Goldberg et al. [26] established a
constraint programming-based approach to generate a template
for patient’s accommodation. More recently, Rahimi et al. [27]
reported the invalidity of a FIFO model through the analysis of
waiting-times empirical distribution of different patients. In such
strategy, the incorporation of patient prioritization methods in
the PSP problem uses mathematical programming. Dogru, and
Melouk [28] proposed a simulation approach for appointments
optimization according to patients preferences and medical prac-
tices planning. Van den Broek [29] applied an integrated approach
using linear programming and simulation models to solve the
PSP problem. In this latter study, multiple criteria are requested
for determining the priorities of patients. Creemers et al. [30]
developed an analytical modeling to assess the performance of
appointments scheduling. Admission scheduling of patients with
different priorities is applicable in many fields [31]. Additionally,
it is important to study resource allocation in healthcare manage-
ment. Limited resources, such as bed shortages, causes patients
flow blockage [32]. Therefore, specific literature proposes simu-
lation models for bed management strategies [33]. The traditional
techniques to allocate patients beds are First-Come-First-Serve
(FCFS) and FIFO. A simulation model for beds allocation was
developed by Cardona et al. [34] using the FIFO rule. In fact,
hospitals departments do not only assess the scheduling. For
instance, emergency services manage patients queue according
to resources priorities. The work of Luscombe and Kozan [35]
made an exception to this rule as the authors assumed that
each emergency patient incoming after triage receipts a specific
treatment before taking an additional treatment decision.

Overall, many problems resulting from the COVID-19 pan-
demic require each one a different model to elaborate the best so-
lution. Concerning resources, the availability of beds and ventila-
tors are the most recognized constraints. According to literature,
bed management strategies include several categories such as bed
reservation and patient’s prioritization. Several lines of research
proposed simulation models for bed management of COVID-19
patients, reduction of patients boarding time and improvement
of inpatient flow [36]. Using the FIFO rule, Xuehai et al. [37]
elaborated a simulation model for beds allocation to COVID-19
patients waiting in a queue. Along with FCFS and FIFO procedures,
it has also been considered the needed medical specialties and
availability of ventilator machines in classifying and prioritiz-
ing patients for bed assignment. The work of Budi et al. [38]
attributed patient’s admission priority by the expected length
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f stay and the severity level of COVID-19. It reported that a
rioritized queue can minimize COVID-19 patients fatality cases,
ut increases their waiting time. White et al. [39] and Joseph
t al. [40] categorized COVID-19 patients based on the resource
apacities of the different hospitals studied, such as bed and ven-
ilator resources. Chayu & Jin [41] tested a preference-based deci-
ion rule for COVID-19 patients, using simulation modeling. Data
cientists aim to provide techniques and tools able to support
linicians with COVID-19 patients decisions, from management to
he practice itself. Gupta et al. [9] proposed a prediction model of
onfirmed and death cases of COVID-19 based on a deep learning
lgorithm. Saiz and Barandiaran [11] solved a COVID-19 detection
roblem in chest X-ray images using a deep learning approach.
In addition, recovery or death prediction has also been estab-

ished in elders who become disabled during hospitalization using
ultinomial logistic regression [42]. Using logistic regression,
ucas et al. [43] established a prediction of patient’s recovery
rom severe haemorrhagic shock. Good predictive models were
laborated by Al-Turaiki [44] for MERS-CoV infections via data
ining methods.
All the above-mentioned research used conventional modeling

echniques to solve PSP problems. However, several unconven-
ional modeling approaches could be applied to establish a prior-
tization process through reliable predictive modeling procedures
uch as the ANN and FIM modeling. The main difficulties in a
SCOVP problem are connected to limited resources (e.g. beds),
he priority of patient arrivals, the lack of communication be-
ween hospital’s units, timely information sharing and diversity
f objectives to be optimized. In this work, we present a new ap-
roach of combination of ANN and FIMmethods that incorporates
ultiple constraints/factors and objectives.

. PSCOVP problem and selected data

The PSCOVP problem consists of COVID-19 patients waiting to
e scheduled in a single hospital. It studies bed capacity allocation
n a multi-hospital setting. Hospital beds are a critical but limited
esource shared between distinct classes of COVID-19 patients.
onsequently, hospital bed managers are under great pressure to
ptimally allocate the available bed capacity and the situation
f COVID-19 patients. The PSCOVP can be modeled using the
ollowing indices, parameters, and decision variables:

Indices and sets

n : Index of each patient;
i : Index of each sex;
j : Index of each age;
k : index of each period of illness;
p : Index of each pre-existing condition;
s : index of each degree of symptoms;
f : index of each hospital
t : index of each time
N: Set of patients (N = 1, . . . , n, . . . .n)
I : Set of patients sex

(
I = 1, . . . , i, . . . .i

)
J : Set of patients ages

(
J = 1, . . . , j, . . . .j

)
K : Set of patients period of illness

(
K = 1, . . . , k, . . . .k

)
F : Set of hospitals

(
F = 1, . . . , f , . . . .k

)
T : Set of time

(
T = 1, . . . , t, . . . .t

)
O : Set of objectives (O = α, βorγ )
3

Parameters

lft : Number of beds available in hospital f in instant t
α±

nt : Survival weight by Sex, Age and Illness of patient n in
instant t

β±

nt : Survival weight by Pre-Existing Condition of patient n
in instant t

γ ±

nt : Survival weight by Symptoms Degree of patient n in
instant t

wt
o : Weight of objective o in instant t

Decision variables

δ+

αt : Positive deviation of objective α in instant t
δ−

αt : Negative deviation of objective α in instant t
δ+

βt : Positive deviation of objective β in instant t
δ−

βt : Negative deviation of objective β in instant t
δ+

γ t : Positive deviation of objective γ in instant t
δ−

γ t : Negative deviation of objective γ in instant t
Z±

nft : A decision variable; Z±

nft ∈ [1, 1] if the patient n with
age i, sex j and period k is selected in hospital f in instant
t; Z±

nft ∈ [0, 0] otherwise and Z±

nft ∈ [0, 1] if there is a
disturbance in the choice of patients n in instant t.

Let n be the number of covid-19 patients requesting an ap-
pointment with a hospital. From the medical record data, the
patients’ sex i, age j, period of illness k, pre-existing condition p,
nd degree of symptoms s were verified at the time of admission.
et left be the number of beds reserved for COVID-19 patients and
quipped with requirements e in each hospital f in instant t. Z±

neft
is a binary decision variable, Z±

neft ∈ [0, 1] if the patient n with
age i, sex j and period of illness k is selected by a hospital f by
reserving a bed equipped with requirements e in an instant t;
Z±

neft ∈ [0, 0] otherwise and Z±

neft ∈ [0, 1] if there is a disturbance
in the choice of patient n in instant t. The process includes a
set of f hospitals receiving COVID-19 patients. Each hospital has
a well-defined capacity lfet in instant t. The PSCOVP problem
facing hospitals is to define a subset of patients with a defined
priority. The sum of the priority levels of selected patients is
maximized while not exceeding the number the available beds.
The World Health Organization (WHO) reports were an important
input to solve the PSP. These data indicate the survival or death
rates of several real COVID-19 patients in several countries. The
gender i, the age j, the illness period k, the underlying health
conditions (pre-existing conditions) p, the symptoms degree s of
each patient, and the outcome (death or survival). The problem
can be defined as highlighted in Fig. 1.

This paper solves the PSCOVP problem by using a three-step
procedure. It first estimates patients’ health situations and their
need for ventilators using the ANN method. After that, it proposes
a FIM model to achieve the four main goals with respect to the
available health resources:

- Objective α±

nt , : Maximize survival rates by Sex, Age and
Illness period;

- Objective β±

nt : Maximize survival rates by Pre-Existing health
Conditions;

- Objective γ ±

nt : Maximize survival rates by Symptoms Degree;
For each COVID-19 patient, a priority level (for each parameter

α±

nt , β
±

nt and γ ±

nt ) is assigned by the hospital based on his/her level
of situation.

In a third step, this paper discusses the use of a combined
approach to solve a multi-objective PSCOVP problem based on
results from the FIM and the ANN approaches. FIM-ANN approach
was required to achieve two main goals, the precision of venti-
lator machine need via the ANN method and the optimization of

their selections by the FIM model, simultaneously.
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Fig. 1. Prioritization and Scheduling of COVID-19 Patients (PSCOVP) problem.
. Methodology

In this paper, the PSCOVP problem was studied to provide
ecision makers with a reliable tool to select patients (similarly
o the principles of wartime triage), to achieve the main goals
f lowest death rates and maximum survival rates, under the
estrictions of hospitals’ available capacities (Fig. 2).

The definition of a COVID-19 patients list is a difficult and
omplex process that requires combining various factors needed
o establish a prioritization, e.g. the identification of those need-
ng to be placed on ventilators. The COVID-19 Mortality varies by
egion and over time depending on the testing volume, healthcare
ervices quality and treatment options, time since the begin-
ing of the outbreak and some parameters characterizing the
opulation such as sex, age and health conditions [45].
Based on the actual conditions of a case study, multiple fac-

ors were considered, such as age, gender, medical pre-existing
onditions, symptoms degree and the period of illness of the
atients using the ANN method. Then, a FIM model was proposed
o solve PSCOVP problem under specific constraints, e.g. avail-
ble beds. To achieve an improved PSCOVP, the ANN process
s used to estimate COVID-19 patient’s final health status and
heir need for ventilation. The FIM model is then used to solve
he multi-objective problem under the allocation of the available
ed capacity. Therefore, choosing an integrated ANN and FIM
pproach (ANN–FIM model) to solve a multi-objective PSCOVP
roblem with estimates of ventilator needs, is of paramount
nterest. The data used in the following sections was gathered
rom the Kaggle datasets [46] and Pivot tables (PT) are used to
ummarize, sort, reorganize, group, count, sum or average data
tored in the Kaggle datasets [47].

.1. Artificial neural network method

In this study, the back propagation (traingdx) learning rate,
hich is an efficient training method for the ANN approach [48],
nd the hyperbolic tangent sigmoid transfer function were used
ia MATLAB software. ‘‘tansig’’ was the applied activation func-
ion and the network training function was gradient descent
/momentum & adaptive lr back propagation. The back propa-
ation algorithm involved three layers: an input layer formed by

neurons, a hidden layer covering 10 neurons and two output

4

layers (Fig. 3). Each one of these layers contains one node or
more [49]. The hyperbolic tangent function is defined as:

f (x) = tan h (x) =
ex − e−x

ex + e−x (1)

In ANN modeling, the activation function is important to ma-
nipulate complicated situations. Its main role is to convert input
signals to outputs. The output signal is used as an ‘input’ to the
following layer. The activation function (y) is represented by the
following equation where the entries (xn) are multiplied by the
weights (wi) and the constant bias (Q i) is added. Thus, the output
of the node i is calculated as follows:

yi = f (
k∑

j=1

wikxj + Qi) (2)

A Multilayer perceptron MPL network is formed when con-
necting the nodes in series and in parallel [49].

Specific diseases present a higher risk condition for COVID-
19 patients. Thus, we defined two variables characterizing pre-
existing health conditions, the first represents the number of
diseases from which the patient suffers (ND) and the second
depends on the disease’s nature and fatality rate (PD). In fact,
hypertension and cardiovascular diseases represent higher risk
conditions for COVID-19 patients [4]. We also adopted the num-
ber of symptoms of COVID-19 patients (s) as a sign on the disease
severity. Thus, a total of six input variables are considered to
train the algorithm (age, gender, illness period, ND, s and PD).
This prevents conflicting data from entering the ANN and weak-
ens its understanding of the connection between performance
measures [50,51]. The two outputs incoming from the model are
patient health status (survival/good/ critical/deceased) and the
need for a ventilator machine.

4.2. Fuzzy interval mathematical model

Due to the fast dissemination of SARS-CoV-2 virus, hospitals
may face increasing numbers of infected patients seeking for ad-
equate care. Hospitals may become unable to tend to everybody
due to the lack of medical resources. Since hospitals may not
be able to provide intensive care to all patients, it may become
necessary to establish criteria for the distribution of patients and
the adequate allocation of limited resources. The selection of
COVID-19 patients and their access to intensive care is a difficult
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Fig. 2. Principles applied to the selection of COVID-19 patients.
Fig. 3. Structure of the ANN model.
nd complex process since it involves several parameters that
re hard to interpret. Thus, a model is elaborated to solve the
ultiplicity of possibly conflicting objectives.
The interval fuzzy model identification is an approach of func-

ions approximation using a finite set of data parameters. Ad-
itionally, this method enables the compression of data when
large amount of information is considered. A multi-objective
odel based on fuzzy interval mathematical model is proposed

o select COVID-19 patients for a set of hospitals. This proposed
odel is developed to accomplish four main goals under the

imits of the available resources:
- Objective α: Maximize survival rates by Sex, Age and Illness

eriod;
- Objective β: Maximize survival rates by Pre-Existing health

onditions;
- Objective γ : Maximize survival rates by Symptoms Degree;
- Distance objective: Minimize distance between a patient’s

ome address and the hospital;
Several methods have been developed to solve multi-objective

roblems. One of the most frequently used Multi-objective tech-

iques is Goal programming (GP), which was developed in the

5

early 1960s and was used for problems with non-homogeneous
parameters [52,53].

In this section, four objective functions (Eqs. (3.1)–(3.4)) and
seven constraints (Eqs. (4)–(10)) are used, and described below,
to model and solve the considered problem.

Objective functions

Min Z (α) = wα × [
(
δ+

αt + δ−

αt

)
] (3.1)

Min Z(β) = wβ × [
(
δ+

βt + δ−

βt

)
] (3.2)

Min Z(γ ) = wγ × [
(
δ+

γ t + δ−

γ t

)
] (3.3)

Min Z(d) =

N∑
n=1

F∑
f=1

(
dnft × Z±

nft

)
(3.4)

The first objective α is the minimization of unwanted de-
viations of survival rates by sex, age, and illness period. The
second objective β is the minimization of unwanted deviations
of survival weight by patient’s pre-existing conditions. The third
objective γ is the minimization of unwanted deviations of sur-
vival weight by symptoms degree. These deviations are deviation
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ariables of targets under achievement and over achievement for
ach objective. The objective functions (3.1)–(3.3) seek to mini-
ize the total weighted overachievement for goals α, β and γ .

The fourth objective is the minimization of the distance between
a patient’s home address and the hospital.

Constraints∑
n

∑
f

(
α±

nt∑N
n=1 α±

nt

× Z±

nft ) − δ+

αt + δ−

αt = 1 ∀t (4)

∑
n

∑
f

(
β±

nt∑N
n=1 β±

nt

× Z±

nft ) − δ+

βt + δ−

βt = 1 ∀t (5)

∑
n

∑
f

(
γ ±

nt∑N
n=1 γ ±

nrt

× Z±

nft ) − δ+

γ t + δ−

γ t = 1 ∀t (6)

onstraints (4), (5) and (6) calculate, for a given solution Z±

nft , the
espective positive and negative deviations from each goal.∑
n

Z±

nft ≤ lft ∀f , t (7)

Eq. (7) of the FIM model presents the bed capacity constraint. It
ensures that the bed COVID-19 hospital capacity is respected.∑

f

Z±

nft = 1 ∀n, t (8)

Constraint (8) ensures that each COVID-19 patient is considered
only once by hospital f in instant t.

Z±

nft ∈ [0, 1] ∀n, f (9)

Constraint (10) defines the domain of the decision variables.

δ+

αft , δ
−

αft , δ
+

βft , δ
−

βftδ
+

γ ft , δ
−

γ ft ≥ 0 ∀f (10)

onstraint (10) enforces non-negativity restrictions on the deci-
ion variables.
This model’s allocation objectives guarantee the admission of

atients with the highest chance of recovery to intensive care.
his section presents the procedure to generate a list of COVID-19
atients for each hospital based on their resource and the percent
urvival rates of each patient. This work draws from a sample
f 1115 international cases from which 837 cases were used for
valuation and 278 cases were used for validation and verification
f the fuzzy interval model.
Firstly, the percent death and survival rates were determined

y evaluating the first 837 cases, as shown in Tables 1–3. These
ables were prepared using Pivot Tables (PT) functions, for data
rocessing, and the Kaggle database of covid-19 reports. In Ta-
le 1, there were five indexes: Sex (i), Age (j), Period of illness (k),
re-Existing health Condition (p) and Degree of symptoms (s).
The tables denote a set of interval parameters and variables;

uperscript (±) means interval-valued feature; the (−) and (+)
uperscripts represent lower and upper bounds of an interval
arameter and variables. The proposed model is elaborated to
olve PSCOVP problem based on the survival weight, under the
imits of available beds. To achieve an optimal PSCOVP, the ANN
rocess was used to estimate COVID-19 patient situation and
heir need for ventilation, while the Fuzzy Interval mathematical
FIM) model solved multi-objective problems requiring available
ed capacity allocation in a multi-hospital setting.

.3. Combining approach

The ANN–FIM model is herein used to solve a multi-objective
SCOVP problem combining the artificial neural network and the
uzzy interval mathematical modeling. The ANN–FIM model is
eveloped to achieve the two main goals, the survival weight,
6

nd the estimates of COVID-19 patient situations and their need
or ventilation, under the limits of available beds. The estab-
ished model enables to achieve the composition of hospital bed
quipment necessary for each patient (with or without ventilator
achine) via ANN and the optimization of their selections by the
IM model, simultaneously.

Additional Indices

e : index of bed equipment;
E : Set of bed equipment (e=1,2), e = 1 if the bed

equipment includes a ventilator machine, e = 2
otherwise;

Additional Parameters

left : Number of beds available in hospital f with equipment
e in instant t

Qnet : Estimates patients needing ventilation using ANN
method

Rnt : Estimates patients health status (recovery or death)
using ANN method

New decision variables

Z±

neft : A decision variable; Z±

neft ∈ [1, 1] if the patient n with
age i, sex j and illness period k is selected in hospital f by
reserving a bed equipped with requirements e in instant
t; Z±

neft ∈ [0, 0] otherwise and Z±

neft ∈ [0, 1] if there is a
disturbance in the choice of patient n in instant t.

dditional Objective function

in Z (Q ) = [
(
δ+

Qt + δ−

Qt

)
] (11)

Min Z (R) = [
(
δ+

Rt + δ−

Rt

)
] (12)

Using results given by the ANN approach, a relative weight
as set for each patient concerning their needs Qnet for a ven-
ilator machine and their estimated health status Rnt (recovery
r death). According to the ANN estimations, Rnt is equal to 1 if
he patient situation n is estimated as survival, 0 otherwise. Qnt
s equal to 1 if the patient n is estimated to require the ventilator
achine, 0 otherwise. Based on these results, we add two new
bjectives compared to the previous program:
The objective Q allows integrating the estimated need for

entilation using the ANN method.
The objective R allows integrating the patients estimated

ealth status using the ANN method.
The objective functions (11 and 12) seek to minimize the total

eighted overachievement for goals Q and R.

ew Constraints∑
n

∑
e

∑
f

(
α±

nt∑N
n=1 α±

nt

× Z±

neft ) − δ+

αft + δ−

αft = 1 ∀t (13)

∑
n

∑
e

∑
f

(
β±

nt∑N
n=1 β±

nt

× Z±

neft ) − δ+

βft + δ−

βft = 1 ∀t (14)

∑
n

∑
e

∑
f

(
γ ±

nt∑N
n=1 γ ±

nt

× Z±

neft ) − δ+

γ ft + δ−

γ ft = 1 ∀t (15)

∑
n

∑
e

∑
f

(
Qnt∑N
n=1 Qnt

× Z±

neft ) − δ+

Qt + δ−

Qt = 1 ∀t (16)

∑
n

∑
e

∑
f

(
Rnt∑N
n=1 Rnt

× Z±

neft ) − δ+

Rt + δ−

Rt = 1 ∀t (17)

The total deviations were used in assessing the effectiveness
of the optimization model solutions. Constraints (13)–(17) were
formulated as goal constraints to achieve acceptable goal levels.
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Table 1
Percent survival rates according to sex, age and period of illness intervals.
α±

ijk Period of illness intervals (k) ±5%

Sex (i) Age Intervals (j) Years [0, 4] [4, 8] [8, 12] [12, 16]

Female 0 10 100 97 92 85
Female 10 20 92 89 84 77
Female 20 30 87 84 79 72
Female 30 40 84 81 76 69
Female 40 50 73 70 65 58
Female 50 60 66 63 58 51
Female 60 70 54 51 46 39
Female 70 80 38 35 30 23
Female 80 90 29 26 21 14
Male 0 10 100 97 92 85
Male 10 20 89 86 81 74
Male 20 30 83 80 75 68
Male 30 40 72 69 64 57
Male 40 50 61 58 53 46
Male 50 60 50 47 42 35
Male 60 70 30 27 22 15
Male 70 80 18 15 10 6
Male 80 90 11 10 8 3
Table 2
Percent death and survival weights according to the pre-existing conditions.
Pre-existing condition Death rate ±5% Death weight ±5% Survival weight ±5%

Cardiovascular disease 10.50% 28.689% 14.262%
Diabetes 7.30% 19.945% 16.011%
Chronic respiratory disease 6.30% 17.213% 16.557%
Hypertension 6.00% 16.393% 16.721%
Cancer 5.60% 15.301% 16.940%
No pre-existing conditions 0.90% 2.459% 19.508%
Sum 36.60% 100.000% 100.000%
Table 3
Percent death and survival weights according to symptoms degree.
Degree of symptoms Death Rate ±5% Death Weight ±5% survival Weight ±5%

5 34.00% 44.024% 11.195%
4 25.00% 32.371% 13.526%
3 12.00% 15.538% 16.892%
2 6.00% 7.769% 18.446%
1 0.17% 0.220% 19.956%
0 0.06% 0.078% 19.984%
Sum 77.23% 100.000% 100.000%
Constraint (13) was considered in the model to evaluate the
impact of age, sex, and illness period (α±

nt ) on the severity of
OVID-19. Constraint (14) guarantees high survival rates by pre-
xisting health conditions (β±

nt ) due to the possible strategies.
onstraint (15) was considered in the model to ensure high
urvival rates by symptoms degree (γ ±

nt ). Constraint (16) en-
ures the integration of covid-19 patients needing ventilation
Qnt ), estimated using the ANN method. Constraint (17) con-
rols the covid-19 patients’ health status (Rnt ), estimated using
he ANN method, to assist diagnosis in clinical decision mak-
ng. Constraints (13)–(17) calculate, for a given solution Z±

nft , the
espective positive and negative deviations from each goal.∑
n

Z±

neft ≤ left ∀e, f , t (18)

onstraint (18) ensures that the COVID-19 equipment capacities
re respected.∑
e

∑
f

Z±

neft = 1 ∀n, t (19)

onstraint (19) ensures that each COVID-19 patient is considered
nly once in hospital f with equipment e in instant t.
± [ ]
Zneft ∈ 0, 1 ∀n, e, f (20)

7

Constraint (20) ensures that Z±

neft ∈ [1, 1] if the patient n with age
i, sex j and illness period k is selected in hospital f by reserving
a bed equipped with requirements e in instant t; Z±

neft ∈ [0, 0]
otherwise, and Z±

neft ∈ [0, 1] if there is a disturbance in the choice
of patient n in instant t.

δ+

αt , δ
−

αt , δ
+

βt , δ
−

βtδ
+

γ t , δ
−

γ ft , δ
+

Qt , δ
−

Qtδ
+

Rt , δ
−

Rt ≥ 0 ∀t (21)

Constraint (21) enforces non-negativity restrictions on the deci-
sion variables.

5. Results and discussion

Several researchers have used conventional modeling tech-
niques for modeling and optimizing PSP problems. Unlike con-
ventional approaches, the independence of unconventional mod-
eling techniques on statistical assumptions guarantees the relia-
bility of a model’s predictive capacity. However, to the knowledge
of the authors, almost no research has paid attention to the com-
bination of conventional/unconventional modeling approaches
such as the ANN, the Multi-objective Goal programming (GP) and
the Fuzzy Logic (FL) to study patient’s prioritization processes.

Accordingly, this work aimed to develop a combined PSP ap-
proach that goes beyond patient efficiency, to also consider a
multidimensional priority performance. The performance of each
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Fig. 4. Validation plot of ANN analysis.
Fig. 5. Regression plot from ANN analysis.
OVID-19 patient was determined by the ANN method to pri-
ritize patients in the Fuzzy Interval Mathematical (FIM) model.
his multi-objective model was tested for its ability to improve
esults. In this context, there are two key goals: minimizing death
ates and maximizing survival rates under the constraint of the
vailable resources in each hospital.

.1. Prediction of COVID-19 patients recovery or death using ANN
odeling and the need of machine ventilator

The ANN was used to predict the situation of patients suffering
rom COVID-19: survival, good situation, critical situation and
eath (deceased). The need for a ventilator was also predicted.
irst, the input dataset of the 1115 cases were collected and
nalyzed. 75% of the data (837 cases) were used for training
he model and the remaining 25% (278 cases) were used for the
alidation and the verification of its prediction efficiency. Input
arameters are: age, gender, PD, ND, s and illness period. Fig. 4
8

illustrates the validation curves. The figure shows the perfor-
mances achieved throughout the training. It shows that, as the
epochs increase, the root mean squared error of the training curve
decreases. The best validation performance (0.037) was reached
at epoch 172 (Fig. 4).

Fig. 5 shows the regression plot for the validation, the testing,
and the training of the model.

The correlation coefficient characterizes the strength of the
established relationship between the variables. The elaborated
model exhibited good correlation coefficients (R2 higher than 0,8)
which associates the real and the predicted situations. The latter
results prove the efficiency of the model and its accuracy in the
prediction of patient health status and its need for a ventilator.
The data of the 25% (278 patients) of cases were used to test the
ANN-model

Observed and predicted results about the need of a ventilator
are shown in Table SD 1. This model allowed to predict the

situation for 249 cases among 278 and exhibited a correlation
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able 4
omparison of FIM results with real observations.
FIM results

Mono-objective Multi-objective

Variable
values

Objective
α only

Objective
β only

Objective
γ only

α = β = γ α > β > γ α > γ > β β > α > γ β > γ > α γ > α > β γ > β > α

[1,1] 150 43 88 150 150 150 150 150 150 149

[0,1] 0 214 124 0 0 0 0 0 0 2

[0,0] 128 21 66 128 128 128 128 128 128 127

Comparison of FIM results with observed results

Comparison
results

Objective α

only
Objective β

only
Objective γ

only
α = β = γ α > β > γ α > γ > β β > α > γ β > γ > α γ > α > β γ > β > α

Successful
decision

137 (93%) 239 (92%) 181 (85%) 143 (96%) 143 (96%) 143 (96%) 143 (96%) 143 (96%) 143 (96%) 142 (94%)

Unsuccessful
decision

13 (07%) 18 (08%) 31 (15%) 7 (04%) 7 (04%) 7 (04%) 7 (04%) 7 (04%) 7 (04%) 9 (06%)

Sum 150 257 212 150 150 150 150 150 150 151
t
o
a
s
d
p

t
b
s
A
o
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coefficient equal to 0.9. For the second output, the predicted and
the real health status are shown in Table SD 2. The elaborated
odel was able to correctly estimate the health status of 236
ases among 278, and this result exhibited a correlation coeffi-
ient equal to 0.85. The results of the validation process generated
ome disagreements between observed and estimated situations,
ven though, disagreements were of type ‘good versus survival’
nd ‘critical versus death’.

.2. Selection of COVID-19 patients using the FIM model

The selection of COVID-19 patients for a set of hospitals is a
rocess for screening patient’s data and selecting those with the
ighest survival rates. Thus, PSCOVP is an evaluating procedure
llowing to decide which patients have the priority for medical
are and treatment. To achieve this objective, a FIM model was
stablished. The model parameters are extracted from the col-
ected data of the 1115 international COVID-19 patients. 1029
ases were used for evaluating the death and survival rates of
ach patient (Tables 2 and 3) and the remaining 278 cases were
sed for the validation and the verification of the proposed FIM
odel. The 278 patients are from three countries where a set of
50 hospital beds are available to receive COVID-19 patients, from
hich only 26 are equipped with ventilators. The suitable list of
019-nCoV patient selections for each hospital was determined
y the FIM model and solved with IBM ILOG CPLEX Optimization
oftware (Table SD 3).
Therefore, this model allows to select COVID-19 patients with

riority to be received by hospitals by considering their age, gen-
er, period if illness, pre-existing health conditions, and symp-
oms along with the fixed objectives. The FIM-model sensitiv-
ty analysis was conducted for the different levels of objective
eights. The analysis evaluated the influence of objective weights
n the proposed model. Results are shown in Table SD 2 and
able 4.
Overall, the proposed model is accurate and practical as it

akes into consideration resource limitations in the PSP problem.
ur comparisons were about the quality of the ‘‘correctness’’
f the FIM model decision to confirm or refute the observed
esults from the collected data. Comparing results obtained by the
odel and the real observed situations of the patients (death or
urvival), we noticed that:

• In the first case (objective α only), the selection decision for
each variable is clearly precise so that each variable takes
the values [1, 1] or [0, 0]. In addition, their overall success
rate is 93%. This option, based only on the age and the
sex factors, is not equitable when considered alone and not
really taking much information into account.
9

• In the second case (objective β only), there are few dis-
turbances in the choice of certain patients [0, 1], and their
overall success rate achieves 92% accuracy.

• In the third case (objective γ only), there are major dis-
turbances in the choice of some patients [0, 1], which has
influenced the new precision rate of the selection decision
which decreased to 85%.

• In the other case (multi-objectives α, β and γ ), the selection
decision for each variable is clearly precise so that each
variable takes the values [1, 1] or [0, 0]. In addition, their
overall success decision rate has reached its peak.

By increasing wα and decreasing the other weights at the same
ime, the list of the selected patients tends to the first case (only
bjective α). Furthermore, when increasing wβ and decreasing wα

nd wγ simultaneously, the list of selected patients tends to the
econd case. Additionally, it can be noted that increasing wγ and
ecreasing wα and wβ simultaneously leads the list of selected
atients to the third case by objective γ .
The FIM model alone does not consider the availability of ven-

ilator machines as the available data do not specify the hospital
ed equipment. To consider the availability of bed equipment
uch as ventilator machines, this study proposed to integrate the
NN results into the FIM model to improve the rate of precision
f the selection decision.

.3. Selection of COVID-19 patients using the ANN-FIM approach

In this section, the multi-objective PSCOVP problemwas solved
ith a model combining the ANN and FIM modeling proce-
ures to select COVID-19 patients for a set of hospitals. The
ew list of COVID-19 patient selections for each hospital was
etermined by the ANN–FIM model, as shown in Table SD 4 and
able 5. The new model elaborated prioritized patient according
o their equipment needs. In fact, 25 patients were selected for
eds equipped with ventilator machines and 125 patients were
elected for beds without ventilators.
When combining FIM and ANN modeling (considering prior-

ties of survival and death situations), the complex disturbance
roblem in the choice of certain patients is solved and the rate
f selection decisions precision is equal to 100% for all cases. In
ddition, there is an exact correspondence (with a rate of evalua-
ion of results equal to 100%) between the results established by
he proposed model and the real data about patient’s situations.
election decision for each variable is clearly precise so that each
ariable takes the values [1, 1] or [0, 0]. On the basis of these

results and those given by the ANN modeling, we noticed that
each critical variable changes its value from [0, 1] to [1, 1] when
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Table 5
Comparison of FIM-ANN results with observed results.
FIM-ANN Results

Variable values α = β = γ α > β > γ α > γ > β β > α > γ β > γ > α γ > α > β γ > β > α

[1,1] 150 150 150 150 150 150 150
[0,1] 0 0 0 0 0 0 0
[0,0] 128 128 128 128 128 128 128

Comparison of FIM results with observed results

Comparison results α = β = γ α > β > γ α > γ > β β > α > γ β > γ > α γ > α > β γ > β > α

Successful decision 178 (100%) 178 (100%) 178 (100%) 178 (100%) 178 (100%) 178 (100%) 178 (100%)
Unsuccessful decision 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%)
Sum 150 150 150 150 150 150 150
the ANN method estimates the survival of those cases, but it
takes the value 0 otherwise. Therefore, it was shown that the
hybridized ANN–FIM model performs better than the FIM model
alone in terms of accuracy.

6. Conclusion

The present work presents a novel approach to select an
ppropriate list of COVID-19 patients to be accepted for medical
are within hospitals. From previous studies, a research gap was
ound since most studies treated the problem of selecting patients
rom a minimal waiting time point of view, i.e. by using time
bjectives, without considering the patient’s final situation (death
r survival). To overcome this problem, this work presents a
odel able to solve multi-objective problems with priority ob-

ectives. First, the ANN procedure was used to predict the death
r recovery of the patients suffering from COVID-19 and their
eed for ventilators. Second, the FIM model was formulated to
etermine the list of patients selected for each hospital. The re-
ults from the FIM modeling revealed a disturbance in the choice
f certain patients. To overcome this issue, this study proposed
o integrate the ANN results into the FIM model to improve
atient’s selection. Thus, an ANN–FIM multi-objective model was
eveloped, in which the priority weights of the ANN and the FIM
odel constraints were considered. Finally, an improved solution

o the PSCOVP was achieved by including survival/death rates and
entilator machine requirements. The results obtained indicate
hat combining the ANN method and the FIM model provide an
ffective analysis, able to cope with the scarce initial information
n the selection of a list of COVID-19 patients with distinct prior-
ties to a set of hospitals. The possibility to continuously improve
nd adapt the ANN–FIM framework is of paramount importance
o the healthcare industry, especially in serious health crisis such
s pandemics, from the response phase to the recovery phase.
n the latter phase, as with the COVID-19 example, it is key to
arget the uncertainty linked to new variants and/or vaccination
rocedures.
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