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ABSTRACT: EPAC proteins are therapeutic targets for the
potential treatment of cardiac hypertrophy and cancer metastasis.
Several laboratories use a tetrahydroquinoline analog, CE3F4, to
dissect the role of EPAC1 in various disease states. Here, we
report SAR studies with tetrahydroquinoline analogs that explore
various functional groups. The most potent EPAC inhibitor 12a
exists as a mixture of inseparable E (major) and Z (minor)
rotamers. The rotation about the N-formyl group indeed impacts
the activity against EPAC.
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Tetrahydroquinoline based natural products and analogs
are known to have a wide range of biological activities

including anticancer effects.1 An N-formyl tetrahydroquinoline
analog CE3F4 is used as an EPAC1-selective inhibitor.2−4

EPAC proteins play a role in numerous cellular processes,
which include insulin secretion, neurotransmitter release,
integrin-mediated cell adhesion, cell survival, apoptosis, gene
transcription, and chromosomal integrity.5−12 EPAC1 is
overexpressed in human pancreatic ductal adenocarcinoma
(PDAC) samples, but the mechanism of this overexpression is
unclear.11 Migration and proliferation are key events in cancer
progression,13 and EPAC activation has been shown to regulate
the proliferation and migration of prostate cancer cells.14 As
these cellular functions are crucial for tumor growth and
metastasis, EPAC might represent an attractive therapeutic
target in the treatment of cancers. Considering the important
roles EPAC proteins play in physiological processes, the
development of pharmacological probes that are isoform
selective has attracted significant attention.15−17 Here, we
report the structure−activity relationship of tetrahydroquino-
line (CE3F4) analogs, which includes the characterization of
absolute configuration by X-ray crystallography. Our studies
also revealed that the most potent EPAC1 inhibitor exists as a
mixture of inseparable rotamers. Importantly, our studies reveal
that the minor isomer is probably the major contributor of the
EPAC1 activity.
In order to explore the role of the bromo substitutions (R1

and R2) on the phenyl ring, the stereochemistry (*) at the C-2
position and the role of the N-formyl group (R3) on CE3F4, we

synthesized a focused library of tetrahydroquinoline analogs
(Figure 1). The key steps in the synthesis are (i) reduction of

the commercially available 6-fluoro-2-methylquinoline 1 to
yield the racemic tetrahydroquinoline core, (ii) bromination of
the aryl ring, (iii) resolution using a chiral auxiliary, and (iv)
formylation of the tetrahydroquinoline nitrogen.
To explore the role of the bromine atoms on the phenyl ring

we generated analogs 3, 6, CE3F4, and 8. Unlike CE3F4, which
is a 5,7-dibromo compound analog, 3 does not contain bromine
atoms, analog 6 is a 5-bromo analog, and analog 8 is a tribromo
compound. A Pt/C-catalyzed reduction of 6-fluoro-2-methyl-
quinoline 1 yielded a 6-fluoro-2-methyltetrahydroquinoline
core.18 Formylation of tetrahydroqinoline 2 was accomplished
using acetic anhydride and formic acid to generate analog 3
(Scheme 1).
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Figure 1. Positions on the tetrahydroquinoline explored in the
structure−activity relationship studies.
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Complexation with aluminum chloride (AlCl3) deactivates
the pyridine ring and increases the electron density at the 5-
and 8-positions. Consequently, electrophilic aromatic substitu-
tion of 6-halogenated quinolines or tetrahydroquinolines results
in 5-substituted, 8-substituted, or 5,8-substituted analogs.
AlCl3/Br2-mediated bromination of 1 resulted in 5-bromo-6-
fluoro-2-methylquinoline 4 as the major product. A Pt/C-
catalyzed reduction followed by formylation using acetic
anhydride and formic acid yielded the monobromo-N-formyl
tetrahydroquinoline 6. Bromination using AlCl3/Br2 of analog 3
yielded CE3F4. Careful chromatography resulted in the
isolation of 8, the tribromo compound, as a minor product.
Analogs 9 and 7 were synthesized to assess the role of the

formyl group in CE3F4. The acetyl variant 9 was generated in
two steps. The formyl group was removed from CE3F4 under
acidic conditions to generate analog 7, which was acetylated to
generate 9.
Courilleau et al. reported an SAR of tetrahydroquinoline

analogs which included compounds 6, 7, and 9 in Table 1.3 The

present study expands on this SAR and includes additional
analogs and characterization of all compounds evaluated. The
tetrahydroquinoline analogs were analyzed for their ability to
inhibit EPAC1 activation. EPAC1 was stimulated in the
presence of 10 and 50 μM of the tetrahydroquinoline analogs.
The activity of the inhibitors was screened using a BODIPY-
GDP-based guanine nucleotide exchange factor (GEF) activity
assay of Rap1 as described previously.19 The 5-bromo-
substituted analog 6 was ∼3-fold more potent than analog 3
that does not have the Br atom at the 5 position. The 5,7-
dibromo analog CE3F4 was ∼4-fold more potent than the
monobromo analog 6. Interestingly, adding another bromine
atom at the C-8 position resulted in a ∼2.5-fold loss of activity.
A comparison of CE3F4, 9, and 7 shows that replacing the
formyl group with an acetyl in 9 or removal of the formyl group
in 7 resulted in loss of activity. We also evaluated the R and S
isomers of 3, 6, and 7 to determine the effect of the
stereocenter on EPAC activity (Table S1). The data shows that
the presence of the formyl group makes the R analogs more
potent than the S analogs. For example, 6R is ∼3-fold more
potent than 6S. On the other hand, in the absence of the formyl
group the S analog is more potent than the R analog (7S analog
is ∼7-fold more potent than 7R). Together, these demonstrate
that 1-formyl, 6-fluoro, and 5,7-dibromo substitution on the
tetrahydroquinoline is optimal for the inhibition of EPAC1
activity (Table 1).
Coupling of 6-fluoro-2-methyl-1,2,3,4-tetrahydroquinoline 2

with tosyl-S-prolinoyl chloride resulted in diastereoisomers 10a
and 10b (Scheme 2).20 The diastereomeric mixture was column
separable and the individual isomers were separated using an
isocratic 9:1, dichloromethane and ethyl acetate mobile system.
The absolute configuration of the diastereoisomers was
determined by X-ray crystallography analyses (Figure S1).

Scheme 1. Synthesis of Tetrahydroquinoline Analogsa

aReagents and conditions: (a) 5% Pt/C, AcOH, H2, rt, 16 h; (b) AlCl3, Br2, 1,2-dichloroethane, 60 °C, 3 h; (c) acetic anhydride, formic acid, 0−50
°C, 6 h; (d) acetyl chloride, pyridine, DCM, 0 °C, 2 h; (e) 10% HCl, EtOH, reflux, 4 h.

Table 1. Evaluation of Tetrahydoquinoline Analogs

% EPAC inhibition

no. R1 R2 R3 R4 lowa highb

3 H H CHO H 5.3 5.0
6 Br H CHO H 15.8 42.0
CE3F4 Br Br CHO H 58.1 88.3
7 Br Br H H 40.8 74.1
8 Br Br CHO Br 23.6 46.0
9 Br Br COCH3 H 8.7 26.2

a10 μM. b50 μM.

Scheme 2. Synthesis of Tetrahydroquinoline Enantiomersa

aReagents and conditions: (a) tosyl-S-prolinoyl chloride, DIPEA, DCM, 5-10 °C, 30 min. reflux; (b) NaOEt, EtOH, reflux, 6 h; (c) acetic anhydride,
formic acid, 0−50 °C, 6 h; (d) AlCl3, Br2, 1,2-dichloroethane, 60 °C, 3 h; (e) Lawesson’s reagent, toluene, 100 °C, 6 h.
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Bromination of the individual isomers resulted in 12a and 12b
(R)- and (S)-CE3F4). We also generated the corresponding
thioformyl isomers 13a and 13b using Lawesson’s reagent. The
absolute configurations of 12a, 12b, 13a, and 13b were
established by X-ray crystallography (Figure 2).

1H NMR of 12a and 12b revealed that they exist as a mixture
of two rotamers in a 3:1 ratio. It is well-known that N-formyl
compounds exist in a solution as interconverting rotamers.
Rotation about the N-formyl (N-CO) bond has been of great
interest to organic chemists.21−23 NMR studies have been used
to estimate the energy barrier for the rotamer interconversion24

in compounds such as N-formyl-1-bromo-4- hydroxy-3-
methoxymorphinan-6-one, the key intermediate in opiate
synthesis.25 We conducted a temperature-dependent NMR
study to confirm that 12a indeed exists as a pair of
interconverting rotamers in solution.

We observed peak broadening for a subset of peaks at higher
temperatures, which is due to the dynamic exchange between
the two rotamers (Figure 3 and Figure S2).
A complete coalescence was observed for all signals at 79 °C.

The reversibility of these changes was verified when the
experimental temperature was returned to 25 °C. We used the
data obtained from the variable temperature NMR studies to
calculate the energy barrier. The energy barrier (avg) for the
major to minor is 16.6 kcal/mol, while the energy barrier (avg)
for the minor to major rotamer is 15.9 kcal/mol (Table S2).
The major rotamer (E) is ∼0.7 kcal/mol more stable than the
minor rotamer (Z).
We conducted NOESY experiments with mixing times of 50,

200, and 400 ms to assign the signals for the two rotamers. The
peak volumes measured by the NOE experiments correlated
with the distance between the formyl hydrogen atom and the
hydrogen atom at the C-2 position (Figure 4 and Figure S3).

Figure 2. X-ray crystal structures of 12a, 12b, 13a, and 13b.

Figure 3. Variable-temperature 1H NMR spectra of 12a in DMSO-d6 from 20 to 79 °C demonstrating the presence of rotamers.
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To determine the rate of interconversion we dissolved the
crystals in DMSO-d6 for a quick 1H NMR. Remarkably, we
observed the rotamers in a ∼3:1 ratio, indicating the rapid
equilibration in a solution.
A comparison of the NMR and crystallography study resulted

in a rather puzzling conundrum wherein only the minor
rotamer crystallized. Crystallography data suggests that the
packing interactions are probably better in the minor rotamer.
Thioamide is a well-known isosteric replacement of amides.
The larger charge transfer from N to S in thioamides results in
increased C-N rotational barrier by ∼5 kcal/mol when
compared to the corresponding amides.26 Based on this, we
speculated that a thioformyl analog (13a in Scheme 2) will
adopt the E geometry, consistent with the major rotamer of
12a. NMR studies revealed that analog 13a is a single rotamer
(Figure S4). NOESY studies revealed that the N-thioformyl
group indeed adopts the E conformation, which is consistent
with what was observed by X-ray crystallography (Figure 2, 13a
and 13b).
We also explored the solvent effect on the rotamer ratio

(C6D6, CDCl3, CD2Cl2, CD3COCD3, and CD3CN) and found
that the major isomer was slightly more favored in the nonpolar
solvents (Figure S5). Since 12a and 12b will be used for
biological studies, we wondered if the rotamer ratio will be
influenced by the presence of water. To test this, we conducted
1H NMR studies with increasing ratios of D2O/DMSO-d6. The
rotamer ratio of 3:1 was stable even at 40% D2O (Figure S6),
indicating that the rotamers exist in aqueous solutions.
We next explored the effect of the stereochemistry at the C-2

position with analogs 12a and 12b on EPAC1 activity and
selectivity. The R-isomer 12a was ∼10-fold more potent against
EPAC1 than the S-isomer 12b. The R-isomer was ∼7-fold
selective for EPAC1 over EPAC2; interestingly, the selectivity
was reversed with the S-isomer (Table 2). This demonstrates

that the enantiomers engage EPAC1 and EPAC2 differently,
and the cocrystal structure of EPAC1 and EPAC2 with the
enantiomers will reveal the differences in their binding modes.
Analog 13a is ∼5-fold less active than 12a. This is because

12a exists as a mixture of rotamers while 13a does not.
Compound 13a adopts the conformation that corresponds to
the major rotamer conformation of 12a. The loss of activity
associated with 13a suggests that the minor rotamer
conformation of 12a is the major contributor to the EPAC1

activity. This is partially supported by the lower activity
observed with analog 8 (Table 1) that could potentially restrict
access to the minor conformation due to steric hindrance. The
present study does not address if demethylation (2-position) of
analog 12 will eliminate the rotamers; i.e., the formyl group on
such an analog will adopt the conformation that corresponds to
the major rotamer in 12. It is also possible that the rotamer
distribution is dictated by hypothetical hydrogen bonds
between the formyl oxygen atom and the hydrogen atoms at
the 2-postion methyl group and/or the 8-position on the
phenyl ring.
In conclusion, we report a route (24% overall yield) for

gram-scale synthesis of the EPAC1 inhibitor 12a with low μM
potency. The structure−activity relationship study demon-
strates that the two bromine atoms and the formyl group are
critical for activity. Moreover, the importance of the stereo-
chemistry at the C-2 position on activity and selectivity of 12a
was demonstrated. Herein, we provide extensive chemical and
structural characterization of 12a. NMR studies revealed that
12a exists as a mixture of inseparable rotamers in a 3:1 ratio.
The minor 12a rotamer crystallized, indicating better packing
interaction, and when the crystals were dissolved they rapidly
equilibrated to the 3:1 ratio. Studies with the thio analog 13a
revealed that it exists as a single compound that corresponds to
the major rotamer in 12a. Importantly, EPAC activity studies
with 12a, 12b, 13a, and 13b indicate that the minor rotamer
could be the major contributor to the EPAC1 activity.
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Figure 4. Major and minor rotamers determined based on NOESY
spectra.

Table 2. Evaluation of 12a, 12b, 13a, and 13b

IC50 (μM)

EPAC1 EPAC2

12a 3.3 ± 0.4 22.3 ± 2.1
12b 31.3 ± 9.2 17.1 ± 3.5
13a 17.6 ± 6.5 N/D
13b >100 N/D
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