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Persistent homology methods have found applications in the analysis of mul-
tiple types of biological data, particularly imaging data or data with a spatial
and/or temporal component. However, few studies have assessed the use of
persistent homology for the analysis of gene expression data. Here we apply
persistent homology methods to investigate the global properties of gene
expression in post-mortem brain tissue (cerebral cortex) of individuals with
autism spectrum disorders (ASD) andmatched controls.We observe a signifi-
cant difference in the geometry of inter-sample relationships between autism
and healthy controls as measured by the sum of the death times of zero-
dimensional components and the Euler characteristic. This observation is
replicated across two distinct datasets, and we interpret it as evidence for
an increased heterogeneity of gene expression in autism. We also assessed
the topology of gene-level point clouds and did not observe significant differ-
ences between ASD and control transcriptomes, suggesting that the overall
transcriptome organization is similar in ASD and healthy cerebral cortex.
Overall, our study provides a novel framework for persistent homology
analyses of gene expression data for genetically complex disorders.
1. Introduction
Autism spectrum disorders (ASDs), and more broadly neurodevelopmental
disorders, are clinically as well as genetically heterogeneous conditions [1].
ASDsmanifest with a combination of social interaction impairment and repetitive
behaviours, accompanied by language deficits [2]. The clinical picture varies
widely, with individuals at one end of the spectrum being severely impaired
andneeding permanent care,while at the other end of the spectrum,ASDpatients
can be highly functional. The clinical heterogeneity ofASDs ismirrored by genetic
heterogeneity. Although ASDs are highly heritable (with population-based
heritability estimates around 50% [3]), the genetic variants that underlie this
heritability have proven difficult to identify [4]. Recent estimates suggest that
hundreds of common and rare variants contribute to disease risk, and the
combination of genetic variants differs widely between ASD individuals [4].

To investigatewhether geneticvariants convergeontoacommonset ofmolecular
pathways at the level of gene expression, we and others have carried out gene
expression studies of post-mortem brain tissue from ASD individuals [5–7]. These
studies have identified genes differentially expressed between ASD and controls,
highlighting a downregulation of neuronal synaptic genes and an upregulation of
immune and inflammatory genes. Co-expression network analyses have also been
employed to identify groups of genes that covary across the ASD and control
samples, thereby being able to identify more subtle gene expression differences
between ASD and control brain [6,7]. However, it remains unknown whether there
are global differences between the brain transcriptomes of ASD cases and controls.

Genome-wide expressiondata are characterized by complex interdependencies
and nonlinearities that are often missed by standard statistical methods. Topology
has emerged as apowerful tool to analyse and interpret high-dimensional data, due
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to its ability to study properties that are robust against choice
of coordinates, choice of metric and more generally continu-
ous deformations, motivating its use in the analysis of
transcriptome data [8]. Persistent homology introduced by
Edelsbrunner et al. [9] aims to characterize essential topologi-
cal features of an object. Therefore, it is rather intuitive to
apply to spatial or temporal data. Persistent homology
has been applied successfully for unsupervised learning on
imaging data [10], including brain scan data in neurodevelop-
mental disorders [11]. However, few studies have explored
it as a method to analyse gene expression data. To our
knowledge, the application of persistent homology to gene
expression has been limited to the analysis of time-course
series [12] and assessing the effect of copy number variants
on gene expression in cancer [13]. The latter study assessed
the component of gene expression explained by the gene’s
spatial coordinates (i.e. chromosomal location).

Here we assess for the first time the application of persist-
ent homology to gene expression data from individuals with
a genetically complex disorder of unknown cause (i.e. with-
out known chromosomal abnormalities). We apply this
approach to two gene expression datasets from brain samples
of individuals with idiopathic autism and matched controls
[6,7]. The overall aim of our study (figure 1) was to better
understand the global properties of gene expression data in
the ASD and control groups. To this end, each gene
expression dataset of N genes measured in M samples was
conceptualized as either of the following.

(a) A cloud of M points in N-dimensional space, where each
point designates a sample, and the distance between
points represents inter-sample dissimilarity. Studying the
topological properties of such a sample-level point cloud
allows the identification of nonlinear relationships between
samples. We compared the topological properties of the
ASD and control sample point clouds in the two distinct
gene expression datasets and found significant differences
between ASD and controls, suggestive of increased hetero-
geneity among the ASD samples. This observation was
replicated across both datasets.

(b) A cloud of N points in M-dimensional space, where each
point designates a gene, and thedistance betweenpoints rep-
resents the dissimilarity between genes. Persistent homology
analysis of gene-level point clouds is conceptually a version
of co-expression networks. Unlike standard co-expression
networks, however, here we assessed the dissimilarity
matrix using topological descriptors rather than hierarchical
clustering. The use of topological descriptors such as the
Euler characteristic (Material and methods) allowed us
to globally assess the geometry of a gene expression dataset
and to compare the topological properties between ASD
and control transcriptomes. Interestingly, we did not
observe a significant difference in the topological descriptors
of ASD and control transcriptomes in either of the two
datasets investigated, suggesting that the global transcrip-
tome organization is not altered in ASD brain.

2. Material and methods
2.1. Overview of persistent homology
Classical homology investigates the topological properties of
objects in a manner independent of scale, while persistent
homology is a more recent topological data analysis method that
examines changes in topological features in an object which
evolves with respect to a scale parameter (reviewed in [14,15]).
The objects we investigate using persistent homology are the
point clouds formed by either samples or genes, and their associ-
ated pairwise distance matrices for each gene expression dataset.

2.1.1. Simplices and simplicial complexes
In classical algebraic topology, objects are represented through
simplicial complexes, which in turn are a collection of building
blocks called simplices: a 0-simplex represents a point, a 1-sim-
plex represents a segment, a 2-simplex represents a triangle, a
3-simplex represents a tetrahedron, etc. A simplicial complex
consists of a finite set of simplices ‘glued’ together [16].

Vietoris–Rips simplicial complexes, which are used in the pre-
sent study, are defined as follows. Given a set of points V,

Rn (vertex set) and a distancemetric d onRn, the Vietoris–Rips sim-
plicial complex VR(V, ε) is defined as the simplicial complexwhere
{v0,… ,vk} spans a k-simplex if d(vi, vj)≤ ε for all 0≤ i, j,≤ k.

2.1.2. Persistent homology
In persistent homology, ε varies, which allows the assessment of
topological invariants of an object at different scales. By choosing
a sequence of epsilons that increase 0 < ε0< ε1< ε2 <… < εn <…
εmax (where εmax is the maximum distance between two
points), we form an increasing sequence of simplicial complexes:
VR(V, ε0) , VR(V, ε1) , VR(V, ε2),…, VR(V, εn),…, VR(V,
εmax). Considering the kth singular homology of these simplicial
complexes, we form a sequence of maps between Hk homology
groups: Hk (VR(V, ε0), Z )→Hk (VR(V, ε1), Z)→Hk(VR(V, ε2),
Z )→…→Hk(VR(V, εn), Z )→…Hk(VR(V, εmax), Z ).

Z denotes integer numbers and here it represents the coeffi-
cients of the homology groups.

Roughly speaking, homology groups (Hk) are composed of
topological cycles; for example, connected components for k = 0
and k-dimensional holes for k > 0. The fact that homology
groups have Z coefficients means that the operations applied to
topological cycles are addition, subtraction and multiplication
with integer numbers.

The aim of persistent homology is to identify features of an
object that are ‘persistent’with respect to scale.We say that a topo-
logical cycle (i.e. a connected component or a hole of the space) is
‘born’ at εn and ‘dies’ at εm if the cycle belongs toHk (VR(V, εn), Z ),
goes to zero in Hk (VR(V, εm), Z ), its image is non-zero in all the
intermediary homologies (i.e. the cycle exists from the moment
it is born to the moment it dies) and the cycle does not belong
to the image of the map Hk (VR(V, εn−1), Z)→Hk(VR(V, εn), Z ).
A simple example for a cloud of four points is shown in figure 2a.

In the case of connected components (i.e. for k = 0), all the con-
nected components are born in the beginning at ε = 0. They
die after several steps when two connected components merge
forming a big connected component. In the end of the process,
we are left with only one connected component that will survive
to infinity. We can view Vietoris–Rips simplicial complexes
indexed by ε as a collection of complexes {VR(V, εk)}k with
inclusion x : VR(V, εi)→VR(V, εi+1) between two consecutive steps.

The k-persistent homology with Z/2-coefficients of the per-
sistent complex {VR(V, εi)}I is defined to be the set of Abelian
groups {Hk (VR(V, εi), Z/2)}i with inclusions Hk(VR(V, ε0),
Z/2)→Hk(VR(V, ε1), Z/2) →…→ Hk (VR(V, εn), Z/2) → …→ Hk

(V R(V, εmax), Z/2).
Z/2 denotes the set of remainders to the division of integer

numbers by 2, i.e. {0,1}. In the context of Hk groups, the fact
that their coefficients are limited to {0,1} means that the only
operation applied to topological cycles is addition. The choice
of Z/2 coefficients for Hk groups is frequently used [15] as it
gives a simplified version of persistent homology.
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Figure 1. Study overview. For each gene expression dataset, the ASD and control groups were analysed by generating either a gene-level or a sample-level distance
matrix (1-Pearson correlation). Distance matrices were used to compute persistence diagrams and their corresponding Betti number and Euler characteristic. The
difference in these topological invariants between ASD and controls was then assessed for significance by random permutation of sample labels. (Online version in
colour.)
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Away to represent the topological cycles that appear in persist-
ent homology is through persistence diagrams (figure 2b), in which
for each topological cycle c, the ‘birth’ εb(c) is plotted on the x-axis
and the ‘death’ εd(c) value is plotted on the y-axis. Topological
cycles of different dimensions are plotted indistinct colours. Persist-
ent features are topological cycles located away from the diagonal.

Some useful summaries of a persistence diagram are the sum
of the lengths of k-dimensional cycles (SLk) and the Euler charac-
teristic. For a k-dimensional cycle c in a persistence diagram, we
define the length of cycle c to be l(c) = εd(c)− εb(c) [17]. We
denote the sum of the lengths l(c) of all k-dimensional cycles
appearing in the persistence diagram by SLk, the sum of their
birth times by SBTk and the sum of their death times by SDTk.
Since all connected components (i.e. cycles of dimension 0) are
born at εb= 0, SL0 equals SDT0.

Note that the topological invariant SDT0 can be interpreted as
a measure of the heterogeneity of the initial vertex set V, which in
our case is the point cloud associated with a dataset. Since a more
heterogeneous group of points would have more connected com-
ponents that survive longer, a priori it is expected that higher
heterogeneity of a point cloud would result in larger SDT0 num-
bers. An exemplification of this concept is shown in figure 2c.

The Euler characteristic [17] of a persistent diagram in which
we have cycles of dimension from 0 to n is defined as: χ =
SL0− SL1 +… +(−1)nSLn.
Because cycles of dimension more than 2 are very rare in our
persistent homology diagrams, the Euler characteristic was com-
puted using dimension 0, 1 and 2 cycles, i.e. χ = SL0− SL1+ SL2.
Thus, the Euler characteristic of a persistent diagram is an invariant
that depends on zero cycles, but also on higher dimensional cycles.

2.2. Gene expression datasets
Gene expression data were obtained from two published studies: a
microarray study which quantified the expression of 9934 genes,
and an RNA-seq study which quantified the expression of 22 399
genes in cerebral cortex samples from ASD cases and controls
[6,7]. Since the number of connected components can depend on
the number of data points, we included the same number of ASD
and control cerebral cortex samples from each dataset (29 per
group for the microarray data and 82 per group for the RNA-seq
data). This would allow us to compare the persistent homology
groups between ASD and controls. For each dataset, ASD cases
and healthy controls had been matched for age and gender in the
original studies [6,7]. Further, there was no significant difference in
age, post-mortem interval or RNA integrity numbers between
autism and control cortex samples included in our analysis.

The microarray data have been quantile normalized and log2
transformed, and the RNA-seq data have been RPKM-normal-
ized and log2 transformed.
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Figure 2. Schematic representation of basic persistent homology concepts. (a) Vietoris–Rips simplicial complexes VR(V, ε) formed by a cloud V of four points, at
increasing ε values (ε is arbitrary, for illustration purposes). (b) Persistence diagram of the point cloud shown in (a). Zero-dimensional components are shown as red
circles, one-dimensional components are shown as green triangles. For each component, the x-axis represents the ε value at which it is born (i.e. persistence interval
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(c) Hypothetical examples of two point clouds of different degrees of heterogeneity. The number of points is the same in both point clouds, i.e. 13 points.
The bottom example is more heterogeneous than the top example. Using circles of the same radius (ε/2), for the top example, we have an associated simplicial
set with 2 connected components so the associated Vietoris–Rips complex VR(V, ε) has 2 connected components, while in the bottom example, we have an
associated Vietoris–Rips complex VR(V, ε) with 13 connected components. Therefore, we have more connected components where the point cloud is more
heterogeneous. (Online version in colour.)
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2.3. Persistent homology analysis
For each gene expression dataset, we calculated (a) an inter-sample
distance matrix and (b) an inter-gene distance matrix for ASD and
control data separately, using 1− r (r: Pearson correlation coefficient)
as a dissimilarity measure. For sample point clouds, we constructed
Vietoris–Rips complexes, based on the vertex set given by the points
in each dataset. Persistent homologywas computed using the pHom
function in the pHom R package [18] (https://github.com/cran/
phom/blob/master/man/pHom.Rd), and persistence diagrams
were plotted using the plotPersistenceDiagram. For gene-point
clouds, which included thousands of points, the Vietoris–Rips com-
plexes are extremely large, and therefore we used an alternative
implemented in the pHom function, the lazy-witness construction,
with landmark_set_size = 20. The pHom function [18], similarly
to most other persistent homology algorithms [16], considers
persistent homology with Z/2-coefficients.
2.4. Mahalanobis distance-based analysis
Mahalanobis distance (MD) was calculated as previously
described [19]:

MDðxi, xcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xcÞTC�1ðxi � xcÞ

q
,

where xi is the vector of gene expression values in ASD sample i,
xc is the vector of gene expression means across controls and ψ−1

is the inverse of the covariance matrix estimated from control
samples. Since some of the covariance matrices did not have an
inverse, we calculated the Moore–Penrose generalized inverse
as implemented in the pinv function in the pracma (Practical
Numerical Math Functions) R package (https://cran.r-project.
org/web/packages/pracma/).
Using all genes in the microarray data, the sum of squared
MD (SSMD) was calculated for ASD samples and compared
with values obtained by 1000 random permutations of group
labels. False discovery rate (FDR) was defined as the ratio of
random permutation values that were more extreme than the
observed SSMD value. When attempting to carry out the same
analysis using the larger RNA-seq dataset on a powerful compu-
ter (2 × 2.66 GHz 6-Core, 64GB RAM), the MD analysis of the
RNA-seq data took over 13 h per computation, and thus a per-
mutation-based analysis was not possible.

For the MD analysis of KEGG gene sets, SSMD was calcu-
lated as above for ASD samples, using the genes within each
set, rather than the entire transcriptome. For each gene set, the
observed SSMD value was compared with 100 randomly
sampled gene sets of the same size.

All data analysis codes are available as a Github repository:
https://github.com/Voineagulab/Persistent_Homology_ASD_
Brain/.
3. Results
We investigated the topological properties of gene expression
data in the cerebral cortex in autism using two published
datasets, generated with two distinct methods: microarays
[6] and RNA-sequencing [7].

There is generally good agreement between gene
expression measurements by microarrays and RNA-seq [7],
with RNA-seq data having the additional advantages of
being more sensitive and having a wider dynamic range. A
highly significant overlap has been observed between genes
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identified as differentially expressed in the two studies [7].
Analysing two datasets generated with different methods
allowed us to assess if our observations are replicable and
independent of the technical properties of each method.

To assess nonlinear relationships between sample (dis)-
similarity among ASD and control cerebral cortex samples,
we constructed persistent homologies based on Vietoris–
Rips simplicial complexes (Material and methods) for ASD
and control data separately. The sample-level point clouds
consisted of 29 ASD and 29 control samples for the micro-
array data and of 82 ASD and 82 control samples for
the RNA-seq data. We observed that the most persistent
features of these point clouds were connected components
(zero-dimensional; figure 3a,b). This observation held true
regardless of whether the data were from ASD or controls,
or whether they were generated by microarrays or RNA-seq
(figure 3d,e). Higher-dimension topological cycles were also
identified, with the maximum dimension being 2 (figure 3).
However, all of the one-dimensional and two-dimensional
topological cycles were transient, i.e. they were ‘born’ and
‘died’ at very close ε values.

Since connected components were persistent features, we
next compared their properties between ASD and control
data. To summarize all the connected components within a
dataset, we computed two topological invariants: the sum
of the death times of connected components (i.e. SDT0;
Material and methods) and the Euler characteristic (χ;
Material and methods), which also takes into account one-
dimensional and two-dimensional topological cycles. We
found that STD0_ASD was higher than SDT0_Control, and
χ_ASD was higher than χ_Control, an observation replicated
across the microarray and RNA-seq datasets.

To test the statistical significance of this observation, we
carried out random permutations of sample labels (figure 3).
We recomputed the persistent homology, as well as SDT0

and χ at each permutation. We then calculated DSDT =
SDT0_ASD − SDT0_Control, and Dχ = χ_ASD− χ_Control at each
permutation. The FDR was calculated as the proportion of
random permutation trials giving a more extreme DSDT or
Dχ value than the observed values. For both microarray
and RNA-seq data, the differences between ASD and
controls were highly significant, using either of the two topo-
logical invariants (figure 3c,f ). We should mention that in
this particular case, where most one-dimensional and two-
dimensional components are very transient, the Euler
characteristic value is very close to the SDT0.

What is the interpretation of a higher sum of the death
time number observed for ASD data compared to control
gene expression data? We propose that the higher sum of
the death time number reflects higher heterogeneity within
the ASD group (Material and methods). Remarkably, a simi-
lar observation has been made on FDG-PET brain imaging
data from 26 ASD and 11 control individuals, where SDT0

was higher for ASD data compared to controls [11].
We also assessed whether the increased heterogeneity of

gene expression data in ASD samples was contributed by
specific subsets of genes or whether it was a property of
the entire transcriptome. To this end, we used functional
gene sets curated in the KEGG database (Kyoto Encyclopedia
of Genes and Genomes [20]). Of the 186 gene sets included
in the KEGG database, 104 had at least half of the genes
expressed in our microarray brain data. For each of the 104
gene sets, we assessed whether DSDT or Dχ was significantly
different from 100 randomly selected sets of genes of the
same size. This analysis identified one gene set as significant:
the MAPK signalling pathway (FDR less than 0.01).
The result was replicated in the RNA-seq dataset (FDR less
than 0.01).

We next investigated the topological properties of
expression (dis)similarities between genes, within the ASD
and control groups, using the same microarray and RNA-
seq datasets. Here we assessed the topological invariants
of point clouds consisting of 9934 genes for the microarray
dataset and 22 399 genes for the RNA-seq data. Similarly to
the sample-level analysis, the ASD and control data were
assessed separately. Owing to the large number of points
in the gene-level point clouds, we used an approximation of
Vietoris–Rips complexes (Material andmethods) and assessed
statistical significance using 1000 random permutations of
sample labels.

The gene-level point clouds showed somewhat more com-
plex topological features than the sample-level point clouds:
in addition to persistent zero-dimensional connected com-
ponents, we also observed a few persistent one-, two- and
three-dimensional components (electronic supplementary
material, figure S1). However, we did not observe any signifi-
cant difference in the sum of the death times or Euler
characteristic between ASD and controls, suggesting that
globally, there are no significant differences in transcriptome
organization between ASD and controls (electronic sup-
plementary material, figure S1). This result is consistent
with our earlier observations based on co-expression network
analyses [6].

To compare our results with previously reported methods
of assessing the dispersion of gene expression data in ASD
brain, we employed an MD-based approach [19]. MD has
previously been used to assess the distance between a
vector of gene expression values from an ASD sample, and
the mean of control samples [19]. One can then ask whether
a summary MD value of all ASD samples (such as SSMD) is
either (a) significantly higher than expected by chance,
through random permutations of group labels or (b) is sig-
nificantly higher within a set of genes compared to
randomly sampled sets of genes of the same size. We found
that SSMD of ASD samples was significantly higher than
expected by chance (FDR less than 0.001, 1000 random per-
mutations of group labels; Material and methods) using the
microarray dataset, confirming the persistent homology-
based result. Owing to the larger gene expression matrix
size and the need to calculate the inverse of the covariance
matrix, MD analysis was not computationally feasible for
the RNA-seq dataset (13 h per computation; Material and
methods). For the same reason, the MD-based transcrip-
tome-wide gene-level analysis could not be carried out.

We also applied the MD-based approach to functional
gene sets from the KEGG database. Using the microarray
data, we identified 3 gene sets showing significantly higher
SSMD for ASD samples than 100 randomly sampled sets of
genes of the same size: ‘MAPK signalling pathway’, ‘path-
ways in cancer’ and ‘cell cycle’ (FDR less than 0.01). The
result for the first two gene sets, but not for ‘cell cycle’, was
replicated in the RNA-seq dataset.

Overall, we found that the differences between ASD and
control gene expression data detected by persistent homology
analysis were confirmed by the MD-based analysis, but per-
sistent homology handled better the large datasets.
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4. Discussion
Here we applied persistent homology methods to investigate
the global properties of gene expression data from autistic
individuals and matched controls in two distinct datasets (a
microarray and an RNA-seq dataset). Unlike previous persist-
ent homology studies of gene expression data [13], our
purpose was not to classify samples based on their gene
expression profiles, but rather to investigate the properties
of gene expression data within each phenotypic group.

By assessing topological invariants of the inter-sample
distance matrices, we found that both the SDT0 and the
Euler characteristic were significantly higher for the ASD
group, in both datasets studied. This observation demon-
strates that gene expression data from ASD individuals are
more heterogeneous than gene expression from controls,
based on inter-sample relationships. Quantifying heterogen-
eity is an important question for autism genetics. In
addition to its clinical heterogeneity, ASD is also hetero-
geneous at the level of DNA sequence variation, with most
ASD patients carrying a unique combination of DNA
sequence changes [17]. Our results indicate that hetero-
geneity, a hallmark clinical property of ASD, is reflected at
the molecular level of gene expression. Gene expression
heterogeneity in ASD brain samples suggests potential
dysfunction across multiple transcriptional regulatory pro-
teins, with the specific proteins impacted being different in
distinct individuals. This notion is consistent with the fact
that variants in genes encoding more than 12 transcription
regulatory proteins have been associated with ASD [21].

The MAPK signalling pathway has been previously
implicated in ASD [22]. Patients with mutations in genes
encoding members of the MAPK pathway have increased
incidence of ASD [23]. Our data suggest that MAPK signal-
ling pathway may also be impacted in patients with
idiopathic ASD at a transcriptional level.

Furthermore, our study provides a framework based on
persistent homology that allows the quantification of hetero-
geneity of high-dimensional data that can be further applied
for comparisons of multiple types of genomic data (such as
gene expression, DNA methylation and sequence variants).
Such comparisons could address an outstanding question:
which molecular layers contribute to the clinical heterogen-
eity of ASD and will be the focus of our future work.
We also assessed the gene pairwise distance matrices
using persistent homology, which can be thought of as a
topology-based co-expression network approach. Since we
are computing topological invariants, we used 1-Pearson
correlation coefficient as the distance matrix, rather than
the topological overlap measure which is implemented
in weighted gene co-expression network analyses [24,25].
Co-expression networks aim to group genes into sets of
co-expressed genes (i.e. co-expression modules) but do not
commonly compute descriptors that allow a global charac-
terization of the topology of the network. Using either the
SDT0 or the Euler characteristic of the gene-level point
clouds, we did not observe any significant difference
between ASD and control groups, showing that the ASD
and control networks have similar topological properties.
This result is consistent with our initial observations based
on co-expression networks, where we observed significant
overlap in the modules detected in the ASD and control net-
works [6]. A recent paper took a related approach, using
the bottleneck distance between persistence diagrams, to
assess (dis)similarities between co-expression networks from
Arabidopsis after exposure to multiple types of stressors [26].

Persistent homology analyses of gene expression data are
still in their infancy, and to our knowledge, our study is the
first to apply persistent homology for brain co-expression net-
works. Further methodological developments are required in
order to harness the full power of topological analyses for co-
expression networks. In particular, the development of
methods for assigning genes to higher dimensional com-
ponents would facilitate extracting co-expression modules
from topology-based networks.
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Github repository: https://github.com/Voineagulab/Persistent_
Homology_ASD_Brain/.
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