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Heart over mind: metabolic control of
white adipose tissue and liver
Michinari Nakamura & Junichi Sadoshima

Increasing evidence suggests that the
heart controls the metabolism of periph-
eral organs. Olson and colleagues
previously demonstrated that miR-208a
controls systemic energy homeostasis
through the regulation of MED13 in
cardiomyocytes (Grueter et al, 2012). In
their follow-up study in this issue of EMBO
Molecular Medicine, white adipose tissue
(WAT) and liver are identified as the physi-
ological targets of cardiac MED13 signal-
ing, most likely through cardiac-derived
circulating factors, which boost energy
consumption by upregulating metabolic
gene expression and increasing mitochon-
drial numbers (Baskin et al, 2014). In turn,
increased energy expenditure in WAT and
the liver confers leanness. These findings
strengthen the evidence of metabolic
crosstalk between the heart and periph-
eral tissues through cardiokines and also
set the stage for the development of novel
treatments for metabolic syndrome.

See also: KK Baskin et al (December 2014)

T he functions of multiple organs

located far apart can be regulated in a

coordinated manner through neuro-

hormonal communication. Recently,

however, this classic endocrine mechanism

has been dramatically expanded since novel

factors secreted from organs previously

assumed to be primarily non-endocrine,

such as adipose tissues and skeletal muscle,

have been shown to regulate the function

of distal organs. The heart requires a

considerable supply of energy for continu-

ous pumping and continuously adapts to

hemodynamic stress; it is therefore conceiv-

able that heart-driven metabolic networks

with peripheral organs are in place to

achieve efficient coordination. For example,

if the pumping function is reduced, the heart

may signal peripheral organs to reduce

oxygen and nutrient consumption. Alterna-

tively, the heart may instruct peripheral

organs to release energy substrates, such as

fatty acids, to be delivered to the heart,

thereby improving cardiac contractility.

Indeed, increasing evidence suggests that

the heart is an organ that secretes proteins

referred to as cardiokines, for inter-organ

and inter-cellular communication. More

than 16 secretory proteins have been

identified thus to be cardiokines, including

atrial natriuretic factor (ANF), B-type natri-

uretic peptides (BNP), angiotensin II, growth

differentiation factor (GDF)-15, follistatin-

like (Fstl) 1, myostatin, activin A, and Fstl3

(Shimano et al, 2012). These cardiokines

play physiological and pathological roles in

the regulation of growth, death, fibrosis,

hypertrophy and remodeling. However,

much less is known about the role of cardio-

kines in mediating metabolic crosstalk

between the heart and peripheral tissues.

Natriuretic peptides are the most well-

studied cardiokines and mediate natriuresis,

diuresis, and vasodilation in the failing heart

(de Bold, 2011). ANF also inhibits glycoly-

sis, increases gluconeogenesis in the rat liver

(Rashed et al, 1992), and regulates lipolysis

and lipid mobilization in human adipocytes

(Sengenes et al, 2000). Cardiac natriuretic

peptides also upregulate PPARc coactivator-

1a (PGC-1a) and uncoupling protein 1

(UCP1) in adipocytes, leading to increases in

mitochondrial biogenesis, thermogenesis,

and energy expenditure (Bordicchia et al,

2012). Although the functional significance

of the interaction between the heart and

peripheral tissues through natriuretic

peptides remains poorly understood, these

observations suggest that the heart can

regulate metabolism in the adipose tissue

through cardiokines.

Recently, Eric Olson’s group reported that

the heart controls systemic energy metabolism,

fat mass, and body weight via microRNA-208a

(miR-208a) and Mediator complex subunit

13 (MED13) signaling (Grueter et al, 2012).

miR-208a is encoded by an intron of the

a-myosin heavy-chain (MHC) gene and is

required for upregulation of bMHC and

cardiac growth in response to pressure over-

load or hypothyroidism (van Rooij et al,

2007). MED13 is a direct target of miR-208a

and as such negatively regulated by miR-

208a. MED is a key component of the tran-

scriptional machinery (Malik & Roeder,

2010). MED13 is one of about 30 mamma-

lian MED subunits and comprises a kinase

submodule with MED12, cyclin c, and

cyclin-dependent kinase 8. MED13 controls

gene transcription through thyroid hormone

(TH) receptors and other nuclear hormone

receptors that are known to regulate cardiac

and systemic energy homeostasis (Huss &

Kelly, 2004). Olson and colleagues found

that in mice, inhibition of miR-208a or

upregulation of MED13 in the heart confers

leanness and resistance to diet-induced

obesity through an increase in whole-body

energy consumption. Conversely, genetic

deletion of MED13 in the heart resulted

in increased susceptibility to obesity.

Whereas these findings clearly suggest that

the heart signals to other tissues to alter

their energy metabolic function, important

questions remained: (i) What is the molecu-

lar mechanism by which cardiac MED13

regulates systemic energy metabolism? Is it

mediated by cardiokines? (ii) If so, which

organs are targeted by cardiokines to confer

leanness? Olson and colleagues address these
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questions in their paper featured in this issue

of EMBO Molecular Medicine (Baskin et al,

2014).

In cardiac-specific MED13-overexpressing

mice (MED13cTg mice), MED13 increases

systemic clearance of lipid from the blood

by 60%. Despite the fact that MED13 was

overexpressed only in the heart, lipid

uptake, b-oxidation, mitochondrial content,

and many genes involved in fatty acid

metabolism and the Krebs cycle were

increased in white adipose tissue (WAT)

and liver. Although skeletal muscle accounts

for approximately 30% of the resting

whole-body metabolism (Zurlo et al, 1990),

this was unaffected in MED13cTg mice. It is

thus likely that WAT and liver are the

targets of cardiac MED13 signaling and that

induction of leanness is in part due to

increased lipid utilization and oxygen

consumption in the two organs. Further-

more, using heterochronic parabiosis, the

authors show that the lean phenotype and

the increased energy expenditure and mito-

chondrial activity in WAT and the liver were

also induced in non-transgenic mice sharing

their circulation with MED13cTg mice.

These findings suggest that circulating

factors secreted from the MED13cTg heart,

most likely cardiokines, regulate metabolic

gene expression and metabolic rates in WAT

and liver, thereby leading to leanness.

These findings are novel and highly

significant but two important questions

await answers. First, what is the identity of

the key circulating blood factors or cardio-

kines, and what are the mechanisms by

which lipid metabolism is upregulated in

WAT and liver? In the current paper, hematic
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Figure 1. Metabolic communications between the heart and other tissues.
More than 16 proteins secreted from the heart have thus far been identified as cardiokines. Some of these act on other tissues to regulate metabolism in an endocrine manner.
(A) Upregulation of MED13 in the heart enhances lipid utilization in white adipose tissue (WAT) and liver via unidentified circulating factors but decreases lipid utilization in
the heart, thereby increasing systemic energy expenditure and leading to leanness (Baskin et al, 2014). (B) Metabolic derangement in a primary genetic heart disease, such as
familial hypertrophic cardiomyopathy (HCM), adversely impacts liver metabolism (Magida & Leinwand, 2014). (C) Natriuretic peptides enhance lipolysis, lipid mobilization,
and thermogenesis in adipocytes, in addition to natriuresis, diuresis, and vasodilation (Rashed et al, 1992; Sengenes et al, 2000; Bordicchia et al, 2012). (D) Secretion of
myostatin (and probably other cardiokines, such as activin A) from the heart is increased in heart failure (HF) and accounts for muscle wasting (Shimano et al, 2012).
Myostatin secreted from the skeletal muscle regulates lipid metabolism in adipose tissue (Lee, 2004). (E) Upregulation of MED13 in the heart and muscle increases the
secretion of Wingless (Wnt), which enhances lipid metabolism in adipocytes in Drosophila (Lee et al, 2014). miR-208a, microRNA-208a; MED13, Mediator complex subunit 13;
ANF, atrial natriuretic factor; BNP, B-type natriuretic peptide; NPRA, natriuretic peptide receptor A; PKG, cGMP-dependent protein kinase.
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levels of known metabolic hormones (such

as insulin, adiponectine, thyroxine, and

corticosterone), catecholamines, and natri-

uretic peptides are reported not to be altered.

Recent evidence suggests that metabolic

derangement in the heart caused by familial

hypertrophic cardiomyopathy adversely

impacts liver metabolism in part due to

reduced lipid clearance from the blood by

the heart. The consequent hepatic dysfunc-

tion in turn aggravates cardiac dysfunction

(Magida & Leinwand, 2014). These results

suggest that an inter-organ feedback mecha-

nism may exist between the heart and the

liver, probably through metabolites acting as

soluble messengers, thus adversely affecting

the each other’s functions. In contrast, the

current work demonstrates a favorable and

positive regulation of WAT and liver fat

metabolism by cardiac MED13 signaling,

suggesting the involvement of cardiokines

distinct from those involved in the negative

regulation of the liver. The Olson group has

recently identified Wingless, secreted from

muscle via MED13 regulation, and Arma-

dillo, the downstream transcriptional effector

of the Wingless pathway, as key factors of

adiposity in Drosophila (Lee et al, 2014).

Wingless (Wnt) appears to be a soluble media-

tor of muscle MED13 signaling, and it

decreases lipid accumulation in adipocytes.

Interestingly, activation of the canonical Wnt-

b-catenin pathway in adipose tissue was

recently shown to decrease fat mass in

mammals (Zeve et al, 2012). In aggregate,

these findings suggest an evolutionarily

conserved metabolic crosstalk between the

muscle and adipose tissue. Whether or

not the Wnt-b-catenin pathway mediates

the effect of cardiac MED13 on the lean

phenotype in mice remains to be elucidated.

Second, what are the physiological and

pathological roles of endogenous MED13?

Might endogenous cardiac MED13 signaling

be regulated in response to metabolic stress,

such as obesity and insulin resistance? The

expression of miR-208a increases develop-

mentally, in parallel with the switch in

expression from the b-MHC to the a-MHC

gene, coincident with a surge of circulating

thyroid hormone shortly after birth (Callis

et al, 2009). Since left ventricular heart

failure is often accompanied by upregulation

of b-MHC and therapeutic inhibition of miR-

208a improves left ventricular cardiac func-

tion in Dahl hypertensive rats (Montgomery

et al, 2011), one can speculate that miR-

208a is upregulated and, thus, MED13 might

be downregulated during heart failure. On

the other hand, miR-208 is progressively

downregulated in the right ventricle (RV),

which, in turn, activates the MED13-NCoR1

pathway, inhibits myocyte enhancer factor

2, and exacerbates RV failure (Paulin et al,

2014). While the change in cardiac MED13

appears sufficient to induce metabolic effects

in WAT and the liver, how it affects both

cardiac and systemic metabolism during

heart failure, the hallmarks of which are the

heart running out of fuel and the presence of

cachexia, remains to be elucidated

(Neubauer, 2007). It should be noted that

genetic deletion of miR-208a increases

myostatin (known to be a cardiokine) in

the heart (Callis et al, 2009; Shimano et al,

2012), which in turn induces cachexia,

characterized by body and muscle wasting

(Anker et al, 1997; Lee, 2004; Heineke

et al, 2010), and increases mortality in

patients with heart failure (George et al,

2010). In the current study, the authors

report that upregulation of MED13 downre-

gulates genes involved in b-oxidation
and the TCA cycle. It would be interesting

to establish whether the effect of MED13

on cardiac metabolism impacts on the

function of cardiomyocytes and why

MED13 differentially affects the cardiac

muscle and peripheral organs.

Pharmacological interventions to modu-

late cardiac miR-208a-MED13 signaling or

MED13-regulated cardiokines may provide

therapeutically useful avenues in obesity,

diabetes, dyslipidemia, and the other

systemic metabolic disorders. Indeed, inhibi-

tion of miR-208a with LNA-anti-miR-208a

conferred resistance to diet-induced obesity

and glucose intolerance (Grueter et al,

2012). It should be noted, however, that

genetic deletion of miR-208a decreased

connexin 40 expression and induced arrhyth-

mia, such as atrial fibrillation (Callis et al,

2009). Thus, it is necessary to carefully evalu-

ate whether pharmacological interventions

would similarly affect the cardiac conduction

system and thus induce arrhythmia. The level

of MED13 and cardiokines may be regulated

by other parallel mechanisms in addition to

miR-208a, which may therefore be considered

should the modulation of miR-208a prove

problematic and/or unfeasible.

In summary, Olson and colleagues identify

WAT and liver as the target organs of cardiac

MED13 signaling, which enhances energy

consumption by increasing lipid metabolic

gene expression and mitochondrial numbers.

Parabiosis experiments suggest the existence

of circulating blood factors, perhaps cardio-

kines, regulated by the miR-208/MED13 path-

way. These findings do not only strengthen

the evidence of metabolic crosstalk between

the heart and peripheral tissues, but also bear

therapeutic implications for systemic meta-

bolic disorders, such as obesity.
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